
BRIEF RESEARCH REPORT
published: 17 August 2021

doi: 10.3389/fdgth.2021.692077

Frontiers in Digital Health | www.frontiersin.org 1 August 2021 | Volume 3 | Article 692077

Edited by:

Wendy Chapman,

The University of Melbourne, Australia

Reviewed by:

Meliha Yetisgen,

University of Washington,

United States

Jon Patrick,

Health Language Analytics Global

LLC, Australia

*Correspondence:

Nancy Van Damme

nancy.vandamme@kankerregister.org

†These authors share first authorship

Specialty section:

This article was submitted to

Health Informatics,

a section of the journal

Frontiers in Digital Health

Received: 07 April 2021

Accepted: 19 July 2021

Published: 17 August 2021

Citation:

Pironet A, Poirel HA, Tambuyzer T, De

Schutter H, van Walle L,

Mattheijssens J, Henau K, Van

Eycken L and Van Damme N (2021)

Machine Learning-Based Extraction of

Breast Cancer Receptor Status From

Bilingual Free-Text Pathology Reports.

Front. Digit. Health 3:692077.

doi: 10.3389/fdgth.2021.692077

Machine Learning-Based Extraction
of Breast Cancer Receptor Status
From Bilingual Free-Text Pathology
Reports
Antoine Pironet †, Hélène A. Poirel †, Tim Tambuyzer, Harlinde De Schutter, Lien van Walle,

Joris Mattheijssens, Kris Henau, Liesbet Van Eycken and Nancy Van Damme*

Belgian Cancer Registry, Brussels, Belgium

As part of its core business of gathering population-based information on new cancer

diagnoses, the Belgian Cancer Registry receives free-text pathology reports, describing

results of (pre-)malignant specimens. These reports are provided by 82 laboratories

and written in 2 national languages, Dutch or French. For breast cancer, the reports

characterize the status of estrogen receptor, progesterone receptor, and Erb-b2 receptor

tyrosine kinase 2. These biomarkers are related with tumor growth and prognosis and

are essential to define therapeutic management. The availability of population-scale

information about their status in breast cancer patients can therefore be considered

crucial to enrich real-world scientific studies and to guide public health policies regarding

personalized medicine. The main objective of this study is to expand the data available at

the Belgian Cancer Registry by automatically extracting the status of these biomarkers

from the pathology reports. Various types of numeric features are computed from over

1,300 manually annotated reports linked to breast tumors diagnosed in 2014. A range of

popular machine learning classifiers, such as support vector machines, random forests

and logistic regressions, are trained on this data and compared using their F1 scores on a

separate validation set. On a held-out test set, the best performing classifiers achieve F1
scores ranging from 0.89 to 0.92 for the four classification tasks. The extraction is thus

reliable and allows to significantly increase the availability of this valuable information on

breast cancer receptor status at a population level.

Keywords: machine learning, natural language processing, breast cancer, pathology, receptor status

INTRODUCTION

The Belgian Cancer Registry (BCR) is a population-based cancer registry collecting
information on all new cancer diagnoses in Belgium, covering incidences at the
population level since 2004 (1, 2). Every oncological care program in the hospitals
and every laboratory for pathological anatomy is required by law to register structured
information on new (pre-)malignant cases. This structured information covers a range
of patient (age, sex. . . ) and tumor (histology, topography, stage. . . ) characteristics.
Besides this structured information, pathologists must also provide the free-text reports,
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written either in Dutch or French, an example of which is
displayed in Figure 1. Other examples are available on the BCR
website.1

In addition to producing statistics on the cancer burden in
Belgium (2), the BCR is also involved in several prospective
clinical registration projects, the evaluation of quality of care in
oncology, the registration of all cyto-histological specimens in the
context of screening programs for breast, colorectal and cervical
cancer, and in several research projects (http://kankerregister.
org/Publications).

Within the context of these activities, having the breast cancer
receptor status at its disposal would undoubtedly be of added
value. In breast cancer, estrogen receptor (ER), progesterone
receptor (PR), and Erb-b2 receptor tyrosine kinase 2 (ERBB2,
previously named Human Epidermal Growth Factor 2 or
HER2 or HER-2/neu2) are biomarkers known to be related to
tumor growth and prognosis, and assessing their expression is
necessary to define therapeutic management (3–7). Currently
this information is not available in a structured form at the
BCR. However, the information is usually mentioned in the free-
text pathology reports, therefore the BCR is looking for ways to
exploit these existing resources instead of demanding additional
registration efforts. The goal of the present work is to investigate
whether automatic methods could be used to extract ER, PR, and
HER2 results out of the pathology reports.

In clinical practice, the analysis strategy is defined by
(inter)national guidelines (3, 5, 8, 9). ER and PR expressions are
usually tested using immunohistochemistry (IHC) which detects
protein expression through immunostaining of the tested fixed
tissue (4). The HER2 status is assessed by two complementary
methods, IHC and in situ hybridization (ISH), which uses DNA
probes to detect HER2 gene amplification (3, 5). At first, the
HER2 expression is assessed by semi-quantitative IHC: 0 and 1+
are interpreted as negative, 2+ as equivocal and 3+ as positive.
As described by the guidelines, ISH test of HER2 should only
be performed in case of equivocal or positive expression of
HER2 by IHC. The interpretation of the results including cut-
offs for positivity and the categorization of breast cancers in
subtypes according to their receptor status have been captured
in guidelines (10).

Several natural language processing (NLP) tools have
previously been developed to automatically extract ER, PR, and
HER2 status from free-text reports written in English (7, 11),
Chinese (12), and Bulgarian (6). In general, clinical NLP tools
can be separated into three categories, according to the applied
methodology: rule-based (7, 13), conventional machine learning
(11, 12), and deep learning (6).

Rule-based clinical NLP tools rely on a set of rules written
by experts describing how a computer should classify a report.
For instance, Dexter et al. wrote a series of rules to identify
and classify sentences corresponding information about the

1https://kankerregister.org/media/docs/Exempleprotocoles-version2020.txt and

https://kankerregister.org/media/docs/Voorbeeldprotocols%E2%80%93versie202

0.txt
2The commonly used name HER2 will be used throughout this manuscript.

biomarker status (7). Designing rule-based tools is very time-
consuming, because there are many ways to express the
information of interest (6, 11, 12). As an example, Buckley et al.
found more than 4,000 different ways of saying that invasive
ductal carcinoma of the breast was not present (13).

Conventional machine learning and deep learning NLP tools
let the computer create the rules defining how to classify a report.
To be able to do so, the computer needs to be provided withmany
annotated reports, called the training set. Conventional machine
learning tools convert words or phrases to high-dimensional
numeric vectors indicating whether a word or a sentence appears
in the report (11, 12, 14). During this transformation, the
sequential order of the sentences in the report is lost. These
vectors are given as inputs to conventional machine learning
algorithms (such as random forests, support vector machines,
logistic regressions, etc.).

Deep learning NLP tools convert words of the report to low-
dimensional numeric vectors conveying their meaning, called
“embeddings.” The embeddings are sequentially given as inputs
to deep learning algorithms (6). Currently, deep learning is the
state-of-the-art method for NLP tasks. However, deep learning is
computationally intensive, requires a lot of annotated data and
the complexity of the resulting models is a potential challenge
when it comes to interpretability and explanation to the non-data
scientist users of the extracted data.

Inspired by these efforts, the current study presents the first
attempt at automatic extraction of ER, PR, and HER2 status
from free-text Dutch and French pathology reports in Belgium.
The extraction is performed at a national level, involving 82
different data providers (all Belgian laboratories for pathological
anatomy). This problem has not been addressed in the previously
mentioned studies, which focused on a limited number of data
sources (6, 11–13).

METHODS

Data
Pathology reports processed at the BCR are very heterogeneous,
owing to the large number of data providers. Types of
heterogeneity include:

- At least two different languages, French and Dutch, sometimes
mixed in the same report;

- Different naming conventions and abbreviations. For instance,
HER2 is also referred to as ERBB2 (9), Cerb-B2, Her2/neu
(3, 5) or Neu, sometimes with additional spaces or dashes;

- Different writing styles: some reports are lists of bullet
points, for instance reporting results as “ER: +,” while others
are very narrative, for instance “Estrogen receptor stainings
are positive”

- Different use of punctuation (sometimes absent), upper
case (sometimes only uppercase), and line breaks
(sometimes absent).

Because of this large heterogeneity, machine learning tools were
anticipated to perform better than rule-based ones.

For the purposes of a larger study, 8,454 patient files of
breast cancer patients newly diagnosed in 2014 were manually
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FIGURE 1 | Fictive example of a breast cancer pathology report (translated into English). This report (shortened to only contain the text relevant to the present work)

presents results about the status of three biomarkers of interest: ER, PR, and HER2. The status of HER2 can be assessed using immunohistochemistry (IHC) and/or

in-situ hybridization (ISH).
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annotated at the BCR. Each patient file contained one or several
reports, written in one of the two national languages, Dutch or
French. In total, the 8,454 patient files contained 19,539 reports,
as shown in Figure 2A.

The reports contained in each patient file were manually
reviewed by one annotator, who gave the file a conclusive label
for each biomarker. The annotation work was divided between
seven different annotators, trained for this specific task. The
biomarkers of interest were given the following possible labels by
the annotators:

• ER and PR: “Unknown,” “Negative,” or “Positive;”
• HER2 (IHC) expression: “Unknown,” “0,” “1+,” “2+,” or “3+;”
• HER2 (ISH) amplification: “Unknown,” “Carried out but no

result,” “Negative,” “Equivocal,” or “Positive.”

These sets of possible labels were established with the help of an
expert pathologist and according to national and international
pathology guidelines (3–5, 8, 9). The labels “Unknown” and
“Carried out but no result” are additional informal labels that
were used when no test result was mentioned in the report. In
the latter case, the available reports state that a test was carried
out, unfortunately the test result was not transmitted to the BCR.

The fact that several reports belonging to the same patient
can contain contradictory information was anticipated to be a
major difficulty. Consequently, the machine learning algorithm
development was performed at the report level. Only patients
having a single report were selected, as in these cases the link
between the patient file label and the report label is unequivocal.
This selection resulted in 1,341 to 1,355 reports manually labeled
for each of the four classification tasks, as shown in Figure 2A.
The minor differences are caused by missing labels, the number
of which slightly varied depending on the biomarker. The
distribution of the manual labels for all reports is shown in
Figure 2B. This figure shows that there were very few reports
with manual label “Equivocal” for HER2 (ISH). To compensate
this observed label imbalance, all 67 patient files with manual
patient-level label “Equivocal” were selected, and each of the 157
corresponding reports was manually annotated. These additional
data are represented in gray in Figure 2.

For each classification task, the set of classified reports was
randomly split into training (60%), validation (20%) and test
(20%) sets (Figure 2). The training set was used to select the most
relevant features and train several machine learning classifiers.
Then, the performances of the machine learning classifiers
(formally defined in Appendix A) on the validation set were
used as a criterion to evaluate and improve them during the
development phase. Once the best classifier was selected, its
performance was assessed on the held-out test set, allowing to
estimate its generalization error.

Procedure
Pre-processing
Each report was first divided into lines, by splitting at each line
break. Then, each line was split into sentences, using a home-
made sentence tokenizer in the R programming language (15).
The reason for splitting into lines and sentences is that some
reports do not contain line breaks, while others present results

as bullet points, without punctuation (see Figure 1). Finally,
each sentence was separated into words using a punctuation-
based tokenizer.

Feature Engineering
As a next step, more than 20,000 numeric features were extracted
from each report. The types of features used were:

• Presence (yes/no) and number of matches for regular
expressions (regexes) applied to the whole report and
to separate sentences. These regexes were used to detect
sequences of words, including negations, and to group
synonyms and—as the corpus contains texts in both Dutch
and French—different translations of the same word.

• Absolute and relative locations of matches for the previous
regexes in the report. Such features are important since the
decisive information is very often located at the end of
the report, while the beginning typically contains medical
history and test indication, which can cause false positives (see
Figure 1 for an example).

• Regex-based extraction of usual numeric values related to the
possible labels, such as Allred score (provided in Figure 1 for
ER and PR) (4), H score (4) and HER2/CEP17 ratio [provided
in Figure 1 for HER2 (ISH)] (3, 5, 8, 9). Such numeric values
are not systematically provided in all reports and thus cannot
be used as such.

• Word counts, using the tm package in R (16), i.e., the number
of times each specific word appears in each document. One
such feature that can be useful is the number of times the word
“positive” appears in a report, for instance.

• Jaccard similarities between all sentences in a report and
selected reference sentences. The Jaccard similarity between
two sentences is defined as the ratio between the number of
words shared by the two sentences and the total number of
unique words in the two sentences. During the error analysis
process on the training set, sentences which contained unusual
ways of reporting results were identified. Such sentences were
then used as reference sentences. For example, an important
reference sentence was “CerB2 négatif ” (“CerB2 negative;”
note the spelling of HER2).

• Combinations of features with the Boolean operators AND
and OR. For instance, an important feature was whether “0”
occurred more often than “1+,” “2+,” or “3+” in the report.

• Logistic regressions of features.

It was observed that PR test results were very often presented
directly after ER test results and followed the same structure,
as is the case in Figure 1. Similarly, HER2 (IHC) test results
often directly followed PR test results. A methodology was
thus developed to detect structure repetition in the reports and
to isolate ER, PR, and HER2-related segments of the reports.
Feature extraction was performed on the reports as a whole and
on these isolated sections, which contributes to the large number
of features.

The features used in this work were very heterogeneous
and were consequently of different orders of magnitude. This
situation can slow down the training of machine learning models
and cause the training process to stop too early. To solve this
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FIGURE 2 | (A) Venn diagram of all manually classified patient files (outer ellipse); (B) Distribution of the labels in the dataset, for the four classification tasks. (A) From

all the manually classified patient files, those containing only one report were selected, so that a report-level label was available (upper inner ellipse). This subset of

reports was randomly split into training (60%, green), validation (20%, blue) and test (20%, red) sets. For one of the four classification tasks, namely HER2 (ISH), all

patient files with patient-level label “Equivocal” were selected, resulting in 67 patient files, shown in gray. The corresponding 157 reports were individually labeled, and

these report-level labels were added to the training set for classification of HER2 (ISH). (B) Split of the data in training (green), validation (blue) and test sets (red) is

shown, along with additional classified data for HER2 (ISH) (gray). For each classification task, training data (green + gray) was used to build several machine learning

classifiers, which were evaluated on the separate validation set (blue) to avoid overfitting. Once the best classifier was selected, its performance was assessed on the

held-out test set (red).
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issue, features were normalized. The process is formally defined
inAppendix B. The code for feature extraction and the constants
for normalization are provided in the Supplementary Materials.

Feature Selection
To decrease the number of features in the classifiers and avoid
overfitting, coefficients of a regularized multinomial logistic
regression were used as a feature ranking method on the training
set. This procedure was performed using the function cv.glmnet
of the R package glmnet (17).

Classifiers and Training
Different classifiers were built on the training set:

• Random forests with a varying number of trees [R package
randomForest (18)].

• Support vector machines (SVM) with linear, radial,
polynomial and sigmoid kernels [R package e1071 (19)]
and different values of the kernel parameters and penalty.

• Regularizedmultinomial logistic regression [R package glmnet
(17)] with different values of the regularization parameter.

• Classification trees, with a maximum depth ranging from 2 to
10 [R package rpart (20)].

• The k-nearest neighbors algorithm [R package class (21)].
The classifier was applied with k = 1, 3, 5, 9, 15, 30, and
45 neighbors.

During the training step, self-training (22) was used to try to
improve classifier performance. Self-training consists in using a
classifier on unlabeled data to artificially generate more training
data. In this work, there were more than 18,000 reports without
report-level label (Figure 2A, white area inside the largest
ellipse). A first classifier was built on the reports having a report-
level label and was used to automatically label the remaining
reports. The classifier was then re-trained using this larger,
artificial training sample. In the specific case of HER2 (IHC), this
procedure improved the performance of the classifier, and so, this
better classifier was retained.

Validation
The macro-averaged F1 score (11) was used to compare the
performance of different classifiers and hyperparameter values
on the validation set. The macro-averaged F1 score is formally
defined in Appendix A. This performance metric penalizes error
for each label equally. It was chosen as the preferred criterion
because of the large label imbalance, as shown in Figure 2B.
The macro-averaged F1 score ranges between 0 and 1, with 0
corresponding to a classifier which is systematically wrong, and
1 corresponding to a perfect classifier.

To estimate baseline performance, four rule-based classifiers
were also developed, one for each classification task. Some of the
previously developed regexes can be directly linked to a label and
were selected for rule-based labeling. For each of these regexes, if
a report contained a match, it was given the corresponding label.

For each of the four classification tasks, the classifier with
the highest macro-averaged F1 score on the validation set
was selected. This selection criterion is simple but does not
account for high performance occurring by chance (23). Once

the four best performing classifiers were selected (one for
each classification task), their generalization performance was
estimated on the held-out test set.

RESULTS

Table 1 shows the selected features, grouped by category, for
each of the four classification tasks. The first classification task
(classification with respect to ER label), involves a much lower
number of retained features than the other three. These other
three classification tasks also share a similar distribution of
features in each category.

Except for the ER biomarker, all classifiers seem to share a
common pattern in which locations of the regex matches are
the most selected features. On average, relevant numeric values
and word counts were the least selected types of features, as
shown in Table 1. The reason is that relevant numeric values
cannot be extracted for all reports, because they are not always
provided, or not in a clean way. Word counts are not very useful,
most probably because of the bilingual nature of this work. For
instance, even if one word was perfectly able to classify Dutch
reports, it was probably absent in the French reports, making it
on average, only a half-perfect predictor. The bilingual corpus
was considered using regexes grouping translations of the same
concept. As previously mentioned, the location of the concepts in
the report is also very important. In previous work, Pironet et al.
observed that Jaccard similarities were superior to single words
for classifying single report sentences (24). This observation can
be repeated here for the classification of whole reports. Finally,
manual design of feature combinations is a time-consuming
task but seems to be of added value. As shown in Table 2, for
classification of reports into ER categories, the created feature
combinations seem to be so well-performing that only 10 features
were necessary to complete this task (out of 20,000). This
observation is also true for the other three classification tasks, for
which 95, 96, and 80 features were selected. Moreover, this small
dimensionality obtained thanks to the manual design of features
allows to better represent and interpret the classifiers, and thus
gain more insight into the data.

Table 2 also presents the selected classifier for each of the
four classification tasks, i.e., the one with the highest macro-
averaged F1 score on the validation set. The last column shows
the performance of the selected classifiers on the held-out test set,
for which the macro-averaged F1 scores ranged from 0.89 to 0.92.
These results are well above the performance of the rule-based
classifiers, which ranged between 0.39 and 0.54. These results are
also close to 1, which represents a perfect classifier.

Furthermore, it can be observed that the macro-averaged F1
scores for the held-out test set are on par with those for the
validation set, suggesting that there was no overfit and that the
classifiers can safely be used on new data.

DISCUSSION

This study was designed to evaluate the possibility of
automatically extracting the status of the 3 main breast
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TABLE 1 | Numbers and types of selected features for each of the four classification tasks.

Total extracted Selected for ER Selected for PR Selected for HER2 (IHC) Selected for HER2 (ISH)

Number of regex matches 3,344 2 22 21 9

Location(s) of regex match(es) in

the report

15,120 1 50 49 51

Numeric values 78 0 3 1 5

Word counts Not fixed 0 4 1 1

Jaccard (lexicographic)

similarities with reference

sentences

468 2 3 7 3

Boolean combinations of

features

1,168 4 8 16 6

Logistic regressions of features 105 1 5 1 5

Total number of features ∼20,000 10 95 96 80

TABLE 2 | Results of the four classification tasks.

Marker Number of

features

Best classifier Macro-averaged F1 score on the

validation set (number of reports)

Macro-averaged F1 score on the

test set (number of reports)

ER 10 SVM (linear kernel) 0.90 (N = 273) 0.91 (N = 258)

PR 95 Random forest 0.93 (N = 285) 0.92 (N = 265)

HER2 (IHC) 96 Logistic regression 0.92 (N = 250) 0.92 (N = 265)

HER2 (ISH) 80 SVM (linear kernel) 0.89 (N = 244) 0.89 (N = 274)

cancer biomarkers (ER, PR, and HER2) from the contents
of pathology reports written in two different languages, and
coming from 82 different providers, using conventional machine
learning models.

After testing different classifiers, the best performing ones
achieved macro-averaged F1 scores ranging from 0.89 to 0.92 on
the held-out test sets, which is on par with best efforts in the
literature (6, 7, 11, 12). The reported F1 scores in the literature
range between 0.87 and 1, but use only three possible labels for
HER2, whereas five are used in the present work.

The classifiers were tested once more on another, more recent
dataset of 524 breast cancer pathology reports randomly selected
from the incidence year 2017 (the classifiers were trained and
evaluated on data from the incidence year 2014). The macro-
averaged F1 scores were evaluated on this new, independent
dataset and are as follows:

• ER: 0.81
• PR: 0.84
• HER2 (IHC): 0.89
• HER2 (ISH): 0.76.

The performances of the classifiers are, as could be expected,
lower on this new dataset, but still much higher than for the
rule-based classifiers. The lower performance could be attributed
to some limited overfitting, to a difference in the distribution
of the data between 2014 and 2017, or most probably to a
mixture of both. Specifically, the lowest score for HER2 (ISH)
is caused by the difficult categories “Carried out but no result”
and “Equivocal,” for reasons discussed in section Causes of

Classification Errors. The corresponding accuracy of this fourth
classifier is 91%.

In the present work, an effort was put on the manual
engineering of relevant features. The classifiers produced in this
work included remarkably low numbers of selected features,
suggesting that manual feature engineering is powerful enough
to justify the time it takes. Manual feature engineering also
made it possible to deal with reports in two languages without
having to develop one classifier for each language. This latter
approach would have required more training work, using half
the available data. Moreover, it would not have been able to
process reports containing both languages, which happens if an
additional analysis is performed in a laboratory using a different
language than the one of the first laboratory. Nevertheless, this
well-performing algorithm has a few limits to be aware of, but
which have been analyzed thoroughly.

Limits
Causes of Classification Errors
Several challenges were encountered and can explain some of
the misclassifications. First, errors can be caused by reports
presenting results of IHC tests for other biomarkers but written
in a very similar fashion as IHC test results for ER, PR, or HER2.
Second is the presence of the results of HER2 IHC controls in a
report, as shown in Figure 1: a positive control has result 3+, a
negative one has result 0 or 1+ (8). These additionally present
results complicate the extraction of the true conclusive result.
A third cause of errors is when a report contains results related
to multiple tumors, typically bilateral breast tumors, in which
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the classifier has trouble making a final decision. Such reports
can easily be detected and discarded in the BCR database, but
at present cannot reliably be automatically processed. Reports
describing multiple breast tumors represent <1% of all reports
available at the BCR (Macq et al., manuscript in preparation).

Some additional difficulties were specifically encountered for
the extraction of the HER2 (ISH) status. First, classification into
the “Carried out but no result” category was error-prone because
many reports state that an ISH test is ongoing, and the results
of this ISH test are reported further in the text. An example is
given in Figure 1. In addition, the category “Equivocal” does not
seem to be interpreted in the same way by all pathologists in 2014.
While the guidelines state in which conditions a sample must be
reported as equivocal (3, 5, 8, 9), it was observed that, in such
conditions, many pathologists reported the sample as negative.

Manual Annotation
Another limitation of the present work is that annotators had
various levels of clinical expertise regarding the diagnosis of
breast cancer, even though all annotators received training
and were supported for this specific task. In addition, reports
are written in Dutch or in French, meaning that, in some
cases, annotators had to process complex medical information
in their non-native language. As in other studies (6), human
error is inevitable during manual annotation. Some incorrect
manual labels were identified during development and have been
corrected. To a posteriori quantify the difficulty of the annotation
task, two of the authors (NVD and LVW) independently
annotated 524 additional reports from the incidence year 2017.
The inter-rater agreement, also measured using the macro-
averaged F1 scores, ranged between 0.92 and 0.96 depending
on the classification task. Given enough training and time,
annotators can thus perform very well. On the other hand,
because of the large heterogeneity in how the reports are written,
rule-based classifiers did not provide good results.

Performance of All Classifiers
As mentioned in section Classifiers and Training, many different
classifiers were built on the training set and evaluated on the
validation set. For each classification task, the best classifier was
selected as the one with the highest macro-averaged F1 score on
the validation set and is reported in Table 1. Given no statistical
test was performed to compare classifiers with one another,
it cannot be guaranteed that the classifiers selected in Table 1

significantly outperform the other ones. Despite this limitation,
the selected classifiers still performed very well on two held-out
test datasets, as previously described.

Perspectives
Merging of the Report-Level Labels at Tumor-Level
The developed method has already been applied to a large subset
of the BCR database, providing receptor status for more than
200,000 breast cancer reports (incidence period 2008–2017),
allowing to perform more focused real-world population-based
studies of quality of care for breast cancer diagnostic, prognostic
assessment as well as clinical management (10). For some specific
projects, the next step after obtaining report-level labels for

each biomarker is to merge this information to obtain a single
label at tumor-level for each biomarker (in particular if there
are discordant results for the same biomarker which may be
studied twice on two different samples such as a biopsy and
surgical excision). With the help of an expert pathologist, we have
built a set of merging rules for this purpose and are currently
evaluating it.

State of the Art NLP Tools
Clinical NLP tools can be separated into three categories: rule-
based (7, 13), conventional machine learning (11, 12), and deep
learning (6). The present study used a range of conventional
machine learning classifiers, and different classifiers were selected
for the different classification tasks. This observation emphasizes
that trying many different classifiers is often the key to success
with machine learning. Now that this first work has proven
that it is possible to correctly extract information from free-text
pathology reports at the BCR, deep learning certainly represents
the next step. We plan to try state-of-the-art techniques in text
classification, such as deep learning which has proved to be
highly efficient in labelingmedical cancer-related free-text (6, 25).
Deep learning and word embeddings also offer the possibility to
process texts in different languages (6), which is appealing for our
two-language setting.

Relevance to Biomarkers for Other Cancer Types
Similar classifiers could be relevant for many other categories
of biomarkers which are needed for diagnostic, prognostic,
or therapeutic purposes, such as prognostic scores [Gleason
score for prostate tumors (14, 26)], viral tumor status [Human
Papilloma Virus for cervical or oropharynx cancers (2, 24)],
protein expression [targeted inhibitors for ALK-positive lung
cancers (27) or immune checkpoint inhibitors in tumors
expressing PDL1], gene mutations (targeted inhibitors for BRAF
V600-mutated melanoma). In all these new projects, we plan to
improve upon the presented methodology, for instance using
transfer learning to build upon the previous work rather than
re-starting from scratch.

CONCLUSION

This work presents a method for automatic extraction of breast
receptor biomarker status from free-text pathology reports, using
machine-learning classifiers. The classifiers showed results as
good as other studies on the same topic with macro-averaged
F1 scores ranging from 0.89 to 0.92. The methodology was
developed at a national level and can extract this relevant
information from reports written in two different languages by
a very large number of providers. We have shown that, overall,
using machine learning tools contributes to automatization
of data extraction, increasing the availability and quality of
clinically relevant data at the BCR, and potentially at other
registries processing breast cancer pathology reports in Dutch
and/or French. Automatically extraction of data within pathology
reports by NLP allows registries to rapidly increase their dataset
with up-to-date biomarkers without increasing the workload
of hospital data managers. The availability of an extended and
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regularly updated dataset for a cancer registry enables in-depth
studies to provide international studies with population-scale
data in a real-world setting and to guide national policy regarding
personalized medicine.
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APPENDIX A: DEFINITION OF THE
MACRO-AVERAGED F1 SCORE

Definition of the F1 Score in a Two-Label
Setting
For a two-label classification problem, the reference and
predicted labels are either 0 or 1. Each report thus belongs to one
(and only one) of the following categories:

• True negatives, for which the reference label is 0 and the
predicted label is 0;

• False positives, for which the reference label is 0 and the
predicted label is 1;

• False negatives, for which the reference label is 1 and the
predicted label is 0;

• True positives, for which the reference label is 1 and the
predicted label is 1.

The F1 score is defined as follows:

F1 =
2NTP

2NTP + NFP + NFN
,

where NTP is the number of true positives, NFP, the number of
false positives, and NFN , the number of false negatives.

Definition of the Macro-Averaged F1 Score
in a Multi-Label Setting
This section explains how to generalize the F1 score in a setting
with k possible labels, denoted C1, . . . , Ck. To apply the F1
score to a multi-label setting with k possible labels, the k-label
classification problem must be conceptually transformed into k
two-label classification problems. For each of these k two-label
classification problems, the two reference and predicted labels
are either Ci (corresponding to 1) or not Ci (corresponding
to 0), with i = 0, . . . , k. The following categories are
then introduced:

• True negatives, for which the reference label is not Ci and the
predicted label is not Ci;

• False positives, for which the reference label is not Ci and the
predicted label is Ci;

• False negatives, for which the reference label is Ci and the
predicted label is not Ci;

• True positives, for which the reference label is Ci and the
predicted label is Ci.

For example, if the possible labels are “Positive,” “Negative” and
“Unknown,” there are three two-label classification problems. For
the first two-label classification problem, the possible labels are
“Positive” and “Not positive,” which contains all reports with
the labels “Negative” or “Unknown.” For the second two-label
classification problem, the possible labels are “Negative” and “Not
negative,” etc.

Using the definition of the F1 score for the two-label setting, k
different F1 scores can be computed: one for each of the k two-
label classification problems. The average of these k different F1
scores is called the macro-averaged F1 scores and measures the
performance of the k-label classifier.

APPENDIX B: FEATURE NORMALIZATION

All features, discrete and continuous, were normalized so that
their mean was equal to zero, and their variance was equal
to one. Let µ(f ) be the mean of the feature f and σ (f ), its
standard deviation, both computed on the training set only. The
normalized feature is:

f ′ =
f − µ

(

f
)

σ
(

f
) .

Features for which σ (f ) was too small were excluded, as part of
the feature selection process. The normalization factors,µ(f ) and
σ (f ), were stored so that they could be used for normalizing the
validation and test set features.
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