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Abstract

A recent study using Heckman-type selection models to adjust for non-response in the Zambia 2007 Demographic and
Health Survey (DHS) found a large correction in HIV prevalence for males. We aim to validate this finding, replicate the
adjustment approach in other DHSs, apply the adjustment approach in an external empirical context, and assess the
robustness of the technique to different adjustment approaches. We used 6 DHSs, and an HIV prevalence study from rural
South Africa to validate and replicate the adjustment approach. We also developed an alternative, systematic model of
selection processes and applied it to all surveys. We decomposed corrections from both approaches into rate change and
age-structure change components. We are able to reproduce the adjustment approach for the 2007 Zambia DHS and derive
results comparable with the original findings. We are able to replicate applying the approach in several other DHSs. The
approach also yields reasonable adjustments for a survey in rural South Africa. The technique is relatively robust to how the
adjustment approach is specified. The Heckman selection model is a useful tool for assessing the possibility and extent of
selection bias in HIV prevalence estimates from sample surveys.
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Introduction

HIV prevalence is commonly measured by collecting HIV

biomarkers in household sample surveys. There are two selection

processes that separate the population from individuals who agree

to biomarker collection: (1) the ability to locate selected individuals

to be interviewed, and (2) the consenting process for interviewed

participants to collect HIV biomarkers. At both stages, the sample

can vary systematically from the population, resulting in bias in

population HIV prevalence estimates. For instance, those who

already know their HIV status may be less likely to consent to HIV

testing.

Heckman-type selection models [1] estimate and adjust for

correlation between HIV status and the probability of participat-

ing in HIV testing. While these models are widely used in

economics and other social sciences [2–5], they have been rarely

applied in epidemiological studies – making their use controversial.

Several recent papers have used Heckman-type selection models

[1] to adjust for selective non-response in sample surveys [6–9],

and Floyd and colleagues [10] have tried a variety of similar

approaches to quantify the effects on non-response in HIV

surveys.

Demographic and Health Surveys (DHSs), as population-based

surveys, are widely used to estimate national HIV prevalence.

However, these surveys may be subject to bias from selective

nonresponse. A paper by Barnighausen et al. [6] applied

Heckman-type selection models to the 2007 Zambia Demographic

and Health Survey. They found a strong correction in male HIV

prevalence that removed the gender disparity found in the original

analyses [11]. This was largely due to an increase in the adjusted

HIV prevalence for men from 12% to 21% [6].

Given the striking finding of a strong selection bias for men in

the 2007 Zambia DHS, the accompanying recommendation to

widely apply selection model methods to all DHSs, and the relative

rarity of these methods being applied in epidemiological studies, in

this study we aim to: (1) independently validate the reported

finding for the 2007 Zambia DHS; (2) replicate the method to

several DHSs; (3) apply the method to an external context with a

population observed over time; and (4) explore the sensitivity of

the method to alternate specification.
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Materials and Methods

Ethics Statement
The sample survey in South Africa received ethical approvals from

the University of the Witwatersrand Human Research Ethics

Committee and the Mpumalanga Provincial Research and Ethics

Committee. Ethics committee approval was not needed for the

Demographic and Health Surveys work – all data were analyzed

anonymously.

Data
We apply the Heckman-type selection model and generate

adjusted HIV prevalence for 5 DHSs: Lesotho 2004 – 05, Lesotho

2009 – 10, Swaziland 2006 – 07, Zambia 2007, and Zimbabwe

2005 – 06. These surveys were selected in order to apply the

method under several different scenarios, including: relatively high

non-response rate for the HIV test to allow for potentially greater

influence of the selection model over the adjusted prevalence; in

the same country close in time with different non-response rates, in

order to compare measured and adjusted estimates; and a large

gender disparity in measured HIV prevalence similar to the

Zambia 2007 estimates.

We also use data collected from a health and demographic

surveillance system (HDSS). The Agincourt HDSS is located in

rural northeast South Africa. Since 1992 the study has conducted

annual censuses of all households in 21 study villages. Vital events,

migrations, and other information are collected at each census [12].

During 2010–11 we conducted a sample survey that collected data

describing HIV and noncommunicable disease risk factors and

biomarkers on a sex-age-stratified sample of 7,662 individuals from

an eligible population of 34,413 individuals fifteen years old and

older [13]. A research team visited sampled individuals up to 3 times

for enrollment and informed consent. Cyclic labour migration is

common in this population, especially for men – leading to

differential nonresponse to the survey. These data represent an

external context to apply Heckman-type selection models, where we

have longitudinal data on individuals and a detailed understanding

of the likely nonresponse processes at work.

For access to the Agincourt HDSS survey please contact Dr. F.

Xavier Gómez-Olivé (Xavier@aingoucrt.co.za). For access to the

DHSs please contact MEASURE DHS (http://www.measuredhs.

com).

Analyses
Replicating Bärnighausen et al.’s ‘2-stage’ approach for

DHS surveys. For each DHS we apply the Heckman selection

model and generate adjusted HIV prevalence following the

approach used by Bärnighausen et al. [6] – which we call the

‘2-stage’ approach. We use a probit model for the outcome HIV

status for individual i

h�i ~xiYz

hi~
1 if h�i w0

0

(
ð1Þ

where h�i is an unobserved latent variable determining the

likelihood of HIV infection, and depends on observed covariates

xi and random error Ei.

We also use a probit model for selection

s�i ~xibzziczui

si~
1 if s�i w0

0

(
ð2Þ

where s�i is an unobserved latent variable determining the

likelihood of selection, and depends on observed covariates xi,

exclusion criteria zi, and random error ui. We observe hi when

si~1. The estimated Heckman r allows for correlation between

the error terms in the outcome and selection equation 

otherwise

r~corr(E,u) ð3Þ

We consider two sources of non-response: (1) individuals who

are unable to be contacted (the contact regression, which includes

the entire eligible sample), and (2) individuals who are contacted

but refuse HIV testing (the consent regression, which includes the

eligible sample who were interviewed). We estimate these models

separately for men and women, and include the same covariates

used by Bärnighausen et al. [6]. We also specify the same exclusion

criteria: for the contact regression we include household

interviewer identity and if the household interview occurred on

the first day of fieldwork in the cluster. For the consent regression,

we include individual-interview interviewer identity. These are

included since results are more robust if there are exclusion criteria

that correlate with selection but are not correlated with the

outcome.

For the sample survey data from the Agincourt HDSS we follow

the same approach, considering non-response due to: (1)

individuals who are unable to be contacted (the contact regression,

which includes the eligible sample), and (2) individuals who are

contacted but refuse HIV testing (the consent regression, which

includes the eligible sample who were interviewed). The consent

regression uses variables that would be available from an

individual-level interview in a typical DHS-style cross-sectional

survey. We specify the contact regression to include variables that

would be available from a household-level interview in a typical

DHS-stye cross-sectional survey. These are specified as in

equations 1 and 2, where xi are based on observables from the

survey and zi is the identity of the survey fieldworker.

The adjusted HIV prevalence is calculated using observed HIV

status for the a individuals i who were tested, the predicted

probability of being HIVz given not consenting for the b
individuals j who were contacted but refused testing (from the

consent regression) and the predicted probability of being HIVz

given not contacted for the d individuals k who were not contacted

(from the contact regression). The Bärnighausen-method adjusted

estimate of HIV prevalence PB for the population N is

PB~
1

NXa

i~1

½H�iz
Xb

j~1

Pr (HIVzjnot consented)jz
Xd

k~1

Pr (HIVzjnot contacted)k

" # ð4Þ

New ‘multi-stage’ adjustment method for Agincourt

HDSS HIV survey. To make the following equations easier to
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read, we introduce new notation. For HIVz we use z, for those

who were found F , for those who were found and interviewed F ,I ,

and for those who were found, interviewed, and tested F ,I ,T . We

use the negation operator : to indicate ‘the opposite of’ – i.e. :F

means ‘not found’.

As an alternative to the 2-stage approach we derive a new

‘multi-stage’ method. For the sample survey from the Agincourt

HDSS we consider three reasons for nonresponse: (1) not being

found, (2) (found but) not consenting to the interview, and (3)

(found and interviewed but) not consenting to HIV testing. Based

on a map of the outcome space that includes decision points F or

:F , I or :I , and T or :T , we define symmetric counterfactuals

and model these using a combination of Heckman selection

models and imputation.

We know the HIV status ½H�i of those who were found,

interviewed and tested F ,I ,T . For those who where found and

interviewed but did not consent for testing F ,I ,:T we use the

probit models specified in equations 1 and 2 with the identity of

the interviewer as the exclusion criteria zi. The predicted

probability of being HIVz in the F ,I ,:T group is Pr (zD:T).

We next consider those who were found but did not agree to be

interviewed, the F ,:I group. The counterfactual for this group

divides them into tested F ,:I ,T and not tested F ,:I ,:T , and we

use a Heckman selection model to predict the probability of being

tested given that a respondent refused to be interviewed. We

model the outcome ‘being tested’ for individual i with the probit

model

T�i ~xiYz

Ti~
1 if T�i w0

0

(
ð5Þ

where T�i is an unobserved latent variable determining the

likelihood of being tested as a function of observed covariates xi

and a random error Ei. We model selection into ‘being

interviewed’ with the probit model

Figure 1. Measured and adjusted HIV prevalence for 5 Demographic and Health Surveys, by sex and 2-stage and multi-stage
approaches. Values use survey weights and take into account survey design. Weights are normalized by dividing by 1,000,000. We apply weights
specific to the HIV sample to generate ‘Measured’ prevalence for comparison purposes. We apply household weights to each individual in calculating
the ‘Multi-stage’ and ‘2-stage’ HIV prevalence.
doi:10.1371/journal.pone.0112563.g001
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I�i ~xibzui

Ii~
1 if I�i w0

0

(
ð6Þ

where I�i is an unobserved latent variable determining the

likelihood of being interviewed as a function of observed covariates

xi and a random error ui. We observe Ti when Ii~1. The

estimated Heckman r allows for correlation between the error

terms in the outcome and selection equation as specified in

equation 3. This biprobit Heckman selection model is estimated

on everyone who was found F . The predicted probability of being

tested in the F ,:I subgroup is Pr (T DF ,:I). We use this

probability to divide the F ,:I into F ,:I ,T and F ,:I ,:T groups.

To predict the HIV status of those in the tested and not tested

subgroups, we assume that they are HIVz in proportions equal to

those in the F ,I ,T group who actually had a positive test and those

who are predicted to be positive in the F ,I ,:T (just above). We

impute these values using probabilities predicted from equations 1

and 2 for the counterfactual F ,:I ,:T group and observed HIV

status ½H�i in the observed F ,I ,T group for the counterfactual

F ,:I ,T group.

Finally we consider those who were not found for an interview

at all, the :F group. The full counterfactual for this group divides

them into interviewed :F ,I and not interviewed :F ,:I , and

further into tested :F ,I ,T and not tested :F ,I ,:T among those

who are interviewed and tested :F ,:I ,T and not tested

:F ,:I ,:T among those who are not interviewed. We use a

Heckman selection model to predict the probability of being

interviewed given that a respondent was not found. We model the

outcome ‘being interviewed’ for individual i with the probit model

I�i ~xiYz

Ii~
1 if I�i w0

0

(
ð7Þ

where I�i is an unobserved latent variable determining the

likelihood of being interviewed as a function of observed covariates

xi and a random error Ei. We model selection into ‘being found’

with the probit model

F�i ~xibzui

Fi~
1 if F�i w0

0

(
ð8Þ

where F�i is an unobserved latent variable determining the

likelihood of being found as a function of observed covariates xi

and a random error ui. We observe Ii when Fi~1. The estimated

Heckman r allows for correlation between the error terms in the

outcome and selection equation as specified in equation 3. This

biprobit Heckman selection model is estimated on the entire

eligible sample. To predict the probabilities of being HIVz in the

four tested subgroups in this counterfactual (:F ,I ,T , :F ,I ,:T ,

:F ,:I ,T and :F ,:I ,:T ), we follow exactly the same logic as

described just above for the F ,:I group, with the additional level

of found/not found. The final multi-stage adjusted population

HIV prevalence PM is
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Figure 2. Corrections to sex-age specific Agincourt HDSS HIV prevalence, 2010 – 2011. A) Corrections using 2-stage approach; B)
Corrections using multi-stage approach.
doi:10.1371/journal.pone.0112563.g002
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PM~
1

N

Xa

i~1

½H�i

"
z
Xb

j~1

Pr (zjF ,I ,:T)jz
Xc

k~1

Pr (T jF ,:I)k

| Pr (zjF ,:I ,T)kz(1{ Pr (T jF ,:I)k)

| Pr (zjF ,:I ,:T)kz
Xd

‘~1

Pr (I j:F)‘| Pr (T j:F ,I)‘

| Pr (zj:F ,I ,T)‘z
Xd

‘~1

Pr (I j:F )‘|(1{ Pr (T j:F ,I)‘)

| Pr (zj:F ,I ,:T)‘z
Xd

‘~1

(1{ Pr (I j:F )‘)

| Pr (T j:F ,:I)‘| Pr (zj:F ,:I ,T)‘z
Xd

‘~1

(1{ Pr (I j:F)‘)

|(1{ Pr (T j:F ,:I)‘)|Pr (zj:F ,:I ,:T)‘�

ð9Þ

where N is the total number of individuals in the population, a is

the number in the F ,I ,T group; b the number in the F ,I ,:T
group; c the number in the F ,:I group and d the number in the

:F group.

Application of the multi-stage correction method to DHS

surveys. In order to compare the two adjustment methods using

DHS data, we also apply the multi-stage adjustment method to the

five DHS surveys for which we estimate adjusted HIV prevalences

using the Bärnighausen 2-stage method. Because the DHS surveys

do not contain information that allows us to model the outcome

‘being tested’, the multi-stage method for DHS surveys requires

only two models:

1. Predicting the probability of being HIVz among those

interviewed. We use equations 1 and 2, using interviewer identity

as the exclusion criteria.

2. Predicting the probability of being interviewed among those

contacted. We use equations 7 and 8 with the exclusion criteria

being the number of household visits.

We calculate adjusted population HIV prevalence in a manner

analogous to equation 10. The final multi-stage adjusted

Figure 3. Decomposition of sub-group crude rates into rate and age composition differences using the multi-stage approach,
Agincourt HDSS 2010 – 2011. Rate and age differences sum to 100% for each sex subgroup. For those who were found F , for those who were
found and interviewed F ,I , and for those who were found, interviewed, and tested F ,I ,T . We use the negation operator : to indicate ‘the opposite
of’ – i.e. :F means ‘not found’.
doi:10.1371/journal.pone.0112563.g003
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population HIV prevalence for DHS surveys is PM,DHS is

PM,DHS~
1

N

Xa

i~1

½H�i

"

z
Xb

j~1

Pr (HIVzDnot consented)j

z
Xc

k~1

Pr (testedDnot contacted)k| Pr (HIVzDtested)k

z
Xc

k~1

(1{ Pr (testedDnot contacted)k)| Pr(zDnot consented)k�

ð10Þ

where N is the total number of individuals in the population, a is

the number of individuals who consented to HIV testing indexed

by i; b the number of individuals contacted indexed by j; c the

number of individuals not contacted indexed by k.

Decomposing differences in crude prevalence rates. Like

all ‘crude’ rates, the overall population prevalence of HIV is a

weighted average across dimensions along which HIV prevalence

varies; sex and age being two of the important ones. The differences

between crude rates – the adjustments we are calculating with these

methods – are the result of changes in the prevalence profiles across

these subgroups and changes in the composition of the population

across the subgroups. In our case, the sex-age profile of prevalence

may change to bring about the difference, or the sex-age

composition of the population may change to provide different

weights for the same sex-age profile of prevalence. To unravel how

much of each type of change is contributing to the overall difference,

we can decompose the adjustments to overall population-average

HIV prevalence rates into components resulting from changes in

the sex-age prevalence rates and the sex-age composition of the

population. To do this we use standard methods described by

Preston and coauthors [14].

Results

Application to the DHS
Regression outputs are available in supporting information

Tables S1. Figure 1 and Table 1 show the adjusted HIV

prevalence results using the 2-stage approach of Bänighausen

et al. for the DHS. Our 2007 Zambia results closely align to those

Figure 4. Decomposition of sub-group crude rates into rate and age composition differences using the 2-stage approach,
Agincourt HDSS 2010 – 2011. Rate and age differences sum to 100% for each sex subgroup. For those who were contacted we use Ct, for those
who consented we use CS, and for those who were tested T. We use the negation operator : to indicate ‘the opposite of’ – i.e. :CT means ‘not
contacted’.
doi:10.1371/journal.pone.0112563.g004
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found in the original paper [6]: we find a corrected HIV

prevalence for males of 20.1% compared to their 21% and a

corrected prevalence for females of 18.5% compared to their 18%.

Both results find a small correction in HIV prevalence for women

and a large correction in male HIV prevalence. The remaining

difference of 0.09 percentage points may be due to differences in

the coding of analytic variables.

For Lesotho in Figure 1 and Table 1 we have two time points

with different response rates. In the later survey the response rate

increased (82% of women and 71% of men in 2004 [15]; 94% of

women and 88% of men in 2009 [16]) but measured HIV

prevalence remained relatively stable (26% of women and 19% of

men in 2004 [15]; 27% of women and 19% of men in 2009 [16]).

In this case measured HIV prevalence does not respond to

changes in response rate, suggesting that nonresponse bias was

small in the earlier survey with a higher nonresponse rate. The

adjusted prevalence correction is correspondingly small for both

men and women in the earlier survey. While the adjusted

prevalence correction is larger in the more recent survey, the low

nonresponse rates made model convergence difficult.

For Zimbabwe in Figure 1 and Table 1 there was a moderate

degree of nonresponse (77% of men and 84% of eligible women

were covered) [17]. The adjusted prevalence correction is quite

minor. The results from Swaziland show a large male HIV

prevalence correction that reduces the gender gap from 11

percentage points higher for women to 6 percentage points higher

for women.

Figure 1 and Table 1 also show the results comparing the 2-

stage and multi-stage approaches. The results are very similar for

most of the surveys. For males in the Swaziland 2006 – 07 DHS

the multi-stage estimate is approximately 2.7 percentage points

lower than the 2-stage estimate. For males in the Lesotho 2004 –

05 DHS the multi-stage estimate is approximately 1 percentage

point higher than the 2-stage estimate. These two surveys have a

relatively larger amount of nonresponse due to individuals who

were not contacted, which allows the different adjustment

techniques to vary slightly.

Application to the Agincourt HDSS
Regression outputs are available in supporting information

Tables S2. Measured HIV prevalence was 19.4%; 23.9% for

females and 10.6% for males. The 2-stage approach adjusted HIV

prevalence was 22.1%; 25.4% for females and 16.9% for males).

The multi-stage approach adjusted HIV prevalence was 23.1%;

26.9% for females and 17.1% for males.

The corrections shown in Figure 2 are the differences between

measured HIV sex-age-specific prevalence and the adjustments

from the multi- and 2-stage approaches. The 2-stage approach

increases overall HIV prevalence by 2.7 percentage points; 1.5

percentage points for females and 6.3 percentage points for males.

The multi-stage approach increases overall HIV prevalence by 3.6

percentage points; 3 percentage points for females and 6.4

percentage points for males.

Figure 3 displays the decomposed crude rates into rate and age

composition differences by subsequently adding each group using

the multi-stage approach. The rate and age differences sum to

100% for each sex subgroup. When adding the not-tested to the

tested subgroup (which increases prevalence by 1.9 percentage

points) the sex-age prevalence is the larger component of the

difference. Adding the not-interviewed group (which increases

prevalence by 0.7 percentage points) the two components

contribute similarly to the difference. Finally, adding the not-

found group (which increases prevalence by 1.1 percentage points)

the sex-age composition of the population represents almost all of

the difference.

Figure 4 displays the decomposed crude rates into rate and age

composition differences by subsequently adding each group using

the 2-stage approach. Adding the not-consenting to the test

subgroup (which increases prevalence by 2.4 percentage points)

the sex-age prevalence and sex-age composition both provide

positive contributions to the difference. For females, adding the

not-contacted group the sex-age prevalence contributes twice the

magnitude of overall change in population prevalence. Age

composition changes operate in the opposite direction to decrease

the change in population prevalence. For males, age-composition

contributes nearly all of the difference in population prevalence.

Discussion

We were able to validate the original findings for the Zambia

2007 DHS [6], and replicate the method across several other

DHSs. We also found the DHS adjusted results to be relatively

robust to different methods to calculate the adjusted prevalence.

The adjustments for the Agincourt HDSS indicated a larger

correction for males, which integrates with our understanding of

male nonresponse due to cyclical migration. The adjustment was

also relatively robust to each method of calculating adjusted

prevalence, with slightly higher corrections for females using the

multi-stage approach. For both the multi-stage and 2-stage

approaches most of the correction for females was due to the

model of self-selection into testing. Most of this correction was due

to differences in age-specific rates rather than differences in age

composition. For males the non-testing and not-found groups

contributed about equally. For male non-testers most of the

contribution was from age-specific prevalence rates. For not-found

males, the changes in prevalence were driven almost entirely by

differences in age structures of the found and not-found

populations.

Our study has limitations. First, we ignored uncertainty from

the underlying r parameter when calculating adjusted HIV

prevalence (i.e., when calculating 95% CIs we estimate sampling

uncertainty conditional on the estimated regression parameters).

However, our main goal was to conduct an independent validation

of the original findings [6]. Future work is needed to incorporate

uncertainty from the model-based adjustment – Hogan et al.

employed a parametric simulation approach [9]. Second, the

multi-stage approach assumes that the imputed conditional

probabilities are similar in the observed and unobserved situations.

The 2-stage approach also assumes that those who do not consent

would follow a similar nonresponse pattern relative to those who

were not contacted. While each approach makes untestable

assumptions, they yield similar results.

Our results suggest that Heckman-type selection models are

useful for epidemiological studies to assess the importance of

selection bias in the population parameter of interest and how

sensitive the parameter is to selective nonresponse. Our indepen-

dent validation produced remarkably similar findings to the

original paper [6], and the results are relatively robust to different

approaches to adjusting HIV prevalence. Future work is needed to

determine how to calculate adjusted HIV prevalence in light of all

available evidence (both measured and modeled). Ultimately the

choice of selection model will be problem-specific and dependent

on the researchers’ and modeling assumptions, as well as the data

available [18].

Based on these results we recommend that all surveys, including

DHS, that include HIV testing calculate and present both

unadjusted and Heckman biprobit-adjusted estimates of HIV
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prevalence. Heckman biprobit-based adjustments can be made

using either the two-stage or multi-stage approach, but we prefer

the multi-stage approach because it faithfully replicates the

selection steps involved in identifying the final sample of people

who agree to testing, and moreover, the multi-stage approach can

easily be modified to accommodate more or less complex selection

hierarchies. The magnitude of the difference between the

unadjusted and adjusted estimates is a rough indicator of how

consequential selective nonresponse may be. Large differences

suggest important effects of selective nonresponse and suggest that

both estimates should be interpreted with caution. To improve the

reliability of the Heckman biprobit adjustment methods, surveys

should record detailed information describing the field workers

(e.g. age, sex, experience, ethnicity, etc.) and operational logistics

(e.g. which field teams operate in which areas and when, etc.).

Information like this can be used to construct good selection

variables, and additionally in a completely different sense, to

investigate and possibly control for interviewer effects in general.

Supporting Information

Tables S1 Consent and contact regressions for 5
Demographic and Health Surveys.
(PDF)

Tables S2 Regressions for the Agincourt health and
demographic surveillance system.
(PDF)
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