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Abstract

The hemodynamic response function (HRF) measured with functional magnetic reso-

nance imaging is generated by vascular and metabolic responses evoked by brief

(<4 s) stimuli. It is known that the human HRF varies across cortex, between subjects,

with stimulus paradigms, and even between different measurements in the same cor-

tical location. However, our results demonstrate that strong HRFs are remarkably

repeatable across sessions separated by time intervals up to 3 months. In this study,

a multisensory stimulus was used to activate and measure the HRF across the major-

ity of cortex (>70%, with lesser reliability observed in some areas of prefrontal cor-

tex). HRFs were measured with high spatial resolution (2-mm voxels) in central gray

matter to minimize variations caused by partial-volume effects. HRF amplitudes and

temporal dynamics were highly repeatable across four sessions in 20 subjects. Posi-

tive and negative HRFs were consistently observed across sessions and subjects.

Negative HRFs were generally weaker and, thus, more variable than positive HRFs.

Statistical measurements showed that across-session variability is highly correlated

to the variability across events within a session; these measurements also indicated a

normal distribution of variability across cortex. The overall repeatability of the HRFs

over long time scales generally supports the long-term use of event-related func-

tional magnetic resonance imaging protocols.
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1 | INTRODUCTION

In functional magnetic resonance imaging (fMRI) experiments using

brief (<4-s duration) stimuli, the blood-oxygen-level-dependent

(BOLD) signal largely depends on the coupling between oxygen

metabolism and blood flow after neural activation (Boynton

et al., 1996; Kim & Ress, 2016; Logothetis et al., 2001; Ogawa

et al., 1990; Ogawa et al., 1992). The hemodynamic response function

(HRF) is the BOLD dynamics generated by a brief stimulus (Boynton

et al., 1996). For excitatory stimuli, experiments show that

stereotypical HRFs can be characterized with three temporal phases

(Aguirre et al., 1998; Friman et al., 2003; Woolrich et al., 2001) that

are broadly evident across human cerebral cortex (Taylor et al., 2018).

Upon stimulus onset, a transient (<2 s) initial dip or delay is followed

by a hyperoxic peak (3–10 s after stimulus onset), and then an under-

shoot that lasts �15 s until it returns to the signal baseline (Boynton

et al., 1996; Buxton et al., 1998; Kim et al., 2013; Menon et al., 1995;

Thompson et al., 2003; Yacoub & Hu, 1999).

Many BOLD studies assume a heuristic, time-invariant form for

the HRF (typically a difference of gamma-variate functions), which is

Received: 14 November 2021 Revised: 13 July 2022 Accepted: 25 July 2022

DOI: 10.1002/hbm.26047

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

4924 Hum Brain Mapp. 2022;43:4924–4942.wileyonlinelibrary.com/journal/hbm

https://orcid.org/0000-0003-0053-8321
https://orcid.org/0000-0002-7326-4889
mailto:ress@bcm.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/hbm


often convolved with a stimulus function to fit the BOLD signal

(Boynton et al., 2012; Friston, Fletcher, et al., 1998; Glover, 1999;

Handwerker et al., 2004; Li et al., 2019; Rosa et al., 2015). However,

several other studies have raised questions about the validity of this

assumption due to variability of the HRF. For example, a human study

shows that the variability of the HRFs may arise from neural and non-

neural mechanisms (Fox & Raichle, 2007). Within a subject, the HRFs

may vary in magnitude and timing across trials, sessions, seasons,

brain regions, and tasks (Aguirre et al., 1998; Cohen et al., 2002;

Gonzalez-Castillo et al., 2015; Handwerker et al., 2004; Meyer

et al., 2016; Neumann et al., 2003; Puckett et al., 2014; Taylor

et al., 2018; Truccolo et al., 2002). Comparison between HRFs across

subjects and brain conditions can show even larger variability

(Bonakdarpour et al., 2007; D'Esposito et al., 2003; Elbau et al., 2018;

Handwerker et al., 2004). Some of the variability in many early experi-

ments could be attributed to the use of coarse spatial resolution (3–

5 mm anisotropic voxels), which creates partial volume effects that

mix gray matter, white matter, and superficial vascular signals from

draining veins (Kim & Ress, 2017; Turner, 2002). Nevertheless, our

recent work using 2-mm voxels also showed significant and substan-

tial spatial variability of HRFs across cortex (Taylor et al., 2018).

Moreover, negative HRFs (negative BOLD responses evoked by a

brief stimulus) often shown in fMRI experiments limit the utility of a

heuristic form. Negative HRFs can resemble inverted HRFs; however,

their dynamics suggest suppression, deactivation, or neurovascular

uncoupling (Harel et al., 2002; Pasley et al., 2007; Puckett et al., 2014;

Shmuel et al., 2002). Measurements of the negative HRFs show that

they have even greater variability and lower signal-to-noise ratio than

positive HRFs (Olman et al., 2007). It has also been shown that the

mixed HRF signals near the borders of regions of predominantly posi-

tive and predominantly negative HRF are highly unstable (Klingner

et al., 2011). Moreover, HRFs associated with negative BOLD can

take on more complex forms suggesting disparate physiology between

excitatory and suppressive cortical activity (DeLaRosa et al., 2021).

Altogether, there is much evidence that the HRF exhibits substantial

variability across the cortical surface, tasks, and subjects.

Animal experiments also report HRF variability across trials, days,

and subjects (Belloy et al., 2020; Hillman et al., 2007) using optical

and fMRI methods. Rodents have frequently been used as models to

study the HRF, producing stable temporal dynamics in somatosensory

cortex with forepaw stimulation (Bailey et al., 2013; de Zwart

et al., 2005; Silva et al., 2007), although these HRF dynamics are sig-

nificantly faster than in humans. While rodents have smaller vascular

structures and greater blood flow speed than humans, the BOLD sig-

nal in rodents is regionally specific with substantial variability across

cortex (Hirano et al., 2011; Keilholz et al., 2004). Furthermore, most

of these studies used anesthetization, which strongly affects the

hemodynamic response and therefore confounds study of HRF vari-

ability (Hillman et al., 2007; Magnuson et al., 2014).

Although HRFs can vary in shape, amplitude, and dynamics within

a human subject for a given stimulus paradigm, the variation within a

session (across trials) has been shown to be smaller than that between

sessions and much smaller than variation across subjects or across

cortical regions, (Aguirre et al., 1998; Dale & Buckner, 1997; Kim

et al., 1997; Miezin et al., 2000). It was also found that HRFs were

reliable across session events with the time-to-peak (TTP) being the

most stable HRF parameter (Neumann et al., 2003). Two parameters

of the HRF, onset time (defined as 1 SD above baseline) and poststi-

mulus undershoot amplitude were the most variable among HRF

parameters (Miezin et al., 2000). When the HRF was evoked by a brief

Stroop task over long periods of functional experiments (120 min),

there was little significant temporal variability over these time scales

(Menz et al., 2006). However, these experiments examined only small

regions of cortex, and generally were performed with coarse spatial

resolution that did not resolve the gray matter.

Previously, we characterized the HRF time series with 2-mm-

cubic voxels across the majority of human cortex (Taylor et al., 2018).

We analyzed several HRF parameters in 20 healthy subjects—peak

amplitude, TTP, peak full-width at half-maximum (FWHM), under-

shoot amplitude, and time-to-undershoot (TTU). Sensory, associative,

and executive regions, driven by our multimodal stimulus and task,

showed strong activation amplitudes and stable temporal dynamics.

Despite the variability of HRF amplitudes across these activated

regions, spatial variations of those parameters had consistent patterns

across subjects. Long-term stability of the local HRF would simplify

linear analysis of fMRI experiments. Moreover, if these HRF parame-

ters are consistent over long time scales, they could serve as bio-

markers to enable comparison of neurovascular and neurometabolic

function between healthy and pathological populations. In this study,

we examine the long-term reliability of these HRFs.

Many other experiments have evaluated the temporal reliability

of the BOLD response (Grady & Garrett, 2014; Leontiev &

Buxton, 2007; Miller et al., 2002; Tjandra et al., 2005). Most of these

utilized sustained stimuli that evoke strong BOLD responses over por-

tions of cortex (Gonzalez-Castillo et al., 2015) but may also generate

remote vascular responses that can unpredictably modulate local

cerebral metabolism and blood flow (Drew et al., 2011; Hirano

et al., 2011; Iadecola et al., 1997). These studies then assume a linear

model to estimate the neural response and its reliability. Experiments

making use of very long scanning durations requiring multiple sessions

have indeed confirmed the variability and complexity of BOLD

responses to sustained stimuli (Bandettini & Cox, 2000). This linear

deconvolution approach has two main drawbacks.

First, the assumption of linearity is questionable; many nonlinear-

ities have been characterized for the BOLD response (Boynton

et al., 1996; Vazquez & Noll, 1998). The clearest nonlinearity in BOLD

response corresponds to the stimulus duration, which saturates for

stimuli greater than 2 s (Friston, Josephs, et al., 1998; Huettel

et al., 2004; Miller, Luh, et al., 2001). This motivated our use of a 2-s-

duration stimulus to evoke a localized neural response and HRF. Such

a brief stimulus is beneficial for several reasons. We previously

showed that a brief stimulus uniformly excites the majority of cortex

with spatially variable but temporally stable dynamics (Taylor

et al., 2018). Also, because neuronal activity closely follows the tem-

poral window of the stimulus, the use of a brief stimulus separates the

fast timescales of the neural activity (�milliseconds) from the much
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slower evoked vascular and metabolic responses (�seconds). Further-

more, the underlying physiology corresponding to the BOLD dynamics

evoked by a short stimulus is simpler than for longer stimuli. In gen-

eral, BOLD dynamics are believed to involve a combination of cerebral

blood flow, oxygen metabolism, and blood volume (Buxton

et al., 1998; Buxton et al., 2004; Davis et al., 1998; Kim & Ress, 2016).

However, recent experiments have not observed significant venous

blood volume effects (Drew et al., 2011; Gagnon et al., 2015; Hillman

et al., 2007; Lindvere et al., 2013), particularly for the short stimuli

used in event-related fMRI experiments, including those that evoke

the HRF. Thus, HRF dynamics associated with a brief neural activity

are dominated by neurovascular and neurometabolic coupling without

venous volume effects.

Second, the linear deconvolution approach finds a linear filter that

optimizes some simple reliability metric. This has the drawback that

the fits vary across voxels and subjects, with noisier or weaker

responses generally corresponding to a more strongly low-pass filter,

so that temporal resolution becomes variable and confounds charac-

terization of spatial and subject-by-subject variability. To avoid these

issues, we used a simple time-locked averaging approach to character-

ize the HRF without the use of deconvolution. Also, we use a model-

free parameterization scheme. Our fMRI measurements use a sam-

pling interval (TR) of 1.25 s (Nyquist frequency of 0.4 Hz) that is suffi-

cient to resolve BOLD signal variations driven by the slow

hemodynamic and metabolic responses. Although time-locked

approaches have been noted to have low estimation efficiency when

noise is spectrally white (Liu, 2004), the strongest source of nuisance

in BOLD measurements are pulse and respiration (Glover et al., 2000;

Krüger & Glover, 2001; Triantafyllou et al., 2005; Wald &

Polimeni, 2017). Because these nuisance components are fast relative

to our sampling frequency, they are effectively reduced by averaging.

In fact, we have obtained excellent results in terms of contrast-to-

noise ratio (CNR) using a time-locked averaging and model-free design

in previous work (Taylor et al., 2018), with similar data quality

reported here. Our results are generally relevant to all short-stimulus

experiment designs, for example, event-related fMRI experiments.

Using these approaches, our present goal is to evaluate the long-

term temporal reliability of the HRF across the majority of cerebral

cortex. Specifically, the analysis of the HRF data was motivated by

several questions (Figure 1). First, how stable are the HRF time series?

Second, how stable are the HRF parameters? Third, what are the sta-

tistical distributions of parameter variability? These questions were

addressed separately for positive and negative HRFs using several

noise and variation metrics that are summarized in Figure 1. We exam-

ined BOLD HRF stability across four sessions obtained at intervals of

3 h, 3 days, and 3 months. High-resolution HRF data from each ses-

sion were compared directly on a voxel-wise basis within the subject

to quantify variability across sessions. Nonparametric statistical

methods were then used to estimate and compare the distributions of

variability both within and across sessions. Over long time scales

within cortical gray matter, we observed remarkable temporal stability

of HRF amplitudes and their spatial patterns, as well as HRF dynamics.

2 | METHODS

Twenty healthy subjects from two age groups (20–35 years (N = 10),

and 50–65 years (N = 10)) participated in the study; half of each

F IGURE 1 Concept map summarizing analysis methods and the questions motivating their application

4926 TAYLOR ET AL.



group were female. Subject ages were balanced into two groups to

enable later studies of age-related HRF differences. Subjects were

recruited from the local community after providing informed consent

according to a protocol approved by the local ethics committee for

human study, Baylor College of Medicine Institutional Review Board.

Our human-subjects experimentation protocol conforms to Baylor

College of Medicine's “Ethical and Regulatory Mandate for Protecting

Human Subjects,” which places emphasis on the principles in the Bel-

mont Report. On their first visit, each subject was trained on the task

until their performance stabilized, then performed their first fMRI ses-

sion; this became their t0 – 3 days session (3d). They returned 3 days

later for two sessions separated by three hours (3h). Although the 3d

time-point was acquired first, the second scanning session is chosen

as the reference session, t0. A fourth scanning session was obtained

3 months (3m) after the reference session (Figure 2(a)). The four ses-

sion time-points are hereafter referred to as t0 (reference session), 3d,

3h, and 3m.

Imaging was performed at 3 Tesla on a MAGNETOM Trio

(Siemens Healthcare, Erlangen, Germany) scanner using the product

32-channel head coil. FMRI data were collected using an SMS-

accelerated echo-planar imaging sequence (Breuer et al., 2005;

Setsompop et al., 2012), with acquisition parameters: TR = 1.25 s,

TE = 30 ms, GRAPPA factor = 2, SMS factor = 3, 2-mm pixels with

2-mm slice thickness, and 57 slices. During functional runs, stimulus

timing was programmed to align with the TR of the scanner (24 TR

periods per trial).

During each fMRI scan, HRFs were evoked by a 2-s speeded

audiovisual sequence-following task (SAST) followed by a 28-s nonde-

manding fixation task. Stimulus onset was cued by a change of fixa-

tion dot color for 0.5 s before the 2-s stimulation period (Figure 2(b)).

The stimulus had three components: visual, audio, and task. Visual

stimulation consisted of three consecutive presentations of flickering

(6 Hz) colored dots, half brightly colored and half darkly colored to

enhance contrast. The dots were presented in one of three circular (5�

radius) regions for 667 ms. The regions were uniformly distributed

horizontally across the width of the display with each position having

a specific color: yellow on the left, green in the center, and red on the

right. Vertical positions were randomly varied over a ±3� range. The

spatial order of presentation was random without sequential repeti-

tion. Each dot-region display was accompanied by audio stimulus of

filtered white noise: medium pitch during yellow dots; low pitch for

red; and high pitch for green. Subjects were instructed to follow the

colored dot regions with eye movements and quickly (within the

667-ms period) press a button that matched the position, color, and

sound presented. Reaction time and response accuracy were tracked

during each run. Between these strong audiovisual stimuli, subjects

performed a nondemanding fixation task to maintain attention and

fixation. During the fixation period, subjects attended a central col-

ored dot (0.15� diameter) that changed color every 0.6 s. Subjects

pressed a button at the appearance of a single target color, which

appeared on average every 6 s throughout the scan (exponential dis-

tribution, truncated at a minimum of 1 s) (Taylor et al., 2018). A stimu-

lus and a fixation period constituted a 30-s HRF measurement. Then,

16 HRFs were collected in each of 5 runs to yield 80 HRF

measurements for each session. At the end of each session, a

T1-weighted volume (3D FLASH sequence, minimum TE and TR, 15�

flip angle) was collected on the functional slice prescription to facili-

tate alignment to a high-resolution reference anatomy (described

below).

F IGURE 2 (a) Four sessions were obtained for each subject: The
first was the 3-day session, then reference session 3 days later (t0),
then a third session at t0 + 3 hour, finally a fourth session at
t0 + 3 months. (b) Schematic shows the speeded audiovisual
sequence-following task (SAST) paradigm. Three regions consisting of
flickering colored dots appear consecutively for 667 ms each to
create a 2-s visual stimulus accompanied by auditory stimuli with
frequencies corresponding to the position of the dot regions, while
subjects performed a sequence-following task. The sequence order is
randomized. A single hemodynamic response function (HRF) event
spans the 2-s stimulus task and 28-s resting period fixation task.
(c) HRF parameters are extracted from positive and negative blood-

oxygen-level-dependent (BOLD) responses including the HRF peak
amplitude, peak time, full-width at half-maximum (FWHM), and
under(over-)shoot amplitude
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For each subject, a MP-RAGE T1-weighted structural anatomy

was also collected (TR = 2300 ms, TI = 900 ms, flip angle 9�, 1-mm

cubic voxels) and segmented using FreeSurfer (Dale et al., 1999) to

distinguish gray and white matter. These segmented volumes were

subsequently aligned to the functional data using the T1-weighted

volume obtained in each session to enable further analysis.

Functional images produced time-series data with a total of 1920

temporal samples per session (80 HRFs � 30-s/HRF � 1TR/1.25-s).

After motion correction and registration to high-resolution anatomy,

the time series were depth-averaged across the central layers of gray

matter (0.2–0.8 normalized depths) to reduce partial-volume effects

(Salminen et al., 2016), and mapped onto the gray-white surface verti-

ces (Khan et al., 2011; Kim & Ress, 2017). Note that this approach

maximizes use of the native MRI spatial resolution to select gray mat-

ter voxels, avoiding lower reliability samples from adjacent white mat-

ter and superficial vascular regions superficial to the gray matter

(Kim & Ress, 2017). Thus, for each vertex on this surface, the 80 HRFs

were averaged to create a single HRF time series (black dots in

Figure 2(c)). The surface data were spatially smoothed along the sur-

face using manifold-distance coordinates (8-mm-FWHM Gaussian

kernel). Each vertex's time series was then upsampled to 0.1-s sam-

pling with Hermite-spline interpolation and characterized by four HRF

parameters (Figure 2(c)): peak amplitude, TTP, FWHM, and under-

shoot (in positive HRFs) or overshoot (in negative HRFs). Peak ampli-

tude was required to be in the range of 2–14 s to minimize the effects

of occasional outliers from noisy events. The HRFs were separated

into positive and negative HRFs based on the sign of the peak ampli-

tude parameter. Positive and negative HRFs were analyzed

separately.

For across-subject comparisons, the smoothed time series of all

the subjects were resampled and registered to the MNI-152 brain sur-

face using FreeSurfer surface-to-surface transformations (Collins

et al., 1994; Fischl et al., 1999; Mazziotta et al., 2001). To properly

reflect the smoothing in statistical comparisons, each surface was cor-

respondingly downsampled using MATLAB's reducepatch function so

that 1/64th (corresponding to the 8-mm-FWHM smoothing) of the

vertex data was sampled. The HRF parameters for these down-

sampled data were used to measure the correlations, coefficients of

variation, and variability across session time-points for each subject.

This yielded 1989 ± 232 vertex correlations per subject that were

spatially averaged separately for positive and negative HRFs.

First, we examined the stability of the HRF time series (Figure 1).

To do this, we calculated the root-mean-squared error (RMSE) values

across cortical surface vertices. Specifically, we took the RMSE of the

mean HRF time series in each vertex between the reference session

t0 and the other session time-point (3h, 3d, 3m) measurements, then

we took the average across the three sessions. To quantify the tem-

poral variations in variability during the HRF, RMSE between sessions

was also calculated at each timeframe of the HRF and then averaged

across vertices. Distributions of RMSE values were calculated by

bootstrapping (discussed below) the mean RMSE values across sub-

jects. This was performed for positive and negative HRFs separately.

RMSE calculations provided a raw estimate of the HRF variation

between sessions, as well as a metric for how variability temporally

evolved over the course of each HRF. However, this metric is sensi-

tive to absolute amplitude shifts between sessions. Because of this

amplitude dependence, we compared RMSE values to a related met-

ric, CNR, of the time series. We define CNR as the ratio of the abso-

lute value of greatest amplitude to its standard-error-of-the-mean

(SEM) across the 80 events. This metric also varies with signal ampli-

tude, so we expected similar results between RMSE and CNR. With

this metric, CNR > 3 represents data with significant activation at

p < 0.002. Finally, to provide a more normalized metric of variability,

fraction-of-signal-explained (FSE) was used to compare HRF time

series at each vertex between t0 and the other time-point intervals.

FSE was calculated by taking the differences between each pair of

time series and then dividing by the reference session (t0) time series

values (or the square root of one minus the fraction of unexplained

variance). The FSE metric characterizes linear variability that ignores

scaling and offset differences, while RMS is a more stringent metric

that includes all forms of variability.

Next, we tested the longitudinal stability of the HRF parameters.

In our previous work, temporal HRF parameters did not display appar-

ent patterns across cortex but were relatively homogeneous com-

pared to amplitude patterns (Taylor et al., 2018). Because of this, we

chose to measure the absolute variability of these parameters using

coefficient of variation (CV). CV was used to compare HRF temporal

parameters at each vertex on the surface across the four time-points.

CVs, also known as relative standard deviations (Bland &

Altman, 1996; Snedecor & Cochran, 1972), were calculated by mea-

suring the absolute value of the percent standard deviation divided by

the mean. CVs were calculated separately for positive and negative

HRFs from the downsampled set of surface vertices. SEM values of

the CVs across cortex were also obtained to demonstrate the distribu-

tion of CVs. To obtain across-subject CVs, temporal parameters from

all sessions were resampled onto the MNI surface. For each session

time-point, the bootstrapped means (discussed below) of temporal

data were averaged across subjects. Then, CV was calculated across

session time-points for each parameter.

Variability was estimated using bootstrapping (resampling with

replacement) to determine the mean distributions of each HRF param-

eter for each vertex (Efron, 1981). Within-subject variability for each

session was estimated by bootstrapping across the 80 HRF events

(Nboot = 500) to obtain means and 68% confidence intervals. Variabil-

ity was defined as half the difference between the confidence inter-

vals, which is equal to the SEM in normally distributed data. To obtain

time-series variability, this bootstrapping was performed for each time

sample in the HRF. Variability for each HRF parameter was similarly

estimated by bootstrapping across the 80 HRF events.

Across-subject variability was estimated by resampling and regis-

tering each subject's HRF parameters onto the MNI surface. Parame-

ters from each of the 20 subjects were resampled 500 times; then the

bootstrapped mean values of each parameter were used to create sur-

face overlays on the MNI-152 surface. Variability across subjects was

again calculated as half the difference between the 68% confidence

intervals obtained from the bootstrapped data.
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To further examine the character of the temporal variability, we

compared variability between sessions to the variability across

events within the t0 session. Comparisons were calculated across the

HRF time series and HRF temporal parameters (TTP and FWHM) for

vertices of a downsampled cortical mesh in each subject. Within-

session variability was calculated at each vertex by bootstrapping the

parameter values measured from all events and then subtracting the

mean parameter value, providing a distribution of delta values. We

applied Gaussian fits to measure the variability, sigma, in each distri-

bution. Similarly, we fit Gaussians to the distributions of differences

of bootstrapped parameters between the largest interval (3-month)

time-point and the initial session, t0, to estimate across-session

variability.

3 | RESULTS

3.1 | Task performance

The subjects performed well in the main stimulus task with 92 ± 8%

valid responses with average reaction times of 0.39 ± 0.10 s. Subjects

performed the fixation task with 46 ± 11% valid responses with aver-

age reaction times of 0.41 ± 0.05 s. As a respite period between main

stimulus periods, subjects were generally less attentive during base-

line fixation. As an expansion of our previous work from one to four

sessions per subject (Taylor et al., 2018), we found that the task gen-

erated strong activations (CNR > 3) in 70 ± 9.1% of cortex across all

subjects and sessions.

3.2 | Temporal stability of the HRF

After parameterization of each averaged HRF from cortical surface,

we used the peak amplitude to separate positive and negative HRFs

for each session; positive HRFs covered 74 ± 11% of strongly respon-

sive cortex (CNR > 3) across all sessions; the remainder (26 ± 11%)

responded with negative HRFs. Reliability (p value) of the peak ampli-

tude classification of positive and negative HRFs is depicted in the

Supporting Information (Figure S1). Both positive and negative HRF

amplitudes were very reliable except in areas of low CNR and at the

boundaries of positive and negative HRF regions. Then, we compared

the HRF time series across session time-points. Mean HRF examples

from each session time-point are shown (Figure 3) for 6-mm-diameter

regions of positive and negative peak amplitudes. Peak amplitude

parameter maps and corresponding time series across session time-

points are shown for two representative subjects (Subjects 9 and 17)

from younger and older age groups, respectively. The HRF time series

for both positive and negative HRFs are quite similar across all session

time-points.

RMSE calculations of the HRFs between session time-points

quantify the absolute HRF variation for positive and negative HRFs

(Figure 4). First, RMSE values were calculated across the whole HRF

for each vertex on the cortical surface across session time-points.

These showed patterns of higher variation in a few cortical regions,

such as superior temporal lobe and frontal lobes (Figure 4(a)). Average

RMSE values and standard deviations for each subject are compared

in bar plots (Figure 4(b)). Subjects are arranged in the bar plots by

ascending age. Bootstrapped confidence intervals showed no signifi-

cant differences (p < .05) between the RMSE values of positive and

negative HRFs across subjects. No significant differences were found

between the two age-group averages (shown as Young and Older in

the Native space means in the bar plots). Distributions of the RMSE

values are shown for positive and negative HRFs across subjects

(Figure 4(c)). However, when evaluated across cortex (MNI space), the

RMSE of positive and negative HRFs were significantly different

(p < .01). RMSE was 0.201 ± 0.166 for positive HRFs and 0.214

± 0.174 for negative HRFs. RMSE was also measured during the HRF

to evaluate variations in temporal dynamics (Figure 3(d)). Averaged

across subjects, both positive and negative HRFs had a baseline RMSE

around 0.15 throughout the HRF. Moreover, during the time corre-

sponding to the HRF peak (3–10 s), the RMSE increased, suggesting a

stimulus-driven effect. The variation of the RMSE over vertices

(shown as SEM in the line plot) suggests this is true across cortex.

Similar behavior was observed in all subjects (Figure S2(a)). To further

F IGURE 3 Overlays of hemodynamic response function (HRF)
amplitudes, red-yellow for positive HRFs and blue-green for negative
HRFs, after 8-mm-full-width at half-maximum (FWHM) smoothing, on
cortical surfaces of two subjects. Circles mark sample time series from
6-mm-diameter gray-matter disks showing variations across session
time-points (t0, 3 h, 3 days, and 3 months)
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explore the stimulus-driven effect, we measured the correlation

between RMSE and absolute value of the peak amplitude on the

MNI-152 average surface (Figure 4(e)). RMSE values of both positive

and negative HRFs show slight positive trends with amplitude. These

data indicate that there are two sources of session-to-session variabil-

ity: a baseline, time-independent component, and an early, stimulus-

evoked component. We also measured the correlation between RMSE

and absolute value of all signal amplitudes during the HRF and found

a similar trend (Figure S2(b)).

The CNR similarly varies with peak amplitude. CNR shows pat-

terns of strongly activated regions of cortex (Figure 5(a)) in the refer-

ence session. Bar plots show the average (±standard deviation) CNR

for positive (red) and negative (blue) HRFs across cortex of 20 sub-

jects, Native space mean, and the MNI-152 standard space mean

(Figure 5(b)). CNR varies over the course of the HRF which has maxi-

mum value and variation around the peak, shown for the average

across subjects (Figure 5(c)). Similar results were observed in all sub-

jects (Figure S3). A comparison of RMSE and CNR shows two regimes

of correlation in both positive and negative HRFs (Figure 5(d)). To cap-

ture this behavior, we regressed MNI average data with piecewise lin-

ear models and adjusted the CNR breakpoint between them to

maximize variance explained by all the HRFs. Choosing CNR = 5.0,

we then observe R2 = .265 for positive HRFs, and R2 = .201 for nega-

tive HRFs. Thus, for low CNR, <5.0, RMSE decreases with CNR for

both positive HRFs (slope = �0.016) and negative HRFs

(slope = �0.013). For high CNR, >5.0, RMSE increases with CNR for

positive HRFs (slope = 0.004) and negative HRFs (slope = 0.012). All

four correlations have negligible p value.

F IGURE 4 (a) Root-mean-squared error (RMSE) averaged across the whole hemodynamic response function (HRF) and the four session time-
points with respect to t0 for each vertex on the cortical surfaces of Subjects 9 and 17, and the average across 20 subjects in the MNI-152
standard space. (b) Average (±standard deviation) RMSE across cortex of 20 subjects for positive (red) and negative (blue) HRFs. The average
(±standard deviation) across subject values is shown as the Native space mean. Subjects are ordered by age from youngest to oldest and then
averaged by groups (Young, Older, and All subjects). There is no significant difference in spatial mean RMSE between the two age groups. The
right-most bar shows the four-session RMSE average after resampling all 20 subjects to the MNI-152 standard space. (c) Distributions of RMSE
values in MNI-152 standard space separated for positive and negative HRFs. (d) RMSE was averaged across vertices for each time frame of the
HRF time series for all 20 subjects. The average RMSE (±SEM across subjects) is shown for positive HRFs (red/yellow) and negative HRFs (blue/
cyan). (e) Average RMSE across subjects in MNI-152 standard space measured at peak time compared to the absolute value of the peak
amplitude for each vertex along the cortical surface shows positive trendlines for both positive HRFs (yellow markers/red line) and negative HRFs
(cyan markers, blue line). Correlations and p-values are shown for each comparison
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As another metric for the similarity of the HRFs between session

time-points, we calculated the FSE relative to the HRFs of the refer-

ence time-point, t0. Most of the signal was explained by the HRF

obtained at the reference time-point for each vertex on the cortical

surface for the 3-h, 3-day, and 3-month time-points (Figure 6). The

general patterns of variability are qualitatively similar for the FSE and

RMSE metrics. In the surface maps, we observe that FSE tends to be

lower near the transitions between positive and negative HRFs. FSE

values, spatially averaged across the downsampled mesh in individual

subjects, are compared in bar plots. Mean FSE values were calculated

across subject means (denoted Native space in Figure 6) and again

after registering onto the MNI-152 surface (denoted MNI space). A

large fraction the signal in each session time-point was explained by

the initial session for both positive and negative HRFs. In the MNI

average the signal explained at 3h, 3d, and 3m time-points by the t0

HRFs were 64 ± 15%, 65 ± 15%, and 63 ± 15%, respectively, for posi-

tive HRFs and 49 ± 15%, 50 ± 14%, and 48 ± 15% for negative HRFs.

Negative HRFs showed significantly less explained signal than positive

HRFs across sessions, p < .01. Mean FSE values were slightly higher in

the participants' native spaces than after transformation to MNI

space.

3.3 | Spatial HRF amplitude patterns

Overlays of HRF peak and undershoot amplitudes show similar corti-

cal patterns across sessions for the two representative subjects

(Figure 7(a)). While both positive and negative HRFs are strongly

evoked by the multisensory stimulus paradigm, negative HRFs are

generally weaker and more variable across session time-points. Similar

results were observed in all individual subjects, and in the average

across subjects. Consistent with our previous work (Taylor

et al., 2018), undershoot amplitude patterns (or overshoot amplitudes

for negative HRFs) were less stable over time than peak amplitude

patterns. Furthermore, under/overshoots were only consistently

observed in a subset (78.2%) of vertices. For each time-point (3h, 3d,

F IGURE 5 (a) Contrast-to-noise ratio (CNR) at t0 for each vertex on the cortical surfaces of Subjects 9 and 17, and the average across
20 subjects in the MNI-152 standard space. (b) Average (±standard deviation) CNR across cortex of 20 subjects for positive (red) and negative
(blue) hemodynamic response functions (HRFs). The averages (±standard deviation) across subject values and age groups are shown as the Native

space means. The right-most bar shows the CNR average after resampling all 20 subjects to the MNI-152 standard space. There is no significant
difference in spatial mean CNR between the two age groups. (c) The CNR was averaged across vertices for each time frame of the HRF time
series for all 20 subjects. The average CNR (±standard deviation) across subjects is shown for positive HRFs (red/yellow) and negative HRFs
(blue/cyan). (d) Correlations between average RMSE and CNR across vertices in MNI space are bilinear for both positive (red/yellow) and
negative (blue/cyan) HRFs. Bilinear fits are modeled for CNR < 5.0 (dashed lines) and CNR > 5.0 (solid lines) for each population
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3m), we calculated the spatial correlation (Pearson's R) between

parameters to t0 on the subjects' downsampled surfaces. Mean corre-

lations (±standard deviations) across time-points were calculated for

each subject (Figure 7(b)). The mean peak amplitude correlations

across subjects on their native surfaces were 0.86 ± 0.07 for positive

HRFs and 0.45 ± 0.16 for negative HRFs. Undershoot amplitude cor-

relations (for those vertices that showed clear under/overshoots)

were slightly weaker than peak amplitudes, averaging 0.74 ± 0.07 for

positive HRFs and 0.35 ± 0.09 for the overshoots associated with

negative HRFs. When resampled onto the MNI surface and then cor-

related, the correlation values increased for both peak amplitude and

undershoot/overshoot. Thus, the patterns of activation were remark-

ably consistent across the session time-points, particularly for the

positive HRFs.

3.4 | Stability of HRF dynamics

Consistent with our previous work, the temporal HRF parameters did

not display apparent patterns across cortex but were relatively homo-

geneous compared to amplitude patterns. Parameters were obtained

separately for positive and negative HRFs, with mean values obtained

by averaging across both native and MNI surfaces. TTP was 6.2

± 0.8 s for positive HRFs, 6.6 ± 0.8 s for negative HRFs. FWHM was

3.9 ± 0.7 s for positive, 3.7 ± 0.8 s for negative HRFs. TTU was 13.6

± 1.8 s for positive, 14.2 ± 2.0 s for negative HRFs. Because temporal

parameters are quite homogeneous across cortex, we quantify their

variability using CV. It is worth noting that this metric is opposite to

the correlational metric that we used for amplitude. We calculated CV

across the four session time-points for each vertex on the surface.

This process was repeated for all subjects in Figure 8. Figure 8(a)

shows the variability of TTP in three forms: surface overlays, whisker

plots, and histograms.

First, the surface overlays of CV for TTP are shown for two sub-

jects, S1 and S2, and the average across subjects in MNI space

(Figure 8(a)). The CVs were generally small, <30% across cortex. CVs

were also compared across subjects in MNI space. Because smoothed

data were averaged across subjects, variability was much smaller,

CV < 10% across the MNI surface, which was also true for the other

parameters.

Next, whisker plots, separated for positive (red) and negative

(blue) HRFs, show the median CV and distributions across cortex for

each subject. CVs were smaller in positive HRFs than in negative

HRFs. CV distributions from the combined subject data are shown in

the plots labeled Native space. For TTP, the mean CV values were

14.1 ± 2.7% for positive HRFs and 18.8 ± 3.6% for negative HRFs.

Finally, the CVs from the MNI surface average across subjects are

shown in the plots labeled MNI space.

Histograms show the distributions of CVs for positive (red) and

negative (blue) HRFs compiled from all subjects across cortex. The

68th percentile interval of the CV distributions ranged 6.4–21.2% for

positive HRFs, which corresponds to <1.3-s dispersion of TTP

between session time-points, and 9.0–27.0% for negative HRFs, cor-

responding to <1.8-s dispersion.

F IGURE 6 For each session time-point (3 h, 3 days, and 3 months), the hemodynamic response function (HRF) of the reference session time
(t0) explains a large fraction of the signal. Fraction-of-signal-explained (FSE) is depicted as overlays on inflated cortical surfaces for two example
subjects and averaged across subjects (N = 20) in the MNI-152 brain. Color maps are used to distinguish correlations for positive (red-yellow
scale) and negative (blue-green scale) HRFs. Spatial mean FSE across the decimated cortex (±standard deviation) is shown in bar plots for each
subject, separated into positive (yellow) and negative (blue) HRFs. Across-subject means are also shown for both native and MNI spaces. There is
no significant difference in spatial mean FSE between the two age groups
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Similarly, CVs were measured for FWHM and TTU. FWHM

showed the greatest fractional variation among HRF dynamical

parameters (Figure 8(b)). The Native space mean CV for FWHM was

18.0 ± 4.6% across subjects for positive HRFs and 23.8 ± 4.7% for

negative HRFs. Histograms of the distribution of FWHM CV values

ranged 8.1–27.3% at the 68th percentile, corresponding to <1.1 s of

dispersion in positive HRFs. Negative HRFs varied more as CVs ran-

ged 10.9–35.6% (1.3-s dispersion).

Of the temporal parameters, TTU (Figure 8(c)) showed the lowest

CV on average: 11.4 ± 2.6% for positive HRFs and 14.2 ± 3.0% for

negative. However, when returned to units of seconds, TTU disper-

sion surpasses the other parameters with across-subject averages of

1.6 s (positive) and 2.0 s (negative). Positive TTU CV distributions ran-

ged from 5.5 to 16.4% (<2.2-s dispersion) in the 68th percentile, while

negative TTU CV distributions ranged from 6.5 to 19.2% (<2.7-s

dispersion).

3.5 | Comparison of within-session and across-
session variability

Within-session variability distributions, delta values, across vertices

were modeled well by a single Gaussian, R > 0.94 for all subjects

(Figure 9(a)). Distributions were less normal in character for the tempo-

ral parameters, R > 0.69 for TTP and R > 0.88 for FWHM, but the

Gaussian fits still characterized the distributions reasonably well. Devi-

ations from normality were largely associated with greater kurtosis,

without substantial skew (Figure S4). Fits of the across-session distri-

butions to a single Gaussian had R values greater than 0.92 for the time

series, 0.73 for TTP, and 0.91 for FWHM across subjects (Figure 9(b)).

For single Gaussian fits to the time series noise distributions,

within-session variability was very slightly more normally distributed,

R = .98 ± .01, than the across-session variability across subjects,

R = .97 ± .01, (Figure 9(c)). The across-session variability in dynamical

F IGURE 7 (a) Spatial patterns of hemodynamic response function (HRF) amplitudes are overlaid for two example subjects on their native
surfaces and the mean across subjects on the MNI-152 surface for each longitudinal session time-point. Left overlays show peak amplitude; right
overlays show undershoot/overshoot amplitudes. The spatial patterns are very similar in both native and MNI spaces. (b) Correlations for peak
amplitude (left) and undershoot/overshoot amplitude (right) between the spatial patterns at t0 and 3 h, 3 days, and 3 months were averaged and
are shown in bar plots separated by positive HRF (red) and negative (blue) bars (±standard deviation across session time-points). Across-subject
means are also shown in native and MNI spaces
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F IGURE 8 Coefficient of variation (CV) for hemodynamic response function (HRF) temporal parameters: (a) peak time, (b) full-width at half-
maximum (FWHM), and (c) undershoot time. Overlays show CV with separate color scales for positive and negative HRFs in two example
subjects and for the across-subject average on the MNI surface. Whisker plots show the median CV and distributions across cortex for each
subject (positive HRFs in red-yellow; negative HRFs in blue-green). CV for positive and negative HRFs is significantly different for all subjects,
p < .05, except in those subjects marked with purple diamonds. Histograms (positive, red; negative, blue) show the distributions of CV across all
subjects. There is no significant difference in spatial mean CV between the two age groups
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parameters (TTP and FWHM) was more normally distributed with

slightly better fits, RTTP = .84 ± .06 and RFWHM = .95 ± .02 than

within-session noise, RTTP = .78 ± .06 and RFWHM = .92 ± .02.

We then compared the sigma values from single Gaussian models

at each vertex between the across-session and within-session variabil-

ity, (Figure 9(d)). Results are shown for Subject 9, but all subjects were

F IGURE 9 (a) Histograms and scatterplots show distributions of variability in the hemodynamic response function (HRF) time series, time-to-
peak (TTP), and full-width at half-maximum (FWHM) for Subject 9. The first-row histograms show variability distributions for the time series, TTP,
and FWHM calculated across events within the 3-month session. A single Gaussian fit (red curve) and a sum-of-two-Gaussians fit (blue curve) is
shown for each distribution with Pearson correlation for each fit. (b) The second-row histograms show the distribution of variability calculated
across time-points t0 and 3m; Gaussian fits are shown for each distribution. (c) Correlations to the single-Gaussian fits of within-session variability
(red bars) and across-session variability (blue bars) for all subjects. (d) Scatterplots compare the variability across the 3m and t0 time-points to
variability within the t0 time-point for Subject 9; correlations between sigma values are also shown. Line of identity (blue) and the square root of
two (red) line are plotted for reference
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similar. Sigma values representing across-session variability are highly

correlated with the sigma values for within-session variability for most

vertices. The time series correlation was strongest, R = .93 ± .07 aver-

aged across subjects. Correlation was somewhat lower for the dynam-

ical parameters; for TTP, R = .88 ± .04, and for FWHM, R = .83 ± .08.

Most of the across-to-within-session variability points in Figure 9(d)

fall between the line of identity and a line with a square root of two

slopes. Vertices in this range suggest that the noise processes that

create the observed variability are not fully independent but some-

what correlated between sessions.

Because the Gaussian fits did not fully explain the measurements,

distributions were also modeled by a sum-of-two Gaussians to test

the hypothesis that two independent sources of variability were pre-

sent. For both within- and across-session variability, this somewhat

improved the fit quality (signal explained increased by ≤8% for time

series, ≤43% for TTP, and ≤13% for FWHM). However, when correla-

tions between within- and across-session variability were examined

for the dual-Gaussian fits, they proved to be much weaker than the

single Gaussian fits (Figure S5), suggesting that the hypothesis of dual

independent sources of variability was not descriptive.

3.6 | Comparison of positive and negative HRF
parameter distributions

Finally, we performed a simple comparison of the positive and nega-

tive HRF parameters: peak amplitude, TTP, and FWHM (Figure 10).

The absolute values of the peak amplitudes are presented across all

subjects in MNI space for all session time-points combined. The distri-

butions of negative HRF parameters are clearly distinct from those of

positive HRF parameters representing significantly different popula-

tions (p ≈ 0 for all parameters).

4 | DISCUSSION

4.1 | Major discussion topics

This study compared longitudinal fMRI data measured across four ses-

sions ranging up to a 3-month interval. We used high-resolution fMRI

(2-mm cubic voxels) and a stimulus paradigm that consistently acti-

vates >70% of the cortical surface including auditory, motor, visual,

default-mode network, and executive cortices. We used depth map-

ping to select only the central gray matter to minimize partial-volume

effects. Our approach utilizes the full 2-mm resolution of the fMRI

acquisition to map responses onto the gray matter, with subsequent

smoothing performed only upon the gray-matter manifold. This is

essentially a form of anisotropic spatial resolution that greatly avoids

contamination of gray-matter functional signals with weaker white-

matter signals and less-reliable signals from superficial vascular struc-

tures (Kim & Ress, 2017).

We found that the HRF time series across the cortical surface

were quite consistent across the sessions. The high repeatability indi-

cated that the HRF evoked by this paradigm has excellent long-term

reliability when measured primarily in the central gray matter. In gen-

eral, all characteristics of the positive HRFs were more stable than in

negative HRFs. FSE measurements showed that HRFs of the refer-

ence session explained >60% of the positive HRFs and >45% of nega-

tive HRFs in the fourth session, 3 months later. Session-to-session

variability that was observed in the HRF time series was primarily evi-

dent in the late-time behavior of the BOLD signal as it returns to

baseline. This is consistent with our previous findings in which late

temporal dynamics are more variable across events than early BOLD

dynamics (Aguirre et al., 1998; Handwerker et al., 2004; Kim

et al., 2019). Both sustained oxygen metabolism and oscillatory blood

flow mechanisms may contribute to this variability. However, we also

discovered that variations between sessions were not unique to the

latter portion of the HRF. RMSE and CNR calculations revealed a

baseline variation for both positive and negative HRFs throughout the

HRF and an increase near the HRF TTP. These results suggest that

variation across sessions has two sources: a baseline (time-indepen-

dent) source observed in RMSE correlations with low CNR values, and

a stimulus-driven source observed in RMSE correlations to high CNR.

These two sources are consistent with previous studies that evaluated

the sources of BOLD noise (Krüger & Glover, 2001; Wald &

Polimeni, 2017). Specifically, the stimulus-evoked component could

correspond to physiological noise that scales with changes in the mea-

sured signal that produce BOLD contrast. Results show that the

stimulus-driven effects are noisier in negative HRFs with larger CNR

dependence of the RMSE. Meanwhile the baseline component could

F IGURE 10 Parameters from all
session time-points for all the MNI
average surface vertices were separated
into positive (red) and negative (blue)
hemodynamic response function (HRF)
peak amplitudes. Absolute value of the
peak amplitudes, time-to-peak, and full-
width at half-maximum (FWHM)
distributions are shown for each set of
HRFs. The means (positive—yellow,
negative—cyan) and difference values (Δ)
are shown for each distribution. All
differences are very significant (p < 10�6)
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reflect other physiological noise sources, such as cardiac pulsatility

and respiration, which are proportional to the overall signal amplitude

but not signal fluctuations. Considering this, we conclude that the

apparent late-time variability is not a stimulus-evoked effect, but

rather a consequence of its weaker signal amplitude competing with

time-independent, baseline noise sources.

Previous work indicates that variations between sessions in a

subject can be attributed to differences in local activation pattern,

with cognitive state and local vascularization playing major roles (Lee

et al., 1995; Neumann et al., 2003; Rangaprakash et al., 2018). In our

stimulus paradigm, differences in baseline cognitive state were mini-

mized by using a nondemanding fixation task contrasted with a brief

but demanding sequence-following task. This generated consistent

activation patterns; more than 70% of cortex was activated in each

session with highly correlated HRF peak amplitudes. Under(over-)

shoot amplitudes were only slightly less correlated than their peak

counterparts, suggesting that both blood flow and relative oxygen

metabolism were consistent over these long timescales. The strong

consistency of the HRF responses, is at least partly the consequence

of our use of a short stimulus protocol that avoids slow changes neu-

ral responses such as adaptation or variable attention. The weak vari-

ability across sessions suggests that infrequent presentations of a

speeded task evoke a remarkably stereotypical pattern of response. It

may be that the brain has a relatively nonspecific vascular response to

a speeded task, delivering metabolic substrates to multiple intrinsic

connectivity networks in preparation for possible cognitive demands.

Within-subject amplitude variations may stem from different cog-

nitive states (arousal and attention) and learning effects between and

across measurements (Miller et al., 2002; Miller, Handy, et al., 2001;

Munneke et al., 2008; Petersson et al., 1999). To measure the consis-

tency of fMRI data, many studies have examined test–retest reliability

across sessions (Bennett & Miller, 2010; Noble et al., 2019; Vul

et al., 2009). However, as noted previously, most of these experi-

ments used sustained stimuli that are likely subject to additional neu-

ronal and cognitive variability that are partially avoided by our short-

stimulus approach. Quantitative comparison with these studies is

additionally confounded by the many methods used to quantify reli-

ability such as CV, Dice coefficient of similarity, and Jaccard overlap

(Bennett & Miller, 2013). Nevertheless, most of these measurements

found moderate to fair within-session reliability (Bennett &

Miller, 2010), which is consistent with our results here and previously

(Taylor et al., 2018). However, other investigators found that

between-session variability was generally worse, except for motor

and sensory regions. Our results are partially consistent with these

observations, in that regions of strong activation were generally more

reliable across sessions than in regions of weaker activation

(Bennett & Miller, 2010; Holiga et al., 2018). Our results differ in that

between-session variability was generally quite low, probably because

of the globally high activation amplitudes evoked across the majority

of cortex.

Our subjects were evenly divided two age ranges: young (20–35)

and late middle age (50–64). For all spatially averaged metrics of vari-

ability, we observed no significant differences between these two age

groups. However, detailed analysis reveals spatially variant regions of

significant differences, but analysis of this topic will be reserved for

later work.

Besides CNR, one of the strongest predictors of variability was

the polarity of the HRF. Almost 75% of activated cortex generated

positive HRFs—found in sensory, motor, association, and executive

areas. These areas were specifically targeted by the stimulus and were

highly consistent across sessions. However, the amplitudes and

dynamics of negative HRFs displayed higher variability across session

time-points than the positive HRFs. Negative HRFs were nearly half

as correlated for amplitude parameters, and they were about 30%

more variable in dynamical parameters than positive HRFs. Positive

and negative HRFs were classified based on the polarity of the largest

signal magnitude of the bootstrapped-mean HRF across events. Reli-

ability of the negative–positive discrimination across cortex

(Supporting Information, Figure S1), shows that a minority of HRFs

are quite ambiguous of sign—these fall into two classes: weak HRFs,

or HRFs in boundary regions between strongly positive and negative

areas. Metrics that used a CNR threshold usually cull these HRFs.

More broadly, our simple bipartite HRF classification was likely

enabled by our use of a short stimulus that separates the timescales

of neuronal response from the evoked neurovascular and neurometa-

bolic responses.

Negative BOLD response has been observed in many studies as a

task-evoked response, often surrounding strongly activated regions of

positive BOLD (DeLaRosa et al., 2021; Shmuel et al., 2002; Shmuel

et al., 2006; Shulman et al., 1997; Wade & Rowland, 2010). It has

been suggested that negative HRFs are not simple inversions of posi-

tive HRFs; instead they have other neurophysiological origins, such as

poststimulus neural responses (Mullinger et al., 2014), or strong ring-

ing of the flow response (DeLaRosa et al., 2021). Negative BOLD is

likely an effect of neural suppression (Devor et al., 2007; Maggioni

et al., 2016; Pasley et al., 2007; Stefanovic et al., 2004) but may also

be linked to decreases in local blood supply (Puckett et al., 2014;

Smith et al., 2004) or a combination of these effects via neurovascular

coupling (Shmuel et al., 2006; Stefanovic et al., 2004). Negative HRFs

observed by Puckett et al. (2014), in the visual cortex had notably

higher variability than positive counterparts, consistent with our own

results. However, our data indicate that negative HRFs generally

appear to show more variability than positive HRFs because of their

weaker peak amplitude.

In this study, negative signals were not specifically observed adja-

cent to strong positive activation, but rather in large clusters. It is

likely that this is partially the consequence of the broad activation

evoked by our stimulus paradigm. Most negative HRFs were observed

in areas often attributed to the default mode network (DMN), a task-

negative functional network found across human subjects (Buckner

et al., 2008; Greicius et al., 2003; Raichle et al., 2001). Negative BOLD

signals in the DMN consistently suspend activity upon cognitive acti-

vation independent of the task, although the extent of deactivation

depends on the cognitive load (Esposito et al., 2006). The higher vari-

ability measured in these regions is consistent with previous studies,

which showed that mechanisms of downregulation in the DMN have
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confounding transient behavior modulated by attention

(McCormick & Telzer, 2018; Ossand�on et al., 2011). However, part of

the increased variability may simply be the consequence of the rela-

tively weaker amplitudes of the negative HRFs, supported by our

RMSE calculations.

We found that all dynamical parameters (TTU, FWHM, and TTU)

were quite stable across sessions. In absolute temporal units, the least

variation was observed in TTP, and largest variation in TTU. However,

lowest CV was observed for TTU, which is consistent with the lower

RMSE observed during the later period of the HRF. Our measurement

of mean across-cortex variation in TTP was only 0.8 s, while it was

found to be 0.5 s in visual cortex-only HRFs in a previous study

(de Zwart et al., 2005). FWHM varied up to 0.8 s in our study,

whereas in the previous study FWHM varied up to 0.4 s. The larger

variability observed in our study may correspond to the much larger

region of cortex evaluated. Notably, the fractional variation of TTU

was the most stable of dynamical variables. This further supports a

linkage between the dynamics that create the peak and undershoot,

such as underdamped flow oscillations that we proposed previously

(Kim & Ress, 2016), and supported by direct flow measurements (Kim

et al., 2019). Altogether, temporal dynamics were repeatable with low

relative variability across session time-points.

We suspected that within-session variability was a major factor in

the observed longitudinal variability of HRF dynamics, that is, voxels

having less trial-by-trial variability typically show more consistent

results across the four sessions. We found strong correlation between

within-sessions variability and across-session variability with most

data lying between lines of identity and
ffiffiffi

2
p

. This suggests that most

variability can be explained by local fluctuations of the hemodynamic

response, which are observed across HRF measurements within a ses-

sion. Furthermore, the metric (difference calculation) used in the cor-

relations suggests that much of the observed variability should not be

attributed to white noise. Rather, spontaneous fluctuations, as

reported in resting-state functional experiments, may generate nota-

ble differences across trials (Petridou et al., 2013; Wu &

Marinazzo, 2016). This hypothesis is also supported by the observed

temporal structure of the RMSE (Figure 4(d)), indicating baseline and

stimulus-evoked components; the baseline component could partially

arise from stimulus-independent spontaneous fluctuations.

While fitting the within- and across-session variability, we noted

that a single Gaussian function fit the data relatively well, and a sum-

of-two-Gaussians function slightly improved the fit quality. However,

the dual-Gaussian model parameters showed weak correlation

between the variability metrics, unlike the well-correlated single

Gaussian fits. This suggests that a single, strong source of variability is

found both within and across sessions. Despite our efforts to engage

and control subject attention and behavior during the fMRI measure-

ments, low-frequency fluctuations, the focus of resting-state fMRI

studies, likely still contribute to the observed time series (Tong

et al., 2019). There is evidence that these fluctuations are repeatable

over time (Biswal et al., 1995), which is consistent with our observa-

tion of strong correlation between the across-session and within-

session variabilities observed at many vertices in each brain.

The observed Gaussian distributions of variability were somewhat

surprising because typical fMRI noise is non-Gaussian. Aside from

thermal noise, significant amounts of noise arise in high magnetic field

(≥3 T) measurements from cardiac and respiratory artifacts (about

10% of total noise) as well as fluctuations in blood flow, blood volume,

and oxygen metabolism (about 25% of total noise) (Krüger &

Glover, 2001). The distribution of noise is mostly uniform across cor-

tex with variations in certain gray-matter regions due to local mecha-

nisms (Krüger & Glover, 2001; Tong & Frederick, 2014), such as

cardiac pulsatility (Glover et al., 2000). Variability was minimized by

our use of full native spatial resolution to focus on the central gray-

matter parenchyma, avoiding lower-reliability signals in superficial

vasculature and tissues adjacent to the gray matter (Kim &

Ress, 2016). Additionally, our use of large surface smoothing whitens

the noise, increasing its normality. This observed normal character of

noise makes the statistical model associated with fMRI experiments

more tractable. Thus, our approach of using full MRI resolution to

resolve the gray matter, followed by smoothing along the gray-matter

manifold appears to offer a CNR advantage as compared to uniform

spatial smoothing across the volume.

4.2 | Limitations

Our stimulus paradigm with a brief, demanding stimulus and task fol-

lowed by a nondemanding fixation task, has shown remarkable reli-

ability across subjects and sessions. The contrast between tasks

activates the majority of cortex allowing the study of global activity.

However, the fixation task evokes a less demanding but nonzero

baseline signal that may introduce confounds to the HRF. The base-

line task is not designed to be difficult, but it does require modest vigi-

lance. Poor baseline behavior suggests that it may be of interest to

use eye tracking in future studies. This rigorous stimulus and task par-

adigm is suited to a general cohort of subjects; however, it may not

serve certain clinical settings or subjects.

Even with our high spatial sampling, 2-mm isotropic voxels cannot

resolve the thinnest regions of gray matter, which range 1–4.5 mm

(Fischl & Dale, 2000). However, the thinnest regions are usually found

in the sulcal fundi and make up less than 10% of cortex (Fischl &

Dale, 2000; Markowitsch & Tulving, 1994). In our measurements

30.0 ± 5.4% of cortex is thinner than 2 mm and may contribute

partial-volume effects. A thickness-dependent study of HRF variability

within and across subjects is reserved for future work. Moreover, we

relied on structural volumes with 1-mm sampling, and segmentation

and thickness calculations at higher resolution should yield more pre-

cise results (van der Kouwe et al., 2008).

Temporal resolution was limited by the 1.25-s TR of the fMRI

measurements, which we interpolated to 0.1-s sampling prior to aver-

aging across events. This temporal sampling should be sufficient to

capture the sluggish blood flow and metabolic responses that give rise

to the BOLD response (Buxton et al., 1998; Kim & Ress, 2016). More-

over, the intensive averaging over many events filters out frequencies

above 0.4 Hz, including cardiac and respiratory artifacts (Lewis
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et al., 2016). It has been noted that a time-locked approach, such as

ours, provides poor estimation efficiency (Burock & Dale, 2000;

Liu, 2004). Nevertheless, our results show excellent CNR, suggesting

that our approach effectively removes high-frequency nuisance such

as pulse and respiration.

During HRF parameterization, TTP was chosen as the time-point

with largest magnitude between 2 and 14 s of the HRF time series.

This range should be large enough to cover TTP measurements from

previous fMRI studies and should not affect most of the data (Hirano

et al., 2011; Martindale et al., 2003; Uluda�g et al., 2004). However,

the artificial boundaries combined with discretization of the temporal

measurements generated discontinuous distributions in the boot-

strapped averaged data and may have been the source of some of the

observed kurtosis in the distributions.

Seasonal and circadian variations in the HRF were not fully bal-

anced in our study. While measurements were obtained in all months

of the year, some months were more strongly represented than

others; January had the fewest, while June the largest number of

measurements. Moreover, measurements were not explicitly balanced

across the day, but were, in fact, generally obtained during normal

business hours. These issues may have slightly confounded our

results.

The analysis that we present here was somewhat limited in scope

because of space constraints, and much further analysis is possible. In

particular, our rich dataset will enable a far more complete analysis of

across-subject characteristics that will enable rankings of spatial, tem-

poral, and across-subject noise for the majority of cortex. In an effort

to balance variation associated with age, we scanned adults from

young and late-middle-age populations. There were interesting, spa-

tially localized differences between the two age groups, but this topic

exceeds the scope of this article. Moreover, we plan to evaluate the

data for differences associated with sex. Finally, it should be possible

to examine variability as a function of cortical geometry, specifically

gray-matter thickness and curvature. These topics will all be evaluated

in future work.

5 | CONCLUSIONS

Our results demonstrate that our stimulus and task protocol evoked

strong HRFs across the majority of cortex that are remarkably repeat-

able across sessions separated by long time intervals, up to 3 months.

HRF time series and parameters (amplitudes and dynamics) are highly

repeatable within a subject. Amplitude patterns were not only consis-

tent across sessions in a subject but also highly correlated across sub-

jects, consistent with our previous findings. Regions of positive and

negative HRFs are consistently observed across sessions and subjects.

Both amplitude and dynamical parameters differ significantly between

positive and negative HRFs. The HRF time series and temporal param-

eters were also repeatable across session time-points. Early temporal

dynamics are most stable across sessions. Positive HRFs are generally

more stable than negative HRFs. Across-session variability is highly

correlated with within-session variability. In general, the observed

long-term reliability across subjects of the HRFs evoked by our

stimulus and task suggests its utility as a diagnostic tool for activation

of the majority of cortex to study pathology or healthy brain function.

More generally, the results help to quantify the reliability of event-

related fMRI experimental measurement across sessions.
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