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Multisite EGFR phosphorylation is regulated by 
adaptor protein abundances and dimer lifetimes

ABSTRACT  Differential epidermal growth factor receptor (EGFR) phosphorylation is thought 
to couple receptor activation to distinct signaling pathways. However, the molecular 
mechanisms responsible for biased signaling are unresolved due to a lack of insight into the 
phosphorylation patterns of full-length EGFR. We extended a single-molecule pull-down 
technique previously used to study protein–protein interactions to allow for robust measure-
ment of receptor phosphorylation. We found that EGFR is predominantly phosphorylated at 
multiple sites, yet phosphorylation at specific tyrosines is variable and only a subset of recep-
tors share phosphorylation at the same site, even with saturating ligand concentrations. We 
found distinct populations of receptors as soon as 1 min after ligand stimulation, indicating 
early diversification of function. To understand this heterogeneity, we developed a mathe-
matical model. The model predicted that variations in phosphorylation are dependent on the 
abundances of signaling partners, while phosphorylation levels are dependent on dimer 
lifetimes. The predictions were confirmed in studies of cell lines with different expression 
levels of signaling partners, and in experiments comparing low- and high-affinity ligands and 
oncogenic EGFR mutants. These results reveal how ligand-regulated receptor dimerization 
dynamics and adaptor protein concentrations play critical roles in EGFR signaling.

INTRODUCTION
The ability of a cell to respond rapidly and specifically to changes in 
the surrounding environment is controlled by protein–protein inter-

actions at the plasma membrane and along the signaling cascade. 
While much is known about the biochemical events that govern 
signaling pathways, this information has mostly been derived from 
population-based measurements that average over millions of cells 
and/or proteins. However, there is growing evidence that system 
heterogeneity at both the cellular and molecular levels contribute to 
cellular information processing (Lahav et al., 2004; Feinerman et al., 
2008; Coba et al., 2009; Spencer et al., 2009). The epidermal growth 
factor receptor (EGFR/ErbB1/HER1) has 20 cytoplasmic tyrosines, at 
least six of which (Y992, Y1045, Y1068, Y1086, Y1148, and Y1173) 
are capable of recruiting signaling proteins when phosphorylated 
(Jorissen et al., 2003; Schulze et al., 2005; Hause et al., 2012). The 
potential for multisite phosphorylation on individual receptors pro-
vides a mechanism to control signaling output that is dependent on 
complex factors such as steric hindrance, relative abundance of re-
ceptors and adaptors, cooperative interactions, and lifetimes of 
complexes (Gibson et al., 2000; Coba et al., 2009; Salazar and 
Höfer, 2009; Lau et al., 2011; Stites et al., 2015). Signal propagation 
is opposed by cellular phosphatases (Kleiman et al., 2011), 
whose activity is proposed to be blocked when phosphotyrosine 
substrates are engaged with binding partners (Rotin et al., 1992; 
Brunati et al., 1998; Jadwin et al., 2018). To better understand the 
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contributions of these factors on the differential phosphorylation of 
EGFR, we have combined quantitative single-molecule measure-
ments with rule-based modeling of EGFR signaling.

Limitations of existing techniques, such as Western blot analysis 
and those of quantitative mass spectrometry-based proteomics, 
preclude the detection or accurate quantification of receptor phos-
phorylation in intact, individual signaling proteins. Single-molecule 
pull down (SiMPull) is a powerful technique that allows for interroga-
tion of macromolecular complexes at the individual protein level. 
This technique captures macromolecular complexes on glass cover-
slips, combining the power of immunoprecipitation with high-reso-
lution imaging for single-molecule quantitative analysis (Jain et al., 
2011). We made a number of critical improvements to SiMPull that 
allowed us to directly detect and rigorously quantify the phosphory-
lation state of thousands of individual membrane receptors. This 
represents a significant improvement over traditional, semiquantita-
tive methods, which report only trends in phosphorylation state 
changes over the entire population. Our improvements to SiMPull 
protocols include pretreatment to reduce autofluorescence and 
corrections for receptor surface expression. We employed a simpli-
fied imaging chamber that accommodates up to 20 samples, 
each with sample volumes of only 10 μl. We also demonstrate the 
critical importance of optimizing antibody labeling and fixation 
conditions. To quantify receptor phosphorylation, we have used 
two- and three-color imaging to identify individual proteins and 
their corresponding phosphorylation status. These multiplex 
SiMPull measurements provide a new level of detail in the status of 
receptor phosphorylation that was previously inaccessible with 
traditional biochemical techniques.

The unique data provided by SiMPull were used to parameterize 
a mathematical model for site-specific phosphorylation kinetics of 
EGFR and to test model predictions. Particularly, we explored two 
traits of relevance for signaling processes: 1) the influence of adap-
tor protein abundances on the phosphorylation levels of the EGFR 
residues to which these proteins bind; and 2) the frequency of mul-
tisite phosphorylation across individual EGFRs in the population. 
We specifically explore how the phosphorylation status of individual 
receptors reflects the opposing contributions of adaptor binding 
versus phosphatase activity. For example, simulations predicted that 
overexpression of the adaptor protein Grb2 would lead to increased 
phosphorylation at the EGFR tyrosine residue where Grb2 binds 
(Y1068). This prediction was confirmed experimentally using SiMPull 
and compared with phosphorylation at the EGFR tyrosine residue 
where Shc1 binds (Y1173), which was found to be significantly less 
affected by Grb2 overexpression. Additionally, our model predicts 
that differences in adaptor protein abundances across cell lines 
should result in differences in phosphorylation patterns. We used 
our model to evaluate observed phosphorylation kinetics of mutant 
versus wild-type EGFR, as well as EGFR engaged by the low-affinity 
ligand epigen  versus the high-affinity ligand EGF. Simulation results 
suggest that the ligand-specific differences we observed in 
phosphorylation can be explained by differences in receptor dimer 
lifetimes. These new insights into the extent of phosphorylation at 
individual tyrosines, along with the existence of multisite phosphor-
ylation, have implications for how EGFR translates extracellular cues 
into downstream signaling outcomes.

RESULTS
Assessing receptor phosphorylation at the 
single-molecule level
Our principal method to interrogate the phosphorylation status of 
individual EGFRs after different treatments is single-molecule 

immunoprecipitation via SiMPull. SiMPull samples are prepared in a 
manner similar to SDS–PAGE/Western blot protocols, but the sam-
ple is evaluated using single-molecule microscopy to dramatically 
improve quantification. Figure 1A illustrates the basic principles of 
our assay. Briefly, cells expressing GFP-tagged EGFR are lysed 
before or after treatments (as specified in the figure legends). 
Clarified lysates are diluted and dispensed onto coverslips pre-
coated with anti-EGFR antibodies. Following incubation and 
washes, individual EGFR-GFPs are imaged by total internal reflec-
tion fluorescence (TIRF) microscopy. In the raw images, receptors 
appear as diffraction-limited fluorescent spots that may represent 
more than one molecule (Figure 1B, top left). Single molecules are 
selected by fitting each emission profile to a point spread function 
model and rejecting fluorescent spots that do not fit to a single-
emitter model (Figure 1B, bottom left). To evaluate the overall phos-
phorylation state of individual receptors, coverslips are incubated 
with pan-reactive, anti-phosphotyrosine (anti-PY) antibodies bearing 
fluorescent tags with spectral emission distinct from GFP (Figure 1B, 
center). Colocalization between EGFR-GFP and anti-PY identifies 
phosphorylated receptors. In this example, the overlay image shows 
that 34.4% of EGFR-GFPs are phosphorylated on at least one tyro-
sine site (Figure 1B, right). Phosphorylation at specific tyrosines in 
the EGFR cytoplasmic tail is evaluated by substituting a site-specific 
phosphotyrosine antibody (anti-pY1068 or anti-pY1173) for the 
pan-PY antibodies.

Over the course of this study, we implemented a series of im-
provements in the experimental process and image analysis to 
achieve efficient and accurate quantification. These are described 
briefly here and more detail is found in the Materials and Methods 
section and in legends to Supplemental Figures S1–S3. As has been 
previously noted (Jain et al., 2012), autofluorescence background 
was observed in our green spectral channel (503–548 nm) that was 
identified as single-GFP molecules in the absence of cell lysate. 
We found that incubating the PEG-coated coverglass with sodium 
borohydride (10 mg/ml NaBH4 for 4 min) significantly reduced 
the number of background fluorescent molecules (Supplemental 
Figure S1, A and B). To increase our throughput, we generated a 
simple sample chamber by using a hydrophobic barrier pen to cre-
ate an array of up to 20 independent regions on a coverglass that 
requires as little as 10 µl of sample (Supplemental Figure S1C). 
Because antibodies are used to quantify protein phosphorylation, it 
is critical to optimize the antibody labeling conditions, including 
time and concentration (Supplemental Figure S1, D–F). We found 
that on the time scale of our image acquisition the antibody could 
dissociate from EGFR (Supplemental Figure S1E), which would lead 
to an underestimation of receptor phosphorylation. Post–antibody 
labeling fixation with 4% paraformaldehyde/0.1% glutaraldehyde 
(PFA/GA) for 10 min stabilized the antibody levels for at least 1 h 
(Supplemental Figure S1E, PFA/GA). Because binding affinity will 
vary for each antibody and fluorescent conjugation may also alter 
antibody affinity, it is necessary to perform a binding curve for each 
antibody (Supplemental Figure S1F) to ensure optimal labeling 
conditions. Therefore, in the SiMPull assays reported here, we used 
antibody doses yielding saturated labeling and chemical cross-
linking to permanently couple antibodies to surface-captured 
receptors, removing potential artifacts from antibody affinities or 
dissociation. The phosphotyrosines probed in EGFR are located in 
an intrinsically disordered region of the C-terminal tail; therefore 
these sites are likely to be more accessible to antibodies than if they 
were located in folded regions. If a phosphorylation site of interest 
is found in a folded region of a protein, a denaturation step may be 
used (Kim et al., 2016).
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Correcting for EGFR surface expression in SiMPull 
data analysis
Like all immunoprecipitation methods that rely on detergent per-
meabilization of cells as a first step, SiMPull does not distinguish 
between EGFR trafficking through different intracellular compart-
ments. We observed intracellularly localized EGFR-GFP (Figure 1C, 
left) that would be inaccessible to ligand. To determine the fraction 
of EGFR at the plasma membrane, we labeled all surface proteins 
on the CHO-EGFR-GFP cells with membrane-impermeable AF647-
NHS ester (Figure 1C, right) and used SiMPull to visualize the 
amount of EGFR-GFP colocalized with AF647. By increasing the 
concentration of AF647-NHS until saturation is achieved, we esti-
mated that ∼65% of the receptors are located at the plasma 
membrane (Figure 1D). With this information, we corrected our 
measurements to account for only those receptors available to bind 
ligand (see Materials and Methods). For example, application of this 
correction shows that ∼14% of the receptors are phosphorylated at 
Y1068 after 1 min stimulation with 50 nM EGF (Figure 1E). We note 
that while surface labeling of receptors with AF647-NHS ester al-
lows for identification of surface proteins, we found that prelabeling 
of EGFR in this way reduced EGF binding (unpublished data). There-
fore, we did not use global NHS labeling of receptors for the study 
of EGFR activation. To validate our correction method, we analyzed 

the phosphorylation levels of receptors from CHO cells expressing 
ACP-tagged EGFR. We directly labeled the plasma membrane–
localized EGFR using membrane-impermeable CoA-Atto488 as de-
scribed previously (Ziomkiewicz et al., 2013; Valley et al., 2015). 
Cells were then exposed to EGF and probed for EGFR phosphoryla-
tion with SiMPull, this time using Atto488 as the marker for plasma 
membrane EGFR. The percentages of phosphorylated EGFR were 
similar when comparing the membrane-localized ACP-EGFR and 
the membrane-corrected EGFR-GFP samples (Figure 1E). There-
fore, the effects of EGF binding to EGFR on the plasma membrane 
can be accurately determined from whole cell lysates and we apply 
this correction for the remainder of the results.

Extent of phosphorylation varies by tyrosine residue
Results of the use of SiMPull to characterize phosphorylation of 
EGFR in CHO-EGFR-GFP cells over a range of EGF doses are shown 
in Figure 2A. The multiwell hydrophobic array format made it pos-
sible to efficiently examine a full dose response of activation in a 
single imaging session. We quantified total EGFR tyrosine phos-
phorylation (PY) and compared it with the phosphorylation patterns 
for two specific tyrosine sites (Y1068 and Y1173). Cells stimulated 
for 5 min (Figure 2A) with increasing concentrations of EGF showed 
the expected increase in total phosphorylation with ligand dose 

FIGURE 1:  SiMPull to quantify protein phosphorylation. (A) Illustration depicting overall principle for assessing 
phosphorylation at the single-molecule level using GFP-tagged EGFR (EGFR-GFP) as an example. (B) Representative 
images showing raw data (top) and blob-reconstructed localized molecules (bottom). CHO-EGFR-GFP cells were 
stimulated for 5 min with 25 nM EGF at 37°C before lysis for SiMPull. Raw images are brightness and contrast enhanced 
for visualization. The EGFR-GFP fits were filtered based on their fit to the microscope point spread function and the 
GFP channel used as a mask to create the overlay. The number in the bottom right image represents the 
phosphorylation percentage estimated for this field of view. (C) Confocal images showing typical distribution of 
EGFR-GFP in CHO cells (left) and the labeling of surface proteins achieved with the AF647-NHS ester (right). (D) Cells 
were incubated with increasing concentrations of AF647-NHS and assayed by SiMPull to determine the percentage of 
EGFR-GFP molecules labeled with AF647. Number of receptors analyzed per data point, 850 < N < 1550. (E) Percentage 
of pY1068+ receptors estimated for EGFR-GFP before and after correcting for surface expression. The corrected 
phosphorylation percentage for EGFR-GFP corresponds to the value measured for ACP-EGFR, which includes only 
plasma membrane–localized receptors. N > 2400 for each EGFR type. Error bars are SE of measured phosphorylation 
percentages.
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(Figure 2A, PY, blue bars). This fraction reached 40.8 ± 1.3% with 50 
nM EGF, a dose that is considered saturating. While the extent of 
phosphorylation on specific tyrosines is lower than total PY values 
across the dose response curve, the fraction of EGFR with 
phosphorylation at Y1173 was consistently higher than at Y1068 
(Figure 2A).

These results provide important observations. First, phosphory-
lation detection by SiMPull is sensitive, capable of detecting recep-
tor phosphorylation at low ligand dose. Second, even under saturat-
ing ligand conditions, only a fraction of receptors is found to be 
phosphorylated, reaching a maximum of approximately 41% with 5 
min stimulation. Third, the extent of phosphorylation varies by tyro-
sine residue. The detected phosphorylation levels are not restricted 
due to limitations in antibody labeling, because Western blot results 
show similar trends in tyrosine phosphorylation (Supplemental 
Figure S2, A–C) and cells stimulated in the presence of phosphatase 
inhibitors showed increased receptor phosphorylation (Supplemen-
tal Figure S2, D and E) for all three antibodies. The addition of high 
salt (500 mM NaCl) in the buffer for the immunoprecipitation proto-
col, which interferes with electrostatic protein–protein interactions, 
did not change the detected phosphorylation (Supplemental Figure 
S2F). This control suggests that, under our conditions, adaptor 
proteins that might interfere with antibody recognition in the 
SiMPull protocol are not coprecipitating.

Computational model suggests biased phosphorylation is 
explained by variations in adaptor protein abundances
To interpret the SiMPull data, we built a mathematical model based 
on our understanding of EGFR signaling mechanisms. We defined 

the model in terms of formal rules for interactions using the BioNet-
Gen language (BNGL; Faeder et al., 2009). Supplemental Table S1 
summarizes key references and measurements that provide esti-
mates of model parameters, including our own estimates of 
receptor expression levels in the cell lines utilized in the study. Our 
model explicitly incorporates the asymmetric orientation of the 
EGFR kinase domains during dimerization, which assumes one 
monomer is active while the other monomer serves as an allosteric 
activator over the lifetime of that dimer pair (Zhang et al., 2006; 
Pryor et al., 2013). We also incorporated the observation that struc-
tural accessibility limits the efficiency of self-phosphorylation (i.e., 
within an active monomer’s own tail) by about 30% (Kovacs et al., 
2015). An electronic version of the model is provided in the 
form of a BNGL file in the online Supplemental Material (Supple-
mental File S1). Included with the BNGL file are all of the files neces-
sary to perform the fitting and Bayesian uncertainty quantification 
procedures (Supplemental File S2). These files are also available 
online at the RuleHub repository (https://github.com/RuleWorld/
RuleHub/tree/2019Jun18/Published/Salazar-Cavazos2019).

Figure 2B illustrates the structure of our model. Our first goal for 
computational modeling was to explore the possible mechanisms 
giving rise to the observed biased phosphorylation in EGFR at 
Y1173 compared with Y1068. As depicted in Figure 2B, and 
described in detail in Materials and Methods, our model includes 
site-specific phosphorylation of Y1068 and Y1173, and the recruit-
ment of adaptor proteins Grb2 and Shc1 to these sites, respectively. 
We considered a range of parameter values in the model that 
might be adjusted to reproduce the biased phosphorylation (Sup-
plemental Table S2). First, we considered the possibility that the 

FIGURE 2:  The extent of phosphorylation varies by tyrosine residue. (A) Dose response curve determined by SiMPull 
measurements for CHO-EGFR-GFP cells after 5 min of EGF addition at 37°C. Number of receptors analyzed per 
condition, N > 1500. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. (B) Schematic of EGFR tyrosine site-specific model, 
represented as an extended contact map (Chylek et al., 2011). (C) The model is capable of generating dose-response 
behaviors similar to those observed experimentally (A). (D) Phosphorylation time course for CHO-EGFR-GFP cells 
stimulated with 25 nM EGF at 37°C. N > 1800. Symbols are the SiMPull data and error bars are SE of measured 
phosphorylation percentages. The series of experiments reported in A and D were each performed on the same day, 
but the two series of experiments were performed on different days. For this reason, results at the final time point in D 
are not combined with the results shown in A. Solid lines in D are derived from simulations using best-fit parameter 
values. As described in Materials and Methods, dose-response data in A and all times-series data in D were considered 
in curve fitting, that is, the parameter estimates are based on a global fit. Shaded areas in D indicate prediction 
uncertainties, determined by sampling parameter values from the multidimensional posterior established via Bayesian 
parameter estimation.
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FIGURE 3:  Predicted and observed phosphorylation kinetics in cells overexpressing Grb2. 
Predicted percentages of EGFR phosphorylation at tyrosines 1068 (A) and 1173 (B) after 
stimulation with 25 nM of EGF in cells with increasing overexpression (OE) of Grb2 (two-, four-, 
and eightfold). SiMPull quantification of EGFR phosphorylation at tyrosines 1068 (C) and 1173 
(D) after stimulation with 25 nM of EGF in CHO-EGFR-GFP cells expressing endogenous levels 
of Grb2 (orange) or overexpressing Grb2-mCherry (blue). N > 1050. This CHO-EGFR-GFP 
Grb2-mCherry cell line overexpresses Grb2 by approximately threefold on average, as 
determined by Western blot analysis (unpublished data), compared with wild-type cells. Error 
bars represent mean ± SEM.

phosphorylation and/or dephosphorylation rates are not equivalent 
for each tyrosine. It is possible for the model to fit our SiMPull data 
by allowing phosphorylation and dephosphorylation rate constants 
for Y1068 and Y1173 to be different, but earlier work suggests that 
these rate constants have similar values for the two sites (Kleiman 
et al., 2011; Kim et al., 2012). Thus, our data do not allow site-
specific differences in phosphorylation and dephosphorylation at 
Y1068 and Y1173 to be ruled out, but such differences are dissonant 
with results from earlier studies.

An alternative possibility is that the binding of adaptor proteins 
(i.e., Grb2 and Shc1) physically serves as a barrier to protect specific 
phosphorylated tyrosines from phosphatase activity. This hypothesis 
is supported by in vitro and cellular studies showing the ability of SH2 
domains to protect phosphosites from dephosphorylation (Rotin 
et al., 1992; Brunati et al., 1998; Jadwin et al., 2018). To test whether 
variation in protein abundances alone could explain our observa-
tions, we allowed the concentration of Grb2 and Shc1 to indepen-
dently vary during the fitting process, while all other parameters were 
held constant. As a simplification, we took binding parameters (for-
ward and reverse rate constants) for Grb2 interaction with pY1068 
(via Grb2’s SH2 domain) and Shc1 interaction with pY1173 (via Shc1’s 
phosphotyrosine binding [PTB] domain) to be identical. The equilib-
rium dissociation constants measured in vitro by fluorescence polar-
ization for these two interactions are comparable (2.6 µM for Grb2 
SH2-pY1068 and 1.4 µM for Shc1 PTB-pY1173; Hause et al., 2012). 
By allowing Grb2 and Shc1 to have different abundances, it became 
possible to parameterize the model (through curve fitting, as de-
scribed in Materials and Methods) such that the model generates 

dose-response behaviors (Figure 2C) as well 
as dynamic behaviors at the saturating dose 
of 25 nM EGF (Figure 2D) similar to those 
observed with SiMPull. The results of uncer-
tainty quantification, illustrated in Figure 2D, 
show that there is model discrepancy (i.e., 
variability in experiments not captured by 
the model). Nevertheless, we regard simula-
tions to adequately reproduce the data, at 
least qualitatively. The similarity between 
simulations and observed behaviors sug-
gests that different abundances of phospho-
tyrosine site-specific binding partners are 
a plausible explanation for the observed 
differences in phosphorylation at Y1068 
and Y1173.

Predicted influence of Grb2 
overexpression in phosphorylation 
levels is observed experimentally
Our next goal was to experimentally vali-
date the model prediction that biased 
phosphorylation is best explained by having 
different expression levels of Grb2 and 
Shc1. To set up conditions for these experi-
ments, we ran simulations over a range of 
Grb2 overexpression values (two-, four-, and 
eightfold). Results in Figure 3A predict that 
Grb2 overexpression will lead to increased 
phosphorylation at Y1068, where Grb2 
binds. Notably, no change is predicted for 
phosphorylated Y1173, where Grb2 is not 
expected to bind (Figure 3B). To test these 
predictions, we created CHO-EGFR-GFP 

cells overexpressing Grb2-mCherry and evaluated the influence on 
EGFR phosphorylation using SiMPull (Figure 3, C and D). Consistent 
with trends in the simulation results, overexpression of Grb2 led to a 
significant (approximately threefold) increase in phosphorylation of 
Y1068 (Figure 3C) and a much less pronounced increase in phos-
phorylation of Y1173 (Figure 3D). The relatively small change in 
phosphorylation at Y1173 (Figure 3D) is consistent with reports that 
high expression of Grb2 can enhance phosphorylation at sites be-
yond the canonical Grb2 binding sites in EGFR (Jadwin et al., 2018).

Model predicts cell-specific phosphorylation patterns based 
on differences in adaptor protein abundances
On the basis of these results, we hypothesized that cell types natu-
rally expressing different levels of these adaptor proteins would dis-
play different phosphorylation patterns. Protein copy numbers have 
been assayed using both global and targeted mass spectrometry-
based proteomics in various cell lines (Kulak et al., 2014; Shi et al., 
2016). These estimates include the protein copy numbers (per cell) 
for EGFR, Grb2, and Shc1 in the nontumorigenic mammary epithe-
lial HMEC and MCF10A cells, as well as in HeLa cervical cancer 
cells (see Supplemental Table S1). As described in Materials and 
Methods, we performed simulations using these measured cell-
specific protein copy numbers (Supplemental Table S1) and ob-
tained model predictions for the phosphorylation patterns and 
kinetics in each of the three cell lines (Figure 4, A–C). In HMEC cells, 
where the estimated abundances of both adaptor proteins are rela-
tively low, the model predicts similar levels of phosphorylation at 
both tyrosine residues (Figure 4A). For MCF10A cells, the model 
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FIGURE 4:  Predicted phosphorylation patterns in cell lines with varying adaptor protein 
expression. (A–C) Predictions of phosphorylation kinetics for HMEC (A), MCF10A (B), and HeLa 
S3 (C) cell lines. HMEC cells express low levels of both Grb2 and Shc1; MCF10A cells have 
slightly higher levels of Shc1 than Grb2; HeLa S3 cells express approximately seven times 
more Grb2 than Shc1 (Kulak et al., 2014; Shi et al., 2016; see Supplemental Table S1). 
(D) Phosphorylation pattern in HeLa S3 cells obtained by SiMPull measurements. N > 1550. 
**, P ≤ 0.01. Error bars represent mean ± SEM.

predicts slightly higher phosphorylation at Y1173 given that its bind-
ing partner, Shc1, is expressed at a higher level than Grb2 (Figure 
4B). The most striking difference in expression levels between the 
two adaptor proteins is found in HeLa S3 cells, where it is estimated 
that there are ∼600,000 copies of Grb2 per cell compared with 
∼100,000 copies of Shc1 per cell (Supplemental Table S1). Accord-
ingly, for these cells, the model predicts that phosphorylation at 
Y1068 should be higher than at Y1173 (Figure 4C), the reverse of 
what is predicted by the version of the model parameterized for 
consistency with our CHO-cell data. Experimental results using 
SiMPull are shown in Figure 4D. These results confirm that HeLa S3 
cells exhibit the expected reversal in biased phosphorylation. The 
difference in phosphorylation is less pronounced than predicted, 
with phosphorylation at Y1068 only slightly higher than phosphory-
lation at Y1173, but there is qualitative consistency between the 
predicted and observed phosphorylation levels at the two sites.

Three-color SiMPull reveals frequency of multisite 
phosphorylation on individual EGFR
Our results above suggest that EGF-treated cells bear subpopula-
tions of receptors with differing phosphorylation patterns. SiMPull 
offers unique advantages over traditional methods, because 
individual molecules can be probed with more than one antibody 
providing each has a spectrally distinct fluorescent tag. We utilized 
the capability for simultaneous three-color SiMPull imaging to 
determine the frequency of multisite phosphorylation on individual 
EGFRs. Figure 5A illustrates the basic protocol used to evaluate the 
incidence of multisite phosphorylation at the single-receptor level. 

The image in Figure 5B shows a typical re-
sult, where each receptor is resolved based 
on GFP emission (dark green), and then 
overlaid with detection of anti–PY1068-
CF555 (light green) and detection of anti–
PY-AF647 (purple). Circled, white spots indi-
cate the presence of EGFRs that are positive 
for both antibodies and, therefore, phos-
phorylated on PY1068 as well as at least one 
other tyrosine in the cytoplasmic tail.

When labeling a single protein with two 
or more antibodies, the potential for steric 
hindrance must be considered. We first 
tested whether colabeling of receptors with 
pairwise combinations of antibodies to 
PY1068, PY1173, and/or pan-PY was techni-
cally feasible. Results in Supplemental 
Figure S3 confirm the feasibility of a method 
that employs sequential, pairwise antibody 
labeling and also provides for correction of 
steric blocking during our labeling proce-
dures (see also Materials and Methods). We 
also performed step-photobleaching analy-
sis to assure that the doubly labeled recep-
tors were associated with a single EGFR-
GFP molecule and not two or more EGFRs 
in a diffraction-limited spot (Supplemental 
Figure S4A). Step photobleaching con-
firmed that at our pull-down density the 
majority of double-labeled receptors are 
indeed monomers (∼98%).

By combining anti–pan-PY labeling 
with each of the two specific sites (pY1173 
or pY1068), we were able to quantify the 

frequency of multisite phosphorylation on individual receptors. 
First, we examined to what extent a receptor phosphorylated at 
Y1068 or Y1173 might also be phosphorylated at another tyrosine 
(pan-PY). Figure 5C reports the percentage of all receptors exhib-
iting multisite phosphorylation, found to reach 13.0 ± 1.8% as a 
function of EGF dose for each of the two tyrosines examined here. 
From this data, we can also interrogate the behavior of specific 
phosphorylation events with respect to a particular receptor pool. 
For example, Figure 5D shows the probability of a receptor being 
phosphorylated (PY) within three distinct subpopulations. As ex-
pected, the total percentage of phosphorylated EGFR increased 
with dose (Figure 5D, PY in total EGFR, dark blue). In the fraction 
of receptors phosphorylated at Y1068, there is a high probability 
of that same receptor being colabeled for pan-PY, reaching 80.3 ± 
4.9% after 5 min of 50 nM EGF stimulation (Figure 5D, PY in 
pY1068+ EGFR, medium blue). Additionally, we found that 
pY1173+ receptors were frequently colabeled for pan-PY (Figure 
5D, PY in pY1173+, light blue) at a high frequency, albeit lower 
than for pY1068+ EGFR. These data suggest that, at least in CHO 
cells, there is a slight increase in multisite phosphorylation in com-
bination with pY1068 over pY1173. We also analyzed the data in 
a manner to determine the fraction of pY1068 within the total re-
ceptor (pY1068 in total EGFR) or phosphoreceptor (pY1068 in PY+ 
EGFR) populations. Figure 5E shows that the total fraction of 
EGFR phosphorylated at Y1068 increases with ligand dose (red), 
while the fraction of pY1068 within the PY+ EGFR population re-
mains relatively constant (pink). Simulations corresponding to ex-
periments in Figures 5, D and E, are qualitatively consistent with 
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FIGURE 5:  SiMPull reveals EGFR multisite phosphorylation. (A) Schematic of three-color 
labeling. (B) Representative three-color SiMPull image of EGFR-GFP (dark green), anti-pY1068 
(light green), and anti–pan-PY (purple). White circles indicate receptors that contain all three 
labels and are therefore positive for both pY1068 and pan-PY. Cells were treated with 25 nM 
EGF for 5 min at 37°C. (C) Quantification of three-color SiMPull shows that multisite 
phosphorylation is readily observed over a range of EGF concentrations. Three-color images 
were analyzed for the fraction of EGFR demonstrating colabeling of pY1068+PY+ (orange) and 
for pY1173+PY+ (brown). N > 850. (D) Plot shows the fraction of pan-phosphorylation found in 
the total EGFR population (dark blue), the pY1068+ population (medium blue), and the pY1173+ 
population (light blue). N > 850. **, P ≤ 0.01. (E) Bar graph showing the fraction of pY1068+ 
receptors within the total EGFR population (red) as compared with within the phosphorylated 
receptor population (pink). N > 850. (F) Mathematical model parameterized by single-site 
phosphorylation data predicts the presence of dual-site phosphorylation (pYpY, orange line). 
(G) SiMPull experiments demonstrate dual phosphorylation at Y1068 and Y1173 that is 
qualitatively consistent with model predictions shown in F. N > 750. All error bars represent 
mean ± SEM.

the observed results (Supplemental Figure S4, B and C), and pre-
dict that even at subnanomolar EGF concentrations the levels of 
pY1068 in PY+ EGFR remain at comparable levels as when EGF 
concentrations are high (Supplemental Figure S4C). This supports 
the idea that, at least for tyrosine sites with fast phosphorylation 
kinetics such as Y1068, the phosphorylation levels within a 
signaling unit (activated receptor) remain relatively constant and 
the influence of ligand dose is in the number of activated 
receptors. Together, these results directly demonstrate that it is 
common for individual EGFRs to acquire phosphorylation on 
multiple sites.

Dual phosphorylation at Y1068-Y1173 
is predicted by the model and 
supported by SiMPull measurements
We next explored the mechanistic basis for 
multisite phosphorylation in our computa-
tional model, which was initially trained us-
ing only single-site phosphorylation data. 
Simulation results in Figure 5F predict that 
approximately 3% of receptors will become 
dually phosphorylated at Y1068 and Y1173 
(pYpY) within 1 min of saturating ligand 
dose, reaching a steady-state value sus-
tained for at least 5 min. To test this predic-
tion experimentally, we performed three-
color analysis by treating cells for 5 min with 
EGF, followed by lysis and SiMPull isolation. 
Samples were colabeled with anti-pY1068 
and anti-pY1173 antibodies and corrected 
for reduced labeling efficiency due to steric 
blocking (see Supplemental Figure S3, B–D, 
and Materials and Methods). As shown in 
Figure 5G, we found that 6.9 ± 1.3% of total 
receptors have dual phosphorylation at 
Y1068 and Y1173 (pYpY). As a control, we 
treated cells with EGF in the presence of 
phosphatase inhibitors and found a corre-
sponding increase in the percentage of 
dually phosphorylated EGFR (Supplemental 
Figure S3E). Therefore, both our computa-
tional model and quantitative SiMPull ex-
periments indicate that a fraction of EGFR is 
dually phosphorylated at Y1068 and Y1173 
in response to ligand stimulation.

Dimerization efficiency and lifetime 
are key factors in multisite 
phosphorylation
We performed a sensitivity analysis to deter-
mine how dual phosphorylation depends on 
parameter values (Supplemental Figure S5). 
Changes in phosphorylation and dephos-
phorylation rate constants had the greatest 
effect on the percentage of dual phosphory-
lation. Changes in parameters that govern 
adaptor protein recruitment had the next 
largest effects on dual phosphorylation.

To validate the impact of changes in 
kinase activity, we turned to our prior work 
with activating EGFR mutations common in 
non–small cell lung cancer (Valley et al., 
2015). The oncogenic properties of the 

L858R EGFR mutant have been attributed in part to increased kinase 
activity (Zhang et al., 2006), as well as structural changes that enhance 
dimerization potential in the absence of ligand (Valley et al., 2015). 
Using the mathematical model, we simulated the mono- and dual-
site phosphorylation in response to increased kinase activity (re-
flected by the pseudo first-order rate constant used in the model to 
characterize autophosphorylation) for L858R EGFR dimers over wild-
type (WT) EGFR dimers. The model predictions in Figure 6A show 
that enhanced kinase activity will lead to increases in phosphoryla-
tion at both Y1068 and Y1173, as well as in dual phosphorylation. 
Experimentally, we compared single and multisite phosphorylation in 
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FIGURE 6:  Altered multisite phosphorylation resulting from EGFR mutation or stimulation by a 
low-affinity ligand. (A) Model predicts higher single-site and multisite phosphorylation in 
EGFR-L858R vs. WT, where the mutant has a higher kinase activity. (B) SiMPull measurements for 
WT and mutant EGFR expressed in CHO cells display qualitative agreement with model 
predictions in A. Cells were stimulated with 50 nM EGF for 5 min at 37°C. N > 950. Here, 
anti–PY-AF647 was used to identify phosphorylated surface EGFR since the receptors were not 
GFP-tagged. (C) Model predicts a lower phosphorylation with epigen stimulation as compared 
with EGF, where the mechanism is that epigen induces less stable dimers. (D) SiMPull 
measurements for EGF- and epigen-stimulated cells display qualitative agreement with model 
predictions in C. CHO-EGFR-GFP cells were stimulated for 5 min at 37°C with the indicated 
saturating ligand dose. N > 1200. Error bars for simulations report the prediction uncertainties 
determined via the Bayesian analysis described in Materials and Methods; error bars for 
experimental results represent mean ± SEM.

CHO cells expressing WT or L858R EGFR under saturating EGF con-
ditions, where our prior work showed that ligand-bound WT and 
mutant EGFR have the same dimer lifetime (Valley et al., 2015). In 
qualitative agreement with modeling predictions, we found that 
L858R EGFR exhibits an increase in phosphorylation at each individ-
ual tyrosine as well as in dual phosphorylation at both Y1068 and 
Y1173 (Figure 6B). To obtain a quantitative estimate of the increased 
kinase activity, we fitted our model to the data of Figure 6B. In the 
fitting procedure, we allowed the rate constant for autophosphoryla-
tion to vary, but held all other parameters fixed at their previously 
estimated values. The one-parameter fit indicates that the intrinsic 
kinase activity of L858R EGFR is 3.6-fold higher than WT EGFR. 
Simulation results based on the best fit are shown in Figure 6A. Our 
estimate is consistent with previous in vitro measurements, in which 
the kinase activity for the L858R kinase domain was determined to 
be approximately 3.5-fold higher (Zhang et al., 2006).

We were particularly interested in exploring the interdependent 
relationships between ligand affinity, dimerization off-rates, and mul-
tisite phosphorylation. To explore this experimentally, we focused on 
comparing multisite EGFR phosphorylation in cells stimulated with 
either (high affinity) EGF or another natural EGFR ligand, (low affinity) 
epigen. We chose this system because shorter dimer lifetimes were 
recently proposed to be a key feature that explains altered cellular 

outcomes of epigen-mediated signaling 
(Freed et al., 2017). We used the mathemati-
cal model to predict the outcome of shorter 
dimer lifetimes on EGFR phosphorylation 
and found that receptor phosphorylation at 
pY1068 is expected to be reduced (Figure 
6C), in qualitative agreement with Western 
blot results reported by Freed et al. (2017). 
The model also predicted that phosphoryla-
tion at Y1173 and dual phosphorylation 
should be reduced. We used three-color 
SiMPull to evaluate the differential levels of 
multisite phosphorylation for EGFR after 
stimulation with either EGF or epigen, using 
saturating levels of both ligands to ensure 
equivalent occupancy (Figure 6D). We found 
that both tyrosines were phosphorylated to 
a lesser extent by epigen than in EGF-stimu-
lated cells. The number of receptors achiev-
ing dual phosphorylation was also reduced 
with epigen activation. To determine what 
dimer lifetime best explains these results, we 
fitted our model to the data of Figure 6D. In 
the fitting procedure, we allowed the rate 
constant for EGFR dimer dissociation to vary, 
but held all other parameters fixed at their 
previously estimated values. The one-pa-
rameter fit indicates that epigen-induced 
dimers have 4.8-fold shorter lifetime than 
EGF-induced dimers. Simulation results 
based on the best fit are shown in Figure 6C. 
These results strengthen the argument that 
altered epigen signaling is a result of shorter-
lived dimer interactions.

DISCUSSION
Mathematical modeling of cellular signal-
ing, including EGFR signaling, has histori-
cally relied on population-based measure-

ments (Kholodenko et al., 1999; Hendriks et al., 2003). 
Parameterization of mathematical models has improved over time, 
incorporating more accurate measurements such as quantitative 
mass spectrometry techniques to profile overall protein abundance 
patterns for the EGFR–MAPK pathway (Shi et al., 2015), as well as 
ligand-induced changes in the phosphoproteome (Yi et al., 2018). 
Concomitantly, the systems biology field has increasingly recog-
nized the influence of heterogeneity at the single-cell scale in deter-
mining signaling output (Kolitz and Lauffenburger, 2012). Recent 
advances in quantitative imaging now provide powerful new 
methods to interrogate single-cell and single-molecule dynamics, 
which are providing new insights on how cells encode and interpret 
information (Grecco et al., 2011; Welch et al., 2011; Purvis and 
Lahav, 2013). In prior work, we have built spatial stochastic models 
of EGFR/ErbB signaling (Pryor et al., 2013, 2015) that incorporate 
single-molecule measurements, including experimentally derived 
values for receptor diffusion and ligand-dependent changes in 
dimer off-rates (Low-Nam et al., 2011; Steinkamp et al., 2014). 
These properties of EGFR continue to be key features of our current 
phosphorylation site-specific, rule-based model.

Wollman and colleagues have proposed that a deeper under-
standing of signaling networks requires richer data sets collected at 
the single-cell level, coupled closely with computational modeling 
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in an iterative process of prediction, experimental confirmation, and 
manipulation (Handly et al., 2016). In this work, we set out to pur-
posely pair simulations with novel single-molecule quantitative 
data, capturing the dose-dependent heterogeneity in phosphoryla-
tion of thousands of single receptors. Improvements in the single-
molecule technique, SiMPull, allowed us to obtain robust, quantita-
tive information about EGFR multisite phosphorylation patterns and 
to identify the frequency of subpopulations. We found that there are 
distinct populations of receptors with varying phosphorylation 
patterns, indicating an early diversification of downstream signaling. 
These data were used to train a rule-based model of site-specific 
EGFR phosphorylation and adaptor recruitment (i.e., to estimate 
unknown model parameter values via a curve-fitting procedure).

Our rule-based model for EGFR signaling, illustrated in Figure 
2B as an extended contact map (Chylek et al., 2011), has a structure 
consistent, to a first-order approximation, with known and well-
established mechanisms of ligand–receptor binding, ligand-depen-
dent receptor-mediated receptor dimerization, autophosphoryla-
tion, and phosphotyrosine-dependent recruitment of adaptor 
proteins. However, the model should be viewed as an idealization, 
because as a simplification, we purposely excluded a number of 
potentially relevant complicating factors, such as inside-out effects 
of signaling on ligand binding (Macdonald-Obermann and Pike, 
2009), competition among the cellular milieu of SH2/PTB domain-
containing signaling proteins for phosphotyrosine docking sites in 
EGFR (Stites et al., 2015), and cooperative recruitment of adaptor 
proteins (Sigismund et al., 2013). These and other aspects of EGFR 
signaling are not yet fully understood. Another reason to view the 
model as an idealization is the outcome of our Bayesian analysis of 
prediction uncertainty, described in Materials and Methods. Results 
from this analysis, which are illustrated in Figure 2D, indicate that 
the parameterized model is not able to fully capture variability in the 
training data. Despite this model discrepancy issue, we deemed the 
parameterized model to adequately reproduce the training data 
and to be useful for guiding further experiments, for the following 
reasons. Simulations are similar to and qualitatively consistent with 
observed dose-response behaviors (cf. Figure 2, A and C) and 
observed dynamic behaviors (cf. the curves and data points in 
Figure 2D). It should be noted that SiMPull assays are destructive. 
Thus, any training data spanning multiple conditions would neces-
sarily need to be generated from multiple independent experiments 
performed in parallel. This requirement very likely introduces uncon-
trolled variability, which is not accounted for in the model.

We directly tested the widely held assumption that SH2 domain 
binding transiently protects specific phosphotyrosines from cellular 
phosphatases, as suggested by prior work using semiquantitative, 
population-based Western blot techniques (Rotin et al., 1992; Brunati 
et al., 1998; Sigismund et al., 2013; Jadwin et al., 2018). As our model 
predicted, overexpression of Grb2 led to a pronounced increase in 
phosphorylation at Y1068 in EGFR, the principal site where Grb2 
binds, but largely left phosphorylation at Y1173, where Shc1 binds, 
unchanged. This behavior may be important for understanding EGFR 
signaling in cancer cells, where expression levels of signaling proteins 
are commonly altered (Verbeek et al., 1997; Santarius et al., 2010). In 
particular, we predicted and observed biased phosphorylation of 
Y1068 and Y1173 that shifts across cell lines having different adaptor 
protein abundances (cf. Figures 2 and 4).

It should be acknowledged that the observed reversal in biased 
phosphorylation of Y1068 and Y1173 for HeLa S3 cells (vs. CHO 
cells) was less pronounced than predicted (cf. Figure 3, C and D). 
There are at least two potential explanations for this discrepancy of 
degree. First, there could be errors in the copy number measure-

ments that were used to obtain the cell-specific models. In a recent 
study, concerns were raised about the accuracy of available data sets 
(Erickson et al., 2019), including the data set that we used to set abun-
dances of EGFR, Grb2, and Shc1 for the HeLa cell–specific model. 
Second, as a simplification, we held rate constants for receptor 
phosphorylation and dephosphorylation fixed across the different 
cell-specific versions of the model. However, these rate constants are 
potentially cell specific. Phosphatase abundances are known to vary 
across cell type (Shi et al., 2016), giving rise to the possibility that 
effective dephosphorylation rates may be cell specific. Furthermore, 
membrane properties are known to vary across cell type (Lajoie et al., 
2007), with potential impacts on EGFR localization and dimerization, 
which could affect autophosphorylation. Finally, it should be recalled 
that our model is an idealization, and as such, it cannot be expected 
to match observations with fine-grained resolution. The model 
provides a plausible explanation for our findings about the interplay 
between adaptor protein abundances and site-specific EGFR phos-
phorylation patterns, but there may be other explanations, such as 
cell-specific kinase and phosphatase activities, which cannot be 
ruled out. Although we focused on two prototypical examples of 
binding partners, Grb2 and Shc1 (Kholodenko et al., 2000), the prin-
ciples we describe likely apply to the broader interactome map of 
∼89 SH2-bearing proteins that interact with ErbB receptors with vary-
ing degrees in affinity, abundance, and tissue-specific expression 
(Hause et al., 2012). Of course, some SH2-bearing proteins, such as 
Grb2, may be somewhat promiscuous and bind with weaker affinity 
to more than one phosphosite in the receptor cytoplasmic tail 
(Jadwin et al., 2018). Binding of adaptors at one or more sites may 
partially block the accessibility of other SH2 proteins or phospha-
tases at nearby sites or even serve as scaffolds to build larger macro-
molecular complexes (Hsieh et al., 2010; Telesco et al., 2011). 
Addressing the combinatorial complexity of these signaling interac-
tions is a strength of rule-based approaches (Chylek et al., 2014), 
particularly when combined with single-molecule quantification.

We demonstrate the advantages of SiMPull for determining the 
fraction of receptors that simultaneously bear more than one 
posttranslational modification. This ability required considerable 
optimization of SiMPull protocols, representing a step forward over 
previous protocols that failed to detect an EGF-dependent increase 
in multisite EGFR phosphorylation (Kim et al., 2016, 2018). Notably, 
our modeling and experimental results indicating that individual 
copies of EGFR are phosphorylated at multiple sites are consistent 
with previous work indicating that multisite phosphorylation is 
important for recruitment of certain combinations of signaling 
proteins to activated EGFR (Sigismund et al., 2013; Fortian and 
Sorkin, 2014). Interestingly, our results demonstrate that not all re-
ceptors are phosphorylated identically. Differential phosphorylation 
patterns may allow individual receptors to connect to distinct path-
ways for biased signaling. It is particularly important to understand 
biased signaling in the context of different ligand types and doses, 
as well as cell variables such as the expression levels of receptors 
and their signaling partners (Wolf-Yadlin et al., 2006; Chen et al., 
2009; Wilson et al., 2012; Freed et al., 2017).

Our combination of modeling and experiments has provided a 
connection between receptor dimer lifetimes and phosphorylation 
outcomes. Recent work from the Lemmon group has explored dif-
ferential phosphorylation patterns and signaling outcomes after 
EGFR stimulation with high- and low-affinity ligands (Freed et al., 
2017). Our contributions to that study supported the conclusion that 
low-affinity ligands, such as epigen, induce distinct dimer structures 
that are less stable than dimers induced by EGF. By allowing the 
dissociation rate constant for ligand-induced EGFR dimers to vary in 
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a one-parameter fit, our model became capable of closely repro-
ducing the SiMPull data from experiments with epigen-treated cells. 
The adjusted value for this rate constant corresponds to a reduced 
dimer lifetime, suggesting that shorter-lived epigen-induced EGFR 
dimers is a sufficient explanation for the observed differences in 
epigen- versus EGF-induced EGFR phosphorylation kinetics. Taken 
together with our results from EGFR mutants, the data indicate that 
dimer lifetime and kinase efficiency act together to dictate rates of 
multisite phosphorylation. We showed previously that EGF-bound 
WT and L858R EGFR dimers have similar lifetimes (Valley et al., 
2015), while our new SiMPull results show that EGF treatment leads 
to significant increases in single- and dual-site phosphorylation for 
the mutant. Simulations reported in Figure 6 indicate that this can 
be explained by the 3.6-fold increase in intrinsic kinase activity, a 
result that is reasonably consistent with biochemical measurements 
using recombinant kinase domains (Zhang et al., 2006). On the 
other hand, L858R receptors also favor ligand-independent 
signaling, attributed to “inside-out” signaling that promotes exten-
sion of the extracellular domain and exposure of the dimer arm in 
the absence of ligand (Valley et al., 2015) and/or more favorable 
orientation of cytoplasmic kinase domains (Shan et al., 2012; Red 
Brewer et al., 2013). So, the oncogenic properties of the L858R 
mutation can be attributed to both the increase in catalytic activity 
and enhanced dimerization in the absence of ligand.

In summary, we have integrated the unique data sets provided 
by SiMPull with mathematical modeling to better understand the 
combinatorial aspects of EGFR signaling. We have shown that there 
are distinct populations of receptors with varying degrees of phos-
phorylation that can connect individual receptors to distinct path-
ways for biased signaling. Our results provide novel insight into the 
regulation of EGFR phosphorylation, demonstrating critical roles for 
adaptor protein abundance and receptor dimerization lifetimes. The 
abundances of adaptor proteins vary across cell types (Shi et al., 
2016) and it has been proposed that these variations explain cell-
specific functions of EGFR and other receptor tyrosine kinases 
(RTKs). Here, we have seen that there is an interplay between single-
molecule patterns of phosphorylation and adaptor protein abun-
dances. Thus, SiMPull assays complement measurements of these 
abundances. We have also shown that these types of data can be 
analyzed in an integrated manner using a mechanistic model. 
Finally, we have demonstrated that multisite phosphorylation is 
quite prevalent and needs to be considered in modeling of EGFR 
signaling. Further work along these lines will help us to better un-
derstand the context-dependent functions of RTKs in the future.

MATERIALS AND METHODS
Cell lines and reagents
CHO cells expressing GFP-tagged (Brock et al., 1999; Lidke et al., 
2004) or ACP-tagged EGFR (provided by Donna Arndt-Jovin, Max 
Planck Institute for Biophysical Chemistry) were cultured in DMEM 
supplemented with 10% fetal bovine serum, penicillin–streptomycin, 
and 2 mM l-glutamine (Thermo Fisher Scientific). ACP-tagged EGFR 
was as described in Ziomkiewicz et al. (2013) and Valley et al. (2015) 
with the exception that a shortened 16 aa sequence was intro-
duced at the EGFR N-terminus (George, 2006). EGF, protease and 
phosphatase inhibitor cocktail, Alexa Fluor 647 NHS ester, and Neu-
trAvidin were purchased from Thermo Fisher Scientific. CoA 488 and 
ACP synthase were purchased from New England Biolabs. N-(2-
aminoethyl)-3-aminopropyltrimethoxysilane was purchased from 
United Chemical Technologies (#A0700). Sodium bicarbonate and 
sodium borohydride were purchased from EMD Millipore (#SX0320-
1, #SX0380-3). mPEG-succinimidyl valerate (MPEG-SVA-5000-5g) 

and biotin-PEG-succinimidyl valerate (Biotin-PEG-SVA-5000-500 mg) 
were from Laysan Bio. Biotinylated anti-EGFR antibody (E101) was 
obtained from Leinco Technologies. Antibodies in carrier-free buffer 
were purchased from Cell Signaling Technologies: EGFR pY1068 
(clone 1H12, 2236BF) and EGFR pY1173 (clone 53A5, 4407BF). 
Monoclonal antibody prelabeled with AF647 to detect pan-tyrosine 
phosphorylation (PY99 antibody, sc-7020 AF647) was purchased 
from Santa Cruz Biotechnology. Mix-n-Stain CF555 and CF640R an-
tibody labeling kits were purchased from Biotium. PFA and GA were 
purchased from Electron Microscopy Sciences. Each of the three 
commercial antibodies used to detect phosphotyrosines in EGFR 
(1H12, 53A5, and PY99) is vendor-recommended for Western blot-
ting. Recognition of epitopes is likely insensitive to whether surface-
captured receptor is in a denatured or folded state, because the 
epitopes of PY99 lie mostly within the intrinsically disordered C-ter-
minal region of the receptor and the epitopes of 1H12 and 53A5 
(peptides encompassing pY1068 and pY1173) lie entirely within this 
region. Kim et al. (2016) evaluated and confirmed the site specificity 
of 1H12 and 53A5 using immunoblotting and mutant forms of EGFR 
(Y1068F and Y1173F).

Labeling of antibodies
Carrier-free antibodies (50 μg at 0.5–1 mg/ml per reaction) were 
labeled using Mix-n-Stain antibody labeling kits following the manu-
facturer’s instructions. Briefly, the labeling reaction was carried out 
for 30 min at room temperature and antibodies were centrifuged 
using the ultrafiltration vial provided to remove the unconjugated 
dye. Antibodies were resuspended in phosphate-buffered saline 
(PBS) and stored at 4°C. The labeling efficiency achieved was 
between 2.7 and 4.4 dyes/antibody.

Cell treatment and lysate preparation
CHO-EGFR-GFP cells were plated overnight in 60-mm tissue culture 
dishes at 800,000 cells/dish and CHO-ACP-EGFR cells in 24-well 
plates at 50,000 cells/well. For ACP labeling, CHO-ACP-EGFR cells 
were washed with serum-free DMEM medium (SFM), incubated with 
ACP labeling solution (SFM; 10 mM MgCl2, 4 μM CoA 488, and 
1 μM ACP) for 20 min at 37°C and washed three times with SFM 
before stimulation. Cells were washed in Tyrode’s solution (135 mM 
NaCl, 10 mM KCl, 0.4 mM MgCl2, 1 mM CaCl2, 10 mM HEPES, 
20 mM glucose, 0.1% bovine serum albumin [BSA], pH 7.2) and 
treated with ligand or Tyrode’s solution alone (resting cells) at 37°C. 
At the indicated time points, cells were placed on ice, washed once 
with cold PBS followed by the addition of lysis buffer (1% IGEPAL 
CA-630, 150 mM NaCl, 50 mM Tris, pH 7.2) containing protease and 
phosphatase inhibitors. Cell lysates were collected using cell scrap-
ers (Greiner Bio-One North America; #541070), transferred to fresh 
tubes on ice, and gently vortexed every 5 min for a total of 20 min. 
Lysates were centrifuged at 16,000 × g for 20 min at 4°C and the 
supernatant was transferred to a new tube and stored at −80°C. For 
experiments involving treatment of cells with phosphatase inhibitors 
a stock solution of 30 mM pervanadate (PV) was prepared before 
each experiment by mixing equimolar concentrations of hydrogen 
peroxide and activated sodium orthovanadate incubated in the dark 
for at least 15 min before use. Cells were pre-treated for 15 min with 
a Tyrode’s solution containing 1 mM PV followed by incubation for 5 
min in a solution with 50 nM EGF and 1 mM PV.

Fabrication of hydrophobic arrays and surface 
functionalization
Coverglasses (24 × 60 mm, #1.5; Electron Microscopy Sciences; 
#63793) were Piranha-cleaned (Labit et al., 2008) and placed in a 
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coverglass holder (Fisher Scientific; #08-817). Coverglasses were 
sequentially sonicated in methanol and acetone for 10 min each, 
and in 1 M KOH for 20 min using a bath sonicator (Branson Ultra-
sonics; B1200R-1). These solutions were stored in polypropylene 
50 ml tubes (VWR; #89401-564) and reused up to five times. Cov-
erglasses were rinsed with Milli-Q water two times, dried by quickly 
passing them multiple times over the flame of a Bunsen burner 
using metal tweezers, and placed in a dry coverglass holder. 
A solution containing 95% methanol, 5% acetic acid, and 1% 
aminosilane (N-(2-aminoethyl)-3-aminopropyltrimethoxysilane) 
was prepared in an Erlenmeyer flask, immediately poured into the 
coverglass holder, and incubated at room temperature for 10 min 
in the dark, followed by 2 min sonication, and another 10 min 
incubation in the dark. Coverglasses were next washed with meth-
anol for 2 min, rinsed and washed for 2 min with water, and dried 
in the dark. Treated coverglasses were placed on top of a parafilm-
covered coverglass containing a guide pattern, which was used as 
reference to draw the sample array (Supplemental Figure S1C) 
with a hydrophobic barrier pen (Vector Laboratories; #H-4000). Ink 
was allowed to dry for at least 5 min before coverglasses were 
placed in a humidified chamber. For surface functionalization, 
50 mg of mPEG-succinimidyl valerate, 1.3 mg of biotin-PEG-
succinimidyl valerate, and 200 µl of freshly prepared 10 mM 
sodium bicarbonate were mixed thoroughly by pipetting up and 
down, centrifuged for 1 min at 10,000 × g at room temperature, 
and immediately applied to the SiMPull array (10–13 µl per re-
gion). After incubating for 3–4 h in the dark inside the humidified 
boxes, arrays were washed by sequential 30 s submersions into 
three water-filled 250-ml glass beakers. Coverglasses were dried 
with nitrogen gas, and stored in pairs (back to back) inside 50-ml 
tubes, which were filled with nitrogen gas before being closed and 
sealed with parafilm. Coverglasses were stored in the dark at 
−20°C for up to a week before use.

Labeling and quantification of surface receptors
CHO-EGFR-GFP cells grown in 24-well plates were placed on ice 
and washed three times with cold PBS. AF647-NHS ester was dis-
solved at the indicated concentrations in PBS. Cells were incubated 
with this solution for 30 min at 4°C with gentle agitation, washed 
three times with cold PBS, and subjected to cell lysis. The percent-
age of receptors labeled with AF647 across different dye concentra-
tions was assessed with SiMPull (see also Figure 1D). To estimate the 
percentage of receptors at the cell surface the AF647-labeling curve 
was fitted to a biexponential decay curve in its increasing form using 
the “fit” function in MATLAB: y = C1 (1-e-ax) + C2 (1-e-bx), where y is 
the percentage of AF647-labeled receptors, x is the concentration 
of reactive AF647-NHS ester used, and a > 0, b > 0, C1, and C2 are 
coefficients to be fitted. The sum of the coefficients C1 and C2 
represent the asymptote of the curve and an approximation of the 
fraction of receptors at the cell surface.

Single-molecule pull down and phosphosite labeling
T50 (10 mM Tris, pH 8.0, 50 mM NaCl) and T50-BSA (T50 with 
0.1 mg/ml BSA) solutions were prepared and stored for up to a 
month at room temperature. SiMPull arrays were equilibrated at 
room temperature and placed on a TC100 plate lined with parafilm. 
Each region of the SiMPull array was treated with 10–15 µl of a 
10 mg/ml sodium borohydride (NaBH4)/PBS solution for 4 min at 
room temperature to reduce background fluorescence (Supplemen-
tal Figure S1, A and B) and washed three times with PBS. SiMPull 
regions were then incubated with a 0.2 mg/ml NeutrAvidin/T50 
solution for 5 min and washed three times with T50, followed by 

incubation with a 2 µg/ml biotinylated anti-EGFR/T50-BSA solution 
for 10 min and washed three times with T50-BSA.

The plate containing the SiMPull array(s) was kept on ice during 
sample preparation. Lysates were diluted in cold T50-BSA with pro-
tease and phosphatase inhibitors (T50-BSA/PPI), gently vortexed, 
and added to the SiMPull array. After 10 min incubation, the lysates 
were removed and the SiMPull regions washed four times with cold 
T50-BSA/PPI. To determine the appropriate dilution factor, the 
density of pull-down receptors as a function of lysate concentration 
was first assessed to achieve a pull-down density 0.04–0.08/μm2 
(see also Supplemental Figure S4). Antibodies were diluted in cold 
T50-BSA/PPI, incubated for 1 h, washed six times with cold T50-
BSA, and washed twice with cold PBS. Immediately after, antibodies 
were fixed for 10 min with a 4% PFA/0.1% GA solution and washed 
twice with 10 mM Tris (pH 7.4)/PBS for a total of 10 min to inactivate 
fixatives. See also Supplemental Figure S1 for discussion on the 
need for incubation with saturating antibody concentration and 
subsequent fixation. For three-color SiMPull experiments the same 
antibody incubation and fixation procedure was performed for 
the second antibody. Tris solution was replaced by T50-BSA and the 
SiMPull array was equilibrated to room temperature before 
proceeding to imaging.

SiMPull imaging
Imaging of SiMPull samples was performed using an inverted micro-
scope (Olympus America; model IX71) equipped with a 150×/1.45 
NA oil-immersion objective for TIRF microscopy (Olympus America; 
UAPON 150XOTIRF) and a three-dimensional piezo stage (Mad City 
Labs; Nano-LPS100). Excitation of CF640R- or AF647-labeled anti-
bodies was done using a 642-nm laser (Thorlabs; HL63133DG), 
CF555-labeled antibodies using a 561-nm laser (Coherent; sapphire 
561-100 CW CDRH), and of GFP- and CoA 488–tagged receptors 
using a 488-nm laser (Spectra Physics; cyan 100 mW). All lasers were 
set in total internal reflection configuration, and laser powers were 
adjusted to prevent photobleaching of the sample at the time scale 
of the image exposure time (300 ms). Sample illumination and 
emission were filtered using a quad-band dichroic and emission 
filter set (Semrock; LF405/488/561/635-A-000). Emission light was 
separated into four channels using a quad-view multichannel 
imaging system (Photometrics; model QV2) equipped with the 
appropriate dichroics (Chroma; 495 DCLP, 565 DCLP, 660 DCLP) 
and emission filters (Semrock; 685/40 nm, 600/37 nm, 525/45 nm). 
Emission light was collected with an electron-multiplying charge-
coupled device camera (Andor Technology; DU-897E-C50-#BV) 
with EM gain set to 200. Each channel was 256 × 256 pixels, with a 
pixel size of 106.7 nm. Photobleaching and bleed through were 
prevented by controlling the laser shutters and microscope stage 
through a MATLAB script to sequentially excite and acquire the 
different fluorophores (642-nm laser first, 488-nm laser last). A mini-
mum of 20 regions of interest were acquired per condition. For 
quantification of step photobleaching of EGFR-GFP molecules, a 
100-frame time series (300 ms exposure time) was acquired after 
imaging of the other two channels.

Quantification of receptor phosphorylation
All image processing was performed using MATLAB together with 
the MATLAB toolbox for image-processing DIPImage (Delft 
University of Technology; Hendriks et al., 1999) and all software is 
available upon request. The location of emitters in each channel 
was calculated using graphics processor unit computing as previ-
ously described (Smith et al., 2010). Fits in the GFP channel were 
filtered based on the quality of the fit to the point spread function 
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to reduce the chances of detecting multiple receptors in close 
proximity as a single molecule. Image registration was performed 
as previously described (Schwartz et al., 2017). In our studies, the 
root mean square error for image registration was <10 nm. For 
visualization purposes, Gaussian blob representations of the 
fluorophore localizations were generated. A receptor was consid-
ered to be phosphorylated when the localization centers of the 
receptor and labeled antibody were at a distance <106.7 nm 
(within 1 pixel).

Phosphorylation percentages were calculated as 100*(NPhos)/
(NGFP), where NPhos is the number of receptors identified as 
phosphorylated and NGFP is the corrected number of single mole-
cules in the GFP channel. The number of GFP localizations was 
calculated by subtracting background spots and accounting only for 
surface receptors as follows: NGFP = (NLOC-NBG)*SR, where NLOC is 
the total number of emitters localized, NBG is the expected number 
of background emitters in the area imaged, and SR (surface ratio) is 
the fraction of receptors located at the cell surface. The density of 
background emitters was quantified for each SiMPull array and used 
for background correction of samples in that array. For three-color 
SiMPull experiments where steric hindrance between sequentially 
incubated antibodies was observed (i.e., pY1068-pY1173 detec-
tion), estimations of dual phosphorylation were corrected to account 
for this hindrance as explained in Supplemental Figure S3. Note that 
use of a three-color imaging scheme to correlate phosphoantibody 
labeling directly with GFP-tagged receptors was critical, due to the 
relatively high nonspecific binding of the antibodies (Supplemental 
Figure S6). In the absence of the GFP channel to remove the non-
specific binding, the values for dual labeling are underestimated 
(Supplemental Figure S6).

Statistical analysis
Based on the consideration that the phosphorylation state of each 
receptor analyzed has the properties of a Bernoulli trial, SEs of 
phosphorylation measurements were calculated as for sample pro-
portions in a binomial distribution: SE = p(1−p)/n, where p is the 
fraction of receptors phosphorylated and n is the total number of 
receptors. The condition np > 10 (with the exception of Figure 6E, 
np > 5) and np(1−p) > 10 was ensured to be met to allow this 
approximation to be adequate. Two-sample Z test (two-tailed) was 
used to estimate p values (LeBlanc, 2004).

Step-photobleaching analysis
For step-photobleaching analysis of multiphosphorylated receptors, 
the average fluorescence intensity of the area (200 × 200 nm) 
surrounding each of these EGFR-GFP molecules was quantified and 
plotted for the duration of the time series. Intensity plots were 
manually analyzed and the number of photobleaching steps was 
quantified.

Mathematical modeling
The model was formulated using BNGL (Faeder et al., 2009). The 
BioNetGen input file that defines the model is available as Supple-
mental File S1. This file is a plain-text file. The model accounts for 
the proteins, sites, and interactions depicted in Figure 2B. The 
model implicitly accounts for three compartments, which are each 
taken to be well mixed: the extracellular fluid, the plasma mem-
brane, and the cytosol. In the model, EGFR dimer-dependent auto-
phosphorylation is taken to be asymmetric, as discussed in the main 
text. In addition to Y1068 and Y1173, the model accounts for other 
tyrosines in EGFR, which are lumped together and labeled YN in the 
BNGL-formatted model-definition file. The model structure was 

optimized using model restructuration (reviewed in the supplemen-
tary tutorial of Erickson et al., 2019).

In the one-parameter fits carried out to characterize the in-
creased kinase activity of L858R EGFR and the lifetime of epigen-
induced EGFR dimers, we used simple grid search as the fitting 
method, meaning that we systematically varied the free parameter 
over a specified range, calculating the quality of fit at each para-
meter value. When the free parameter was the rate constant for 
autophosphorylation, we considered a range 0.1× below and 100× 
above the estimated value for WT EGFR. We considered a step size 
of 0.1 in the grid search. When the free parameter was the rate con-
stant for EGFR dimer dissociation, we similarly considered a range 
0.1× below and 100× above the estimated value for EGF-induced 
dimers. We again considered a step size of 0.1 in the grid search.

Simulations were performed as follows. In a preprocessing 
step, rules were interpreted by BioNetGen to obtain the rule-
implied reaction network and the corresponding ordinary differen-
tial equations (ODEs) for mass-action chemical kinetics. Simulations 
of the dynamics of responses to ligand stimulation were performed 
by numerically integrating the BioNetGen-derived ODEs using 
CVODE with BioNetGen’s default CVODE settings. CVODE (https://
computation.llnl.gov/projects/sundials; Hindmarsh et al., 2005) is a 
dependency of BioNetGen.

Model parameters were estimated via curve fitting, which was 
performed using the differential evolution (DE) algorithm imple-
mented in PyBioNetFit (Mitra et al., 2019), a software package for 
parameterization of biological models that supersedes BioNetFit 
(Thomas et al., 2016). An important parameter of the DE algorithm 
is population size: this algorithmic parameter was set to 200. Fitting 
runs were allowed to continue until apparent convergence, that is, 
until the value of the objective function in the optimization problem 
stopped decreasing. PyBioNetFit takes as input three file types: a 
BioNetGen input file (i.e., a BNGL-formatted model definition), a 
configuration file, and one or more EXP files with experimental data. 
These files are packaged together in a ZIP archive as Supplemental 
File S2. The parameters listed in Supplemental Table S1 were held 
fixed in fitting. These parameters were estimated on the basis of 
prior knowledge, referenced in the table, or measured/determined 
in this study as indicated. The parameters listed in Supplemental 
Table S2 were taken to be the free parameters to be adjusted by 
PyBioNetFit during fitting within the indicated intervals. The data 
used in fitting included the dose-response data in Figure 2A (for 
EGF doses eliciting a significant change in phosphorylation, 0.5, 5, 
and 50 nM) and the time-series data in Figure 2D. Parameter 
estimates are based on a global fit to all of these data.

All parameter estimates were originally made for CHO cells. 
Additional cell-specific models were obtained by modifying CHO-
cell protein copy numbers, as follows. As indicated in Supplemental 
Table S1, the EGFR abundance that we estimated for CHO cells via 
direct measurement (flow cytometry) and the Grb2 and Shc1 
abundances that we estimated for CHO cells via fitting to data in 
Figure 2, A and D, were replaced with direct measurements of 
EGFR, Grb2, and Shc1 abundances made in earlier studies for 
HMEC, MCF10A, and HeLa S3 cells (Kulak et al., 2014; Shi et al., 
2016). As a simplification, other parameter values were taken to be 
the same across cell types.

Confidence intervals for best-fit parameter values were esti-
mated using PyBioNetFit’s bootstrapping procedure. A total of 
1000 bootstrap replicates of fitting were performed, and the 
reported 90% confidence intervals give the range from the 5th per-
centile to the 95th percentile of the replicate results (Supplemental 
Table S3). The bootstrapping procedure used the same BioNetGen 
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and EXP files as before and the configuration file fit_bootstrap.conf 
provided in Supplemental File S2.

Bayesian uncertainty quantification (UQ) was performed using 
the parallel tempering (PT) algorithm implemented in PyBioNetFit, 
which is a parallelized Markov chain Monte Carlo method. We used 
PT to find 90% credible intervals for each parameter listed in 
Supplemental Table S2. The prior distribution considered for each 
parameter was a log-uniform distribution over the range indicated 
for the parameter in Supplemental Table S2. Ten independent runs 
were performed, each consisting of 200,000 iterations (36 simula-
tions per iteration), with samples recorded after a burn-in period of 
50,000 iterations. Reported 90% credible intervals (Supplemental 
Table S3) for each parameter give the range from the 5th to 95th 
percentile of the sampled parameter sets. (Note that credible inter-
vals are not identical to bootstrap confidence intervals.) Prediction 
uncertainties (Figure 2D, shaded areas; Figure 6, A and C, error 
bars) were calculated by running simulations with sampled para-
meter sets and finding the 2.5th and 97.5th percentile pEGFR per-
centage at each time point. UQ jobs used the same BioNetGen and 
EXP files as before and the configuration file fit_pt.conf provided in 
Supplemental File S2. Distributions of parameter values in sampled 
parameter sets and the correlation between each pair of parameters 
(Supplemental Figure S7) were plotted using the function plotmatrix 
from MATLAB.

Fitting was performed on a laptop. Bootstrapping was per-
formed using 7000 core hours on a multicore workstation. PT was 
performed using 40,000 core hours on a computer cluster.
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