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Rethinking Measures of functional 
connectivity via feature extraction
Rosaleena Mohanty1,2,5*, William A. Sethares2, Veena A. nair  1 & Vivek prabhakaran1,3,4

Functional magnetic resonance imaging (fMRI)-based functional connectivity (FC) commonly 
characterizes the functional connections in the brain. Conventional quantification of FC by Pearson's 
correlation captures linear, time-domain dependencies among blood-oxygen-level-dependent (BOLD) 
signals. We examined measures to quantify FC by investigating: (i) Is Pearson's correlation sufficient 
to characterize FC? (ii) Can alternative measures better quantify FC? (iii) What are the implications 
of using alternative FC measures? FMRI analysis in healthy adult population suggested that: (i) 
Pearson's correlation cannot comprehensively capture BOLD inter-dependencies. (ii) Eight alternative 
FC measures were similarly consistent between task and resting-state fMRI, improved age-based 
classification and provided better association with behavioral outcomes. (iii) Formulated hypotheses 
were: first, in lieu of Pearson’s correlation, an augmented, composite and multi-metric definition of FC is 
more appropriate; second, canonical large-scale brain networks may depend on the chosen FC measure. 
A thorough notion of FC promises better understanding of variations within a given population.

Characterization of the brain connectome has been highlighted by numerous human and animal studies1–3 which 
have provided useful and meaningful information to explain a wide range of pathological conditions and behav-
ioral traits in various population groups. The brain connectome can be understood using many measures of 
connectivity of distinct nature: structural (using imaging techniques such as T1 and diffusion magnetic resonance 
imaging (MRI)), functional (using functional imaging such as positron emission tomography and functional 
MRI) as well as neuronal (using scalp recordings such as in magnetoencephalogram (MEG) and electroenceph-
alogram (EEG)).

Functional connectivity (FC), originally defined as the statistical dependencies among neurophysiological 
events of anatomically distinct brain regions in positron emission imaging4, was subsequently applied to func-
tional MRI (fMRI) data5. Most conventionally, FC is defined by measuring similarity between brain signals aris-
ing from two regions. Under a traditional notion of similarity such as Pearson’s correlation, signals from two 
anatomically separated brain regions may appear correlated and hence indicate that the regions are functionally 
connected in the brain6–9. It must be noted, however, that a strong correlation between two regions may not guar-
antee a functional connection of the underlying neurons. For instance, there may exist a reasonable correlation 
of neuronal activity of two regions under the influence of external or common inputs. Although the concepts of 
similarity and dissimilarity appear simple, mathematical formulations reveal otherwise. Statistical dependencies 
between two signals can arise in a number of different ways. Two distinct similarity measures may not measure 
similarity in the same way. Likewise, a similarity measure may not bear a direct and simple inverse relationship 
to a dissimilarity measure.

The implication that functional connectivity is dependent upon the measure used to quantify it remains rela-
tively unexplored. Brain regions may appear connected functionally under one definition but disconnected under 
another10–16 irrespective of structural connectivity. The notion of functional connectivity has driven characteriza-
tion of neural bases not only in the typical healthy population but also various pathological groups demonstrating 
aberrant patterns, including but not limited to neurological (e.g. stroke, epilepsy)15,16, neurodegenerative (e.g. 
Alzheimer’s disease, dementia)11,14 and psychiatric (e.g. depression, schizophrenia)12,13 brain diseases. Thus, it 
would be key to understand the various definitions of connectivity relative to each other in order to sensibly 
choose a measure to be used, which could, in turn, be utilized to update and/or improve the current knowledge 
of the brain connectome. A particular definition of connectivity may also convey distinct types of information 
about the neural bases.
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In brief, the goal of this study was to identify multiple alternative measures that could be used to quantify FC. 
These measures may be complementary to one another and the goal is to assess them by formulating research 
questions specific and relevant to the study of connectivity in neuroscience. In particular, the following three 
research questions were formulated: (i) Does Pearson’s correlation, which is the conventional way of defining FC, 
provide a sufficient characterization of it? (ii) Are there alternative measures that could be used to better quan-
tify FC? (iii) How do the measures of FC compare relatively for population-based classification and prediction 
of behavioral data? (iv) What are the implications of using varying measures of FC? (v) What could be done to 
choose the best notion(s) of FC?

In this exploratory study, functional MRI data-based experimentation was adopted in healthy human popu-
lation to answer these questions. The preliminary results indicated that: (i) the conventional measure of Pearson’s 
correlation alone may provide an incomplete characterization of FC; (ii) there exist several alternative measures 
that can capture interactions between brain signals in different ways; (iii) no single measure of FC stands out in 
the context of classification or prediction; (iv) the idea of large-scale brain connectivity or functional configura-
tion of the brain, largely identified on the basis of Pearson’s correlation, may look different under the chosen defi-
nition of FC; and (v) rather than relying on one single measure of FC, a wiser option may be to combine multiple 
complementary measures of FC, choose a subset of them on the basis of feature selection to avoid overfitting and 
use the more comprehensive multi-metric definition.

Results
Incomplete characterization of functional connectivity. Cases of the like presented in Fig. 1 were 
found not to be limited to the default mode network (DMN) alone in healthy participants. Such cases are evi-
dence in support for the claim that FC cannot always be completely quantified by Pearson’s correlation, and espe-
cially misses out on individual-level variations. This can also be mathematically substantiated by considering the 
extreme case of zero Pearson’s correlation between two signals. If two signals are uncorrelated, independence is 
not necessarily implied. More generally, in cases where a low value of Pearson’s correlation is observed, it may be 
incorrect to assume that there is no dependence between them. It simply means that there is no linear dependence 
between them.

Alternative characterizations of functional connectivity. This study was aimed at investigating 
alternative ways of characterizing FC that could augment and be complementary to Pearson’s correlation. FC 
was evaluated with eight alternative measures namely: cross-correlation, coherence, wavelet coherence, mutual 
information, Euclidean distance, cityblock distance, dynamic time warping and earth mover’s distance. These 
measures were included as they capture different aspects of statistical dependence between BOLD signals (such as 
time-, frequency- and wavelet-domain information, similarity and dissimilarity measures, linear and non-linear 

Figure 1. A contrary case. Note: An example of FC within the standard DMN in a young healthy adult: (a) left 
hippocampus (denoted by A) and left angular gyrus (denoted by B) within the DMN are considered based on 
the Willard functional atlas; (b) the BOLD time series signals from preprocessed resting-state functional MRI 
were extracted from each region; (c) a scatter plot comparing the two BOLD time series shows the temporal 
linear correlation between them; (d) three distinct similarity measures of FC between the signals are compared; 
FC = functional connectivity; DMN = default mode network; BOLD = blood-oxygen-level-dependent;.
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dependencies). These different measures were compared and contrasted with three experiments which assessed 
the consistency of information provided by the FC measures, utility of the FC measures in population-based 
discrimination and the biological plausibility of using these FC measures.

Experiment 1 (E1). The goal of the first experiment was to understand the relative consistency of the dif-
ferent FC measures when evaluated in young and healthy individuals. Within-individual consistency was first 
established by comparing the overlap (Sørensen-Dice similarity coefficient) of the FC pattern observed in task 
(motor and verbal) and resting-state functional MRI and then averaging across individuals for each FC measure.

Findings from E1: Consistency of functional connectivity. Consistency of all of the identified FC 
measures was evaluated by comparing task functional MRI and resting-state functional MRI in young healthy 
adults (demographics in Table 1). Since the connectivity pattern may be different for each FC measure, the task 
functional MRI data offer a form of ground truth as they activate specific regions in the brain which can bear 
correspondence with those in resting condition. Thresholded FC maps (threshold = one standard deviation above 
grand mean) between task and resting-state conditions are illustrated for Pearson’s correlation in Fig. 2 (subfigure 
A) and remaining FC measures in Supplementary Fig. 1.

Consistency of resting-state FC, quantified by Sørensen-Dice similarity coefficient, is tabulated in Table 2 for 
the motor and language networks. While mostly comparable across many FC measures, the overlap coefficients 
for Pearson’s correlation are not necessarily the best in any of these tested networks. It was possible to validate 
the consistency for motor and language networks based on task functional MRI whereas the same could not be 
performed for other networks due to lack of corresponding task functional MRI in this cohort.

An alternate procedure to evaluate the consistency of the resting-state FC at the whole-brain level was con-
ducted by, first, simulating an idealized FC structure with a block structure along the diagonal as shown in Fig. 2 
(subfigure B: c) and second, comparing the observed resting-state FC to it with Sørensen-Dice similarity coef-
ficient between them. We refer to it as an idealized FC structure as it reflects maximum connectivity within any 
given network (block) and minimum connectivity between distinct networks (blocks) and allows us to compare 
the different FC measures. This is visually represented for Pearson’s correlation in Fig. 2 (subfigure B) (and for all 
other measures in Supplementary Fig. 2) and quantified for all FC measures in Table 3. Most of the FC measures 
showed comparable overlap between the idealized and observed FC pattern with Pearson’s correlation showing 
the highest overlap. This would then raise the following question: is it possible to do better than the current 
observed overlap? This is evaluated in the following experiments.

Experiment 2 (E2). A typical application of FC has been in understanding the differences between popula-
tion groups. The goal of this second experiment was to evaluate how well each FC measure performed in differ-
entiating between younger and older healthy individuals across standard large-scale brain networks with a binary 
machine learning classifier. Additionally, the discriminatory power of a composite metric, obtained by combining 
all the FC measures, was tested.

Findings from E2: Population-based classification using functional connectivity. The younger 
and older groups had a significant difference in age based on a two sample t-test but not in terms of gender, edu-
cation, handedness and head motion as reported in Table 4. The goal, here, was to determine if this age-difference 
could be detected on the basis of resting-state FC of various brain networks. The support vector machine classi-
fier models, implemented using neighborhood component analysis (NCA) feature selection and leave-one-out 
testing, were evaluated by the peak accuracy and area under the curve achieved. The accuracy levels are tabu-
lated in Table 5 and area under the curve along with number of features used by each classifier are listed in the 
Supplementary Table 1. As seen in Table 5, Pearson’s correlation does not always stand out while differentiat-
ing the young from the old. Comparing performances of alternative FC, no one single FC measure particularly 
performed consistently better than the rest. Importantly, when we concatenate all these measures of FC, the 
composite measure almost always performs better or comparable to Pearson’s correlation. This could be due to 
the contribution of alternative FC measures which potentially augment the discriminatory power of Pearson’s 
correlation. The lack of consistency of the composite measure across all networks could be because the size of 
the training data could not be scaled up with increased number of features used for classification or that the 
definition of standard networks is not well-suited for the measure. While the former could not be tested due to 
availability of limited data, the latter was further tested in the final experiment.

Experiment 3 (E3). Classification between younger and older individuals in E2 was performed on standard 
brain networks. However, the configuration of these standard brain networks are typically derived on the basis 

Characteristic Value

N 19

Age (M ± SD in years) 21.89 ± 2.42

Gender 9 females

Education (M ± SD in years) 16.21 ± 2.32

Handedness 19 right-handed

Table 1. Characteristics of young healthy participants included in E1. Note: M = mean; SD = standard 
deviation;
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Figure 2. FC in 19 young healthy adults. (A) Comparison of FC based on Pearson’s correlation in between 
task and resting-state conditions for E1 in: (a) left motor (b) right motor and (c) language networks. (B) Whole 
brain resting-state FC defined based on Pearson’s correlation in 13 distinct brain networks given by Power 
functional atlas in E1. Note: (A) defined based on Power functional atlas. In each sub-image, the first row 
represents the FC matrix averaged across all 19 participants (i.e. each cell was the average of individual FC 
values in the cell) and the second row represents the thresholded FC matrix averaged across all participants. 
The red lines in (a) and (b) show the separation between hand-motor and mouth-motor brain regions. Similar 
matrices for the alternative measures of FC can be found in Supplementary Fig. 2. (B) (a) FC matrix averaged 
across all 19 participants (i.e. each cell was the average of individual FC values in the cell); (b) thresholded FC 
matrix averaged across all participants; (c) simulated idealized FC matrix. The red lines represent the separation 
between brain regions belonging to a specific network. The regions are grouped in the following order: audio, 
visual, motor, default mode, cingulo-opercular task, fronto-parietal task, memory, salience, dorsal attention, 
ventral attention, subcortical, cerebellar, uncertain networks. Similar matrices for the alternative measures of FC 
can be found in Supplementary Fig. 3.
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of Pearson’s correlation. In this final experiment, the aim was to test the potential dependence of the configura-
tion of standard brain networks on FC measure. For this, a whole-brain (comprised of 10 standard networks) 
analysis was performed. Alternative brain configurations were obtained by applying unsupervised clustering for 
each FC measure. The biological plausibility of these alternative brain configurations was tested by investigating 
the association between FC and behavioral performance (verbal fluency) and compared with the standard brain 
configurations.

Findings from E3: Large-scale brain configurations based on functional connectivity. The goal 
of this experiment was to inspect the assumption that resting-state FC may be organized in the form of a fixed 
number of networks, each involving a specific number of brain regions. While this may be the case for Pearson’s 
correlation, it may not necessarily be true for the alternative measures. Based on E3, the findings are:

 (i) For every FC measure, the group mean whole-brain FC matrix representing the original brain configuration 
could be clustered into 10 major large-scale brain networks resulting in alternative brain reconfigurations 
for each FC measure. The alternative brain reconfigurations varied, with some better than the original brain 
reconfiguration and others worse based on the comparison of Sørensen-Dice similarity coefficient as can be 
observed in Supplementary Fig. 3.

 (ii) A number of alternative brain reconfigurations demonstrated an improved Sørensen-Dice similarity 
coefficient (between each observed configuration and the corresponding expected idealized configuration) 
relative to the original brain configuration for each FC measure as reported in Table 6. The best possible 
alternative brain reconfiguration based on each FC measure demonstrated a greater dice overlap than the 
original brain configuration. Dynamic time warping distance had the greatest improvement (155.77%) 
while cross-correlation had the smallest improvement (13.15%). These two cases are visualized and com-
pared in Supplementary Fig. 5. This pattern might suggest that the current predefined configuration may 
be optimal for correlation-based FC measure, however, the overall functional configuration of the brain 
may vary if the nature of the information captured by the FC measure deviates from correlation-based 
ones. Overall, reconfigurations based on mutual information, dynamic time warping distance and Earth 
mover’s distance did consistently better than the original brain configuration as seen from the distribution 
of the reconfigurations in Supplementary Fig. 3.

 (iii) The plausibility of the best alternative brain reconfiguration was validated with the help of a data-inspired 
regression model in which the mean FC within each cluster/network for all participants was associated 
with the verbal fluency as a behavioral outcome. The goodness-of-fit (R2) was compared with that of the 

FC Measure
L-Motor vs 
Rest

R-Motor vs 
Rest

Language vs 
Rest

Correlation 0.502 0.466 0.508

Cross-correlation 0.506 0.496 0.492

Coherence 0.450 0.440 0.473

Wavelet coherence 0.500 0.537 0.525

Mutual information 0.3438 0.386 0.460

Euclidean distance 0.455 0.438 0.592

Cityblock distance 0.448 0.432 0.604

Dynamic time warping 0.444 0.446 0.584

Earth mover’s distance 0.497 0.514 0.618

Table 2. Consistency of each measure of FC as measured by Sørensen-Dice similarity coefficient between task 
and resting-state conditions in three networks used in E1. Note: Functional networks defined based on Power 
atlas in E1. The highest overlap in each network is represented in bold.

FC Measure Observed vs Ideal FC

Correlation 0.256

Cross-correlation 0.252

Coherence 0.224

Wavelet coherence 0.239

Mutual information 0.180

Euclidean distance 0.225

Cityblock distance 0.225

Dynamic time warping 0.213

Earth mover’s distance 0.188

Table 3. Consistency of each measure of FC as measured by Sørensen-Dice similarity coefficient between the 
observed thresholded FC matrix (Fig. 2 (subfigure B: b)) and idealized thresholded FC matrix (Fig. 2 (subfigure 
B: c)) based on Power atlas in E1. Note: The highest overlap is represented in bold.
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original brain configuration (Table 7) and can be found in Table 8. The best alternative brain reconfiguration 
associated with the verbal fluency scores was significant in some measures including Pearson’s correlation, 
wavelet coherence, and cross-correlation and marginally significant in some others such as Earth mover’s 
distance. This could imply, that subject to a larger sample size, there may exist an alternative functional 
rearrangement of the brain regions which may be indicative of behavioral outcomes.

 (iv) Parallel to the multi-metric approach described in E2 for the purpose of population-based classification, 
the same approach was extended for the prediction of behavioral outcomes. The results are tabulated in 
Table 9. Similar to results of classification, the combined FC measure was more consistent than individual 
measures in correlating with the behavioral outcome. The composite multi-metric representation of FC 
from the alternative brain reconfiguration performed better than that from the original brain configuration 
which may suggest that there is room for a better design of the functional configuration of the brain on the 
basis of measures adopted to quantify FC relative to the conventional correlation-based large-scale brain 
configuration.

 (v) A comparison of brain regions involved in the composite multi-metric FC in the original brain configura-
tion and the alternative brain reconfiguration are presented in Table 10. Specifically, in the original brain 
configuration, the specific network, whose FC demonstrated the strongest association with the verbal 
fluency behavioral outcome varied by measures used by the stepwise regression model. A dominance of 
DMN (dorsal and ventral) was observed which is presumably the most robust network in resting-state 
functional MRI. In the alternative brain reconfiguration, however, the cluster whose FC demonstrated the 
highest association with verbal fluency was comprised of brain regions from various standard networks. 
As an example, for dynamic time warping (used by the stepwise regression model), the cluster that showed 

Characteristic Younger Healthy Older Healthy
Group difference 
(p-value)

N 29 24 —

Age (M ± SD in years) 25.8 ± 7.880 58 ± 7.587 <0.001*
Gender 16 females, 13 males 16 females, 8 males 0.416

Education (M ± SD in years) 16.4 ± 2.244 16.9 ± 2.857 0.476

Handedness 29 right 24 right 1

Translation in x (M ± SD in mm) 0.038 ± 0.120 −0.022 ± 0.122 0.073

Translation in y (M ± SD in mm) 0.001 ± 0.330 −0.075 ± 0.290 0.373

Translation in z (M ± SD in mm) 0.003 ± 0.123 −0.009 ± 0.255 0.821

Rotation in x (M ± SD in degrees) −0.014 ± 0.185 0.090 ± 0.304 0.128

Rotation in y (M ± SD in degrees) −0.007 ± 0.089 -0.045 ± 0.153 0.270

Rotation in z (M ± SD in degrees) −0.022 ± 0.067 −0.023 ± 0.071 0.951

Euclidean norm of motion 0.053 ± 0.021 0.067 ± 0.029 0.054

DVARS 26.224 ± 4.294 27.123 ± 5.974 0.527

FWD 3.001 ± 1.473 3.928 ± 1.929 0.052

Table 4. Characteristics of younger and older healthy participants included for E2. Note: M = mean; 
SD = standard deviation; DVARS = spatial root mean square after temporal differencing; FWD = framewise 
displacement; *significantly different with p-value < 0.05.

FC Measure D. DMN V. DMN L. ECN R. ECN A. Salience P. Salience Auditory Language Motor

Pearson’s Correlation 45.28% 56.60% 52.83% 66.03% 75.47% 62.26% 58.49% 58.49% 56.60%

Cross-correlation 54.72% 52.83% 54.72% 60.37% 79.24% 58.49% 58.49% 54.72% 54.71%

Coherence 54.71% 50.94% 50.94% 54.71% 60.37% 50.94% 58.49% 56.60% 69.81%

Wavelet coherence 49.06% 52.83% 52.83% 54.71% 67.92% 50.94% 62.26% 54.71% 52.83%

Mutual Information 62.26% 75.47% 62.26% 52.83% 77.35% 58.49% 52.83% 54.71% 54.71%

Euclidean distance 64.15% 69.81% 62.26% 66.03% 71.69% 50.94% 54.72% 54.71% 52.83%

Cityblock distance 71.69% 71.69% 64.15% 64.15% 83.01% 50.94% 52.83% 64.15% 54.72%

DTW 69.81% 73.58% 69.81% 62.26% 79.24% 56.60% 52.83% 60.37% 50.94%

EMD 52.83% 62.26% 64.15% 52.83% 66.03% 52.83% 52.83% 50.94% 66.03%

Composite 66.04% 69.82% 69.81% 54.72% 84.91% 73.58% 69.81% 58.49% 62.26%

Table 5. Age-based classification between younger and older healthy adults in nine major brain networks for 
E2. Note: Brain networks are defined by the Willard functional atlas with a support vector machine classifier. 
Performance represents accuracy levels (%) with a leave-one out testing. The highest performing FC measure is 
represented in bold for each network. Additional performance measures are included in Supplementary Table 2; 
D.DMN = dorsal default mode network; V.DMN = ventral default mode network; L.ECN = left executive 
control network; R.ECN = right executive control network; A.Salience = anterior salience; P.Salience = posterior 
salience; DTW = dynamic time warping; EMD = earth mover’s distance.
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peak association with verbal fluency consisted of two regions of the standard language network and one 
region of the dorsal DMN. This could imply that the arrangement of brain regions that are most indicative 
of behavior may be variable by FC measure in question.

Discussion
In light of preliminary evidence based on the resting-state functional MRI data used in this study, two major 
hypotheses were formulated:

Hypothesis 1: Functional connectivity could be better characterized with a multi-metric rep-
resentation. Using FC derived from resting-state functional MRI, it was possible to not only perform 
population-based classification in E2 but also regression to study the relationship between FC and behavioral 
outcome in E3. A comparison of contribution of all FC measures in these experiments showed that there was 
not necessarily one single FC measure that consistently outperformed others. However, combination of multiple 
measures by concatenation followed by a feature selection procedure was relatively more consistent and, in most 
cases, performed better than Pearson’s correlation. Thus, the first hypothesis suggests that a more complete meas-
ure of FC could be developed by combining information from multiple measures. This would be advantageous 
as it would augment the correlation-based FC with complementary measures which capture linear, non-linear, 
similarity, dissimilarity, time-, frequency- and wavelet-domain properties and interactions between the signals.

Hypothesis 2: Canonical brain network configurations are metric-dependent. Decomposition of 
the whole brain into component networks is a way to understand interacting regions functioning in synchroniza-
tion which may be responsible for specific traits and/or behavior. However, these networks/clusters are most con-
ventionally based on a correlation-based measure. E3 suggested that the same set of regions in the brain may be 
rearranged and clustered into alternative brain configurations with networks/clusters distinct from those defined 
for Pearson’s correlation. The variation in alternative brain reconfigurations by FC measure may signal that the 
large-scale brain networks are a function of the measure that quantifies synchronization among the regions. Since 
the alternative measures explored in this study elicit information complementary to that by Pearson’s correlation, 
it is likely that the functional connectomic view of the brain would be variable.

The big picture. Ideas of segregation and integration in the brain are well established17,18. It is, however, 
important to acknowledge that there are individual variations of a specific integrated component which may be 
lost during group-level analyses. Additionally, connectivity typically associated with a particular entity is not 
necessarily always unique. For instance, the sites of the brain included within the default mode network are not 
always connected with the same strength across individuals or even within individuals19, which was confirmed in 
this work by means of a contrary case presented in Fig. 1.

A growing number of prior studies have indicated the need for characterizing FC using alternative meas-
ures. The advantages of harnessing both temporal and spectral information has been illustrated with the use 
of wavelet coherence to capture non-stationarity in BOLD signals in resting-state functional MRI20,21 and for 
population-based classification22. Mutual information, which could be interpreted as the amount of informa-
tion flowing between the given regions, has been shown to perform better in the context of task functional 
MRI23 as well as resting-state functional MRI24,25. Dynamic time warping has been demonstrated to capture the 
non-stationarity in simulated functional MRI data26,27. The importance of non-linear and directional dependen-
cies among BOLD signals is highlighted by means of mutual connectivity28.

The present study adds to these works by comparing and contrasting multiple alternative FC measures 
and investigating not only the neural interactions differing between subgroups in a given population but also 
brain-behavior relationships arising from these measures. The goal of this work is to encourage development of a 
more holistic view of functional connectivity rather than reliance on a single measure.

FC Measure
Original Brain 
Configuration

Alternative Brain 
Reconfiguration

Pearson’s Correlation 0.460 0.528

Cross-correlation 0.464 0.525

Coherence 0.405 0.467

Wavelet Coherence 0.416 0.472

Mutual Information 0.212 0.337

Euclidean 0.316 0.361

Cityblock 0.311 0.441

Dynamic Time Warping 0.235 0.601

Earth Mover's Distance 0.259 0.433

Table 6. Comparison of Sørensen-Dice similarity coefficient between the original configuration and the 
best possible reconfiguration of the brain via clustering (10 clusters) for E3. Note: Cross-correlation and 
dynamic time warping exhibited the best overlap in the original brain configuration and best alternative brain 
reconfiguration respectively. A distribution of 1000 reconfigurations is visualized in Supplementary Fig. 4 
by comparing the overlap with the original one. The FC measure showing the highest overlap in each case is 
indicated in bold text.
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Methodological considerations. While this study outlines a number of ways of quantifying FC, it is 
important to recognize the assumptions and choices made in the experiments which may have bearing on the 
current findings. First, the number of samples used to investigate effects varied from 19 in E1, to 53 in E2, to 29 in 
E3. Evaluation of research questions in these relatively different but overlapping datasets offers confidence in the 
findings to some degree. However, it is important to acknowledge that these are modest sample sizes. This study 
should be considered as a proof-of-concept and the generalizability of the effects found here would need to be 
substantiated in much larger samples in healthy as well as pathological population groups.

Second, in weighing out the contribution of the various FC measures in E2 and E3, 10 major large-scale 
networks were considered. These tests assume a priori that the FC in the whole brain can largely be divided 
into 10 groupings. While this may be the optimal number for Pearson’s correlation, it may not be appropriate 
for the alternative FC measures. In E3, we attempted to decompose the brain into 10 distinct brain networks 

Original Brain 
Configuration D.DMN V.DMN L.ECN R.ECN A.Sal. P.Sal. Aud. Lang. Motor Visual

Measure Showing 
Highest Association

Pearson’s 
correlation

Cross-
correlation

Mutual 
information EMD

Mutual 
information

Wavelet 
coherence

Cross-
correlation

Cross-
correlation

Pearson’s 
correlation

Cross-
correlation

R2 0.188 0.208 0.027 0.047 0.015 0.107 0.098 0.022 0.310 0.106

p-value 0.019* 0.013* 0.393 0.258 0.533 0.084† 0.099† 0.446 0.002* 0.085†

Table 7. Brain-behavior relationship: Association (R2) between the mean FC within each of the 10 networks 
and the verbal fluency scores in 29 young healthy adults using the predefined original brain configuration 
as found with a stepwise regression model for E3. Note: Only the FC measure showing greatest associations 
with the outcome have been reported. Significant associations are represented in bold; D.DMN = dorsal 
default mode network; V.DMN = ventral default mode network; L.ECN = left executive control network; 
R.ECN = right executive control network; A.Sal. = anterior salience; P.Sal. = posterior salience; Aud. = auditory; 
Lang. = language; DTW = dynamic time warping; EMD = earth mover’s distance; R2: coefficient of determination; 
*association is significant with p-value < 0.05; †association is marginally significant with p-value < 0.1.

FC Measure C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10

Pearson’s Correlation 0.013 0.031 0.197* 0.042 0.051 0.001 0.036 0.233* 0.091 0.109†

Cross-correlation 0.024 0.027 0.072 0.073 0.103† 0.081 0.043 0.011 0.106† 0.208*
Coherence 0.001 0.002 0.002 0.001 0.000 0.000 0.025 0.001 0.074 0.002

Wavelet coherence 0.069 0.000 0.021 0.009 0.060 0.026 0.145* 0.017 0.006 0.022

Mutual information 0.023 0.020 0.001 0.016 0.019 0.014 0.015 0.051 0.018 0.006

Euclidean 0.023 0.068 0.009 0.059 0.019 0.023 0.072 0.011 0.012 0.055

Cityblock 0.031 0.014 0.013 0.027 0.007 0.022 0.031 0.001 0.024 0.055

DTW 0.012 0.009 0.005 0.005 0.007 0.031 0.023 0.014 0.032 0.012

EMD 0.002 0.006 0.022 0.004 0.015 0.000 0.004 0.001 0.110† 0.045

Table 8. Brain-behavior relationship: Association (R2) between each cluster (C1 through C9) of the best 
alternative brain reconfiguration found by clustering and the verbal fluency score for each FC measure 
with a stepwise regression model for E3. Note: C1 through C9 represent clusters obtained by k-means; 
DTW = dynamic time warping; EMD = Earth mover’s distance; *represent association is significant with  
p-value < 0.05; †represent association is marginally significant with p-value < 0.1.

Original Brain Configuration 
Composite FC ~ Verbal Fluency

Alternative Brain Reconfiguration 
Composite FC ~ Verbal Fluency

R2 0.495 0.606

p-value 0.026* 0.0014*

Measures Selected

Coherence: Wavelet Coherence* Dynamic Time Warping*

Mutual Information* Euclidean*

Dynamic Time Warping* Pearson’s Correlation: Earth mover’s distance

Euclidean* Cityblock

Cross-correlation Pearson’s Correlation

Wavelet Coherence Earth mover’s distance

Coherence

Table 9. Brain-behavior relationship: Comparison between brain-behavior relationship of the original brain 
configuration and the best alternative brain reconfiguration using the composite multi-metric definition of 
FC as found with a stepwise regression model for E3. Note: R2 = coefficient of determination;:interaction term; 
*associated p-value < 0.05.
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via clustering based on the a priori knowledge that the whole brain FC matrix (e.g. in Supplementary Fig. 4) is 
comprised of roughly 10 major networks. However, results specified in Table 6, when visualized (Supplementary 
Fig. 5), point toward the possibility that the number of decomposable networks might also vary by FC measure, 
in addition to the structure of each network. In Supplementary Fig. 5 (subfigure a: i), the FC matrix of the original 
brain configuration for cross-correlation (which showed the best overlap across all measures) shows a block-like 
diagonal structure corresponding to 10 networks. However, in Supplementary Fig. 5 (subfigure b: iii) the FC 
matrix of the alternative brain reconfiguration for dynamic time warping (which showed the best overlap across 
all measures) shows a block-like diagonal structure corresponding to about 4 potential networks. A possible 
approach to examining this could involve application of spatio-temporal independent component analysis21 to 
each measure. Additionally, it must be noted that in deriving the alternative brain reconfigurations, the size of the 
clusters determined by k-means clustering was not controlled for. Considering the likelihood that changing the 
definition of FC the brain connectome could lead to variation in not only the pattern of brain connectome, but 
also the number and size of decomposable brain networks, further examination is warranted.

Thirdly, included within this investigation were FC measures which capture undirected interactions between 
BOLD signals under the supposition that the dependency between BOLD signals arising from two brain regions 
is symmetric. However, BOLD signals need not necessarily adhere to this. Multi-metric approach presented here 
could be supplemented and informed better by incorporating directional influences capturing causality such as 
effective connectivity17, interactions between two regions in presence of signals arising from other regions with 
measures such as partial correlation29 or generalized coherence30 and reducing the effects of unobserved or latent 
sources such as differential covariance31.

Fourth, the premise behind organized networks in the brain was based upon achieving an idealized brain 
configuration with a tight block-like structure along the diagonal of a symmetric FC matrix (such as the one in 
Supplementary Fig. 4) which represents a structure that is strongly connected within a given network (shown in 
beige color; value = 1) and weakly connected between networks (shown in black color; value = 0). Whether this is 
a desirable idealized brain configuration needs further investigation. In other words, a question to explore would 
be: should distinct brain networks be treated as independent groupings of brain areas operating in synchrony or 
should there be a certain level of dependence between networks?

Finally, to enable a fair comparison across FC measures, only the absolute magnitude of each was utilized. 
Some measures, however, have additional properties that may be useful in understanding BOLD interactions bet-
ter. For instance, coherence offers the specific frequency and wavelet coherence offers both temporal and spectral 
instances at which maximum similarity is observed. These additional details could enhance the characterization 
of FC and should be considered in subsequent studies.

Future directions. As a pilot study pointing towards a comprehensive multi-metric notion of FC, this study 
holds promise for further exploration in several directions, some of which are outlined as follows:

 (i) Only a small number of alternative FC measures were studied here. Although these covered a wide range of 
properties by encompassing measures of similarity, dissimilarity, from time-, frequency- and wavelet-do-
mains, captured linear and non-linear relationships among BOLD signals, there may be other measures to 
better capture FC.

 (ii) The idea of a composite definition was realized and executed by a straightforward concatenation of the 
distinct FC measures. Forming a multi-metric representation could be approached by alternate means 
such as identification of a linear, quadratic or higher order, log transformation, weighting, or convolutional 
method, of combining the FC measures19.

 (iii) A majority of the studies in the neuroimaging literature have relied upon an elementary design of FC by 
considering pairwise BOLD interactions of nodes. Future studies should move from pairwise FC towards 

Original Brain Configuration: Composite FC ~ Verbal Fluency Alternative Brain Reconfiguration: Composite FC ~ Verbal Fluency

FC Measures Involved Brain Regions Involved FC Measures Involved Brain Regions Involved

Coherence: Wavelet Coherence* D.DMN: V.DMN Dynamic Time Warping* Language2 + D.DMN1

Mutual Information* V.DMN Euclidean* Auditory1 + Language1 + D.DMN2 + P.Sal3

Dynamic Time Warping* Motor Pearson’s Correlation: 
Earth mover’s distance Language3: Motor3 + RECN1 + V.DMN3

Euclidean* D.DMN Cityblock LECN1 + Language1 + Motor1 + A.Sal1 + P.
Sal1 + D.DMN1 + V.DMN1

Cross-correlation Auditory Pearson’s Correlation Language3

Wavelet Coherence V.DMN Earth mover’s distance Motor3 + RECN1 + V.DMN3

Coherence D.DMN

Table 10. Brain-behavior relationship: Distribution of brain regions involved in the networks/clusters of 
the original brain configuration and the best alternative brain reconfiguration for E3. Note: interaction 
term; *indicate that the associated p-value < 0.05; D.DMN = dorsal default mode network; V.DMN = ventral 
default mode network; L.ECN = left executive control network; R.ECN = right executive control network; 
A.Sal. = anterior salience; P.Sal. = posterior salience; subscripts in the last column indicate the number of 
regions drawn from a standard brain network in the cluster whose mean FC was best associated with verbal 
fluency outcome.
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generalized FC to gain a clearer picture of the brain connectome by considering multi-nodal models and 
analyzing BOLD interactions among a group of nodes (more than a pair) simultaneously (similar to inter-
pretations given by network-based statistic toolbox12).

 (iv) The introduction of multiple measures requires a deeper understanding of their properties, especially if 
they are likely to capture complementary information of the same signal. This could entail studying of 
statistical properties, dependence on noise in the signal, and the sensitivity to outliers of each FC measure.

Methods
Conventional characterization of functional connectivity. One approach to characterize integration 
is in terms of FC, which is usually inferred on the basis of correlations among measurements of neuronal activity 
of anatomically separated regions. FC, originally defined as the statistical dependencies among remote neuro-
physiological events in positron emission imaging4, was subsequently applied to functional MRI data5. In most 
applications, the convention has been to use Pearson’s correlation as it is simple to quantify and has an intuitive 
interpretation. However, statistical dependence between signals can arise in a variety of ways.

This has been depicted in Fig. 1 within the context of FC. Essentially, a fail/contrary case is presented by con-
sidering two functionally connected brain regions, assumed to be part of the standard DMN in the healthy brain. 
At a single-subject level, examination of the neurophysiological events (BOLD signals) associated with these 
regions appear to have a low level of correlation as captured by the time-domain similarity of Pearson’s correlation, 
on a scale of 0 to 1. However, similarity between signals arising from the same regions in the frequency-domain 
(quantified by magnitude-squared coherence) and wavelet-domain (quantified by wavelet coherence) are com-
paratively higher (these are also presented on the scale of 0 to 1). This case illustrates that a low correlation in 
time-domain must not be mistaken for no correlation and can also be supported mathematically. Rather, it should 
be treated as lack of linear time-dependence only. This could imply that there may still be dependencies between 
these BOLD signals, that are not captured well by Pearson’s correlation. Capturing the true underlying dependen-
cies is an essential task in the full understanding of brain connectivity.

Are there alternative measures to quantify functional connectivity?. Based on a literature review 
within the neuroimaging and signal processing disciplines, a number of measures were identified that capture 
statistical dependence between two signals. For all subsequent experiments, suppose the following. Based on the 
preprocessed functional MRI data for any subject, BOLD time-series signal can be extracted from any region in 
the brain which lasts for t− timepoints. Assuming that a network of interest in the brain is comprised of n− 
regions, we would have a t × n matrix, where each column vector would represent the BOLD time-series for a 
given region, each with t− timepoints. Variables x and y would represent time series from any pairs of distinct 
regions with each ∈x y, t. Pairwise FC, measuring the statistical dependence between all possible pairs in a 
given network would yield a matrix of size n × n. This would generate a symmetric matrix and can be reduced to 

−n n( 1)
2

 unique coefficients (from either the upper or lower triangle of the matrix). The following defines and char-
acterizes each identified measure quantifying FC, a summary of which is presented in Supplementary Table 2.

Pearson’s correlation. Pearson’s Correlation is a similarity measure and provides a relative measure of association 
between two signals32 and is given by:

ρ = =
− −
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where cov(x, y) is the covariance between signals, x  and y  are the mean values of the respective signals, var (x) 
and var (y) represent the variance of each signal respectively.

The quantity ρcorr captures the linear relationship between the signals, is bounded above by 1 in absolute value 
and is scale-invariant in magnitude. A positive value indicates that the time series signals tend to be simultane-
ously greater than their respective means. And a negative value implies that the signals tend to fall on opposite 
sides of their respective means. The absolute value reflects the strength of the tendency to be above or below their 
means. A value closer to 0 suggests that the signals are uncorrelated in terms of a linear correlation. This implies 
that a linear relationship is not enough to capture the true relationship between them; it should not be treated as 
evidence for an absence of a relationship.

Cross-correlation. Cross-correlation33, a similarity measure, could simply be considered as the extended version 
of Pearson’s correlation as it calculates the linear correlation between all possible shifted versions of a signal rela-
tive to the other signal as follows:

ρ ρ ρ= =






∑ ≥
− <−

=
− −

+
∗

x y m
x y if m

m if m( , ) ( )
0

( ) 0 (2)
cross corr xy

i
t m

i m i

yx

0
1

where ⁎yi  represents the complex conjugate of yi. Index m is the displacement between the two signals and is called 
a lag or lead depending on whether it assumes a positive or negative value.

Since it computes the correlation between displaced versions of two signals, ρcross-corr ranges from -1 to 1 and 
must be interpreted just like linear correlation. While correlation between two signals generates a single similarity 
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measure, cross-correlation generates a vector of similarity measures corresponding to each value of m. The max-
imum value of this vector for a particular m can be used as a feature for further analysis. This could be useful in 
identifying regions of the brain that might not be functionally connected at the same time but be functionally 
connected after a lag period.

Coherence. The spectral coherence34 allows assessment of the correlation or similarity between two signals in 
the frequency-domain. Also known as the magnitude-squared coherence, its value indicates how similar x and y 
are at each frequency. Coherence can be expressed as:

ρ =x y
P f

P f P f
( , )

( )

( ) ( ) (3)
coherence

xy

xx yy

2

where Pxx (f) and Pyy(f) are the power spectral densities of x and y respectively and Pxy (f) is the cross-power spec-
tral density of x and y.

The value of coherence lies between 0 and 1, with 0 indicating no coherence between the signals and 1 indi-
cating strong coherence between the signals. It can be considered to reflect the phase consistency between two 
signals at a given frequency. On one hand, a weaker coherence is the case when the signals share a random phase 
relationship and on the other hand, stronger coherence results when the phase relationship is almost constant 
between the signals. Since a coherence value is obtained for each frequency component present in the signals, the 
peak similarity achieved could be utilized for further analysis.

Wavelet coherence. Wavelet coherence35 captures similarity and quantifies how time signals from two sources 
are related in the time-frequency-domain. It is based on computing the cross-wavelet power which reveals the 
parts of the signals that share high common power. Wavelet coherence measures the coherence of the cross wave-
let transform in time-frequency-domain and is given by:
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where S is the smoothing operator in time and scale, Cx(a, b) and (Cy (a,b)) represent the continuous wavelet trans-
form of x and y at scales a and positions b respectively. For real-valued signals, ρwcoherence (x, y) would be real-valued 
by choosing real-valued wavelets. Comparing the forms presented in Eq. (4) and Eq. (1) suggests that ρwcoherence 
could be considered as the equivalent of ρcorr in the time-frequency domain. The magnitude of ρwcoherence can vary 
between 0 (no similarity) and 1 (identically similar). Unlike in ρcross-corr or ρcoherence, ρwcoherence, requires computation 
of a similarity measure at each point on the two-dimensional time-frequency plane. Subsequent analysis could be 
carried out by choosing the greatest similarity value corresponding to a particular time and frequency.

Mutual information. Inspired by information theory, if x and y were to be treated as discrete random variables 
over the space ×X Y , then the similarity in the form of mutual information36 between them can be defined as:
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∈ ∈
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where p(x,y) is the joint probability mass function of x and y, p(x) and p(y) are the marginal probability mass 
functions of x and y respectively.

Essentially, ρmutual_info captures the information that is shared between x and y, i.e., it measures how much 
knowing one of them reduces uncertainty about the other. ρmutual_info can assume non-negative values only. On 
one hand, if ρmutual_info = 0, then knowledge of x does not offer any knowledge of y and vice-versa. On the other 
hand, if there exists a deterministic relationship between x and y, then knowledge of x is also shared with y and 
vice-versa. In this case, ρmutual_info is equivalent to the entropy of each x as well as y which represents the expected 
information stored by each random variable.

Euclidean distance. Euclidean distance is a dissimilarity measure and one of the more commonly used metrics 
due to the well-studied background of Euclidean spaces. It is easy to conceptualize and intuitive as it measures the 
geometric distance between two points. In case of vectors, this can be computed by the following:

ρ = − = − −x y x y x y x y( , ) ( )( ) (6)euclidean
T

2

The difference terms serve as the measure of similarity. ρeuclidean is dependent on the magnitude of individ-
ual points of the vectors. While it is bounded below by 0 indicating low dissimilarity, there is no upper bound. 
However, it can be rescaled to range between 0 and 1 for interpretability. Euclidean distance is not invariant to the 
scale of the data. It must be applied once the data has been appropriately scaled.

Cityblock distance. Cityblock distance is derived by looking at the difference in absolute values in each dimen-
sion of the signals and represents dissimilarity between them. It is given by:
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∑ρ = − = −=x y x y( , ) x y (7)cityblock
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ρcityblock can decompose the contributions made by each variable of the signal in terms of the difference in 
their absolute values. As with ρeuclidean, the measure ρcityblock is bounded below by 0, is not bounded above and 
scale-variant. Values closer to 0 are more desirable to claim lower dissimilarity between vectors. Unlike ρeuclidean, 
which squares the difference in amplitudes and amplifies the deviation, the larger differences in ρcityblock are not 
amplified.

Dynamic time warping. Dynamic time warping37 measures dissimilarity and provides an alignment between the 
signals by means of non-linear warping of the time axis. This metric is based on evaluating a local cost of similar-
ity between all possible pairs of dimensions between two signals and creating a lattice. Based on this lattice, the 
signals are aligned so as to have the maximum overall overlap (or minimum cost in the optimization framework). 
The steps involved are as follows:

For two signals, x and y, let ρij be the Euclidean distance between ith-dimension of x and jth-dimension of y. All 
pairwise distances ρij are arranged into a lattice Ci,j(x, y) of size t × t. Then ρdtw searches through the lattice for a 
path parameterized by two sequences of the same length such that

∑ x yC ( , ) (8)i,j

is minimum. The chosen path is such that both signals are aligned, without skipping dimensions and without 
repetition of signal dimensions. Any non-linear variation in the time-domain are taken into account here. Being a 
dissimilarity measure, dynamic time warping is bounded below by 0 and unbounded above. It is also scale-variant 
and is applicable to the general case where signals are of varying lengths in time although in case of BOLD signals, 
the length of the signals are the same.

Earth mover’s distance. Earth mover’s distance, also known as Wasserstein metric38, is a dissimilarity measure 
which assumes each signal to be a probability distribution and represents the minimum cost of converting one 
distribution into the other. Treating x and y as probability distributions with:

= …{ }( ) ( ) ( )x t x t x t x, , , , ,x x x m1 2 m1 2

and
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where each xi is a cluster (=amplitude) of the signal x at time-point txi
 and each yj is a cluster (=amplitude) of 

signal y at time-point tyj
. While m and n do not have to be necessarily equal in general, i.e., Earth mover’s distance 

can be computed for signals of differing lengths, in case of BOLD signals, they can be considered to be the same 
for a given individual and determined by the scan length. Then the ground distance between clusters at pi and qj 
can be encoded in the matrix

= 



D d (10)i j,

with a flow between clusters at pi and qj represented by the matrix

= 





F f (11)i j,

The objective is to minimize the overall cost
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Earth mover’s distance can then be defined as the amount of work needed to transform distribution x to dis-
tribution y, normalized by the total flow
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Similar to ρdtw, ρemd considers non-linear interactions between signals, is scale-variant, and applicable to gen-
eral signals of unequal length. This measure is scale-bounded below by the distance between the centroids of the 
distributions or signals and values closest to it represent greater similarity.

Implementational details. These measures were computed in a pairwise fashion, i.e. a FC value was obtained for 
each pair of regions included in each experiment. The specifications of implementation (in MATLAB R2018a) are 
provided in Supplementary Table 2.

Experiments. Three experiments were designed to closely assess each of the alternative measures relative to 
Pearson’s correlation as well as to compare them to each other:

Experiment 1 (E1). The consistency of each FC measure was evaluated by comparing task and resting-state 
functional MRI in specific brain networks.

Experiment 2 (E2). The contribution of each FC measure was studied in an age-based classification problem in 
several standard large-scale brain networks.

Experiment 3 (E3). The potential dependence of brain organization into large-scale networks was tested for each 
FC measure.

For all the experiments in this section, imaging data (i.e., task and resting-state functional MRI) were acquired 
and preprocessed similarly. The commonalities across the experiments are described as follows:

Participants. All healthy adults who participated in this study provided written and informed consent. The 
data collection protocol was approved by the University of Wisconsin-Madison Health Science Institutional 
Review Board and the study was carried out in accordance with the relevant guidelines and regulations.

Data acquisition. Neuroimaging data were acquired from recruited participants on 3T GE 750 scanners 
(GE Healthcare, Waukesha, WI, USA) with an 8-channel head coil. An axial localizer scan was obtained to verify 
subject positioning and plan slice acquisition.

Structural MRI. Five-minute T1-weighted axial structural images were acquired at the beginning of each ses-
sion using FSPGR BRAVO sequence (TR = 8.132 ms, TE = 3.18 ms, TI = 450 ms, 256 × 256 matrix, 156 slices, flip 
angle = 12°, FOV = 25.6 cm, slice thickness = 1 mm).

Task functional MRI. Each task functional MRI followed a block design consisting of four 20-s task blocks alter-
nating with five 20-s blocks of rest, for a total scan time of 3 minutes. The first followed a finger tapping task par-
adigm targeted at capturing motor network activation in which participants alternated between tapping fingers 
on a button box sequentially and continuously and resting, based on visual cues. The second used a verbal fluency 
task functional MRI paradigm aimed at capturing language network activation in which participants alternated 
between covertly verbalizing words starting with a given letter (“F”, “A”, “S”, “T”) and resting based on visual cues. 
Participants used earplugs to attenuate scanner noise, were padded with foam pads around their head and were 
instructed to hold their heads still during the scan in order to minimize movement.

Resting-state functional MRI. Ten-minute resting-state functional MRI were obtained using single-shot 
echo-planar T2*-weighted imaging with the following acquisition parameters: TR = 2.6 s, 231 time-points, 
TE = 22 ms, FOV = 22.4 cm, flip angle = 60°, voxel dimensions 3.5 mm × 3.5 mm, 3.5 mm slice thickness, 40 slices, 
with eyes closed. Two types of task functional MRI were collected via echo-planar T2*-weighted imaging either 
with the same parameters as the resting-state scan or with parameters: TR = 2.0 s, 90 time-points, TE = 22 ms, 
FOV = 22.4 cm, flip angle = 60°, voxel dimensions 3.75 mm × 3.75 mm, 4.0 mm slice thickness, 40 slices.

Data preprocessing. All imaging data were preprocessed on AFNI39 using standard steps as described 
below.

Task functional MRI. For each of the task functional MRI (left motor, right motor, language), data were first 
aligned to the anatomical and normalized to standard Montreal Neurological Institute (MNI) space. The first 
four volumes were discarded to allow for steady-state imaging. Images were then resampled to 3.0 mm isotropic, 
de-spiked, volume registered, and spatially smoothed using a 4 mm full-width at half-maximum Gaussian kernel. 
Time course at each voxel was scaled to percent signal with a mean value of 100. The standard activation maps 
were computed using a general linear model (GLM) with a canonical gamma variate hemodynamic response 
function convolved with a boxcar reference waveform and six rigid-body motion parameters and their deriva-
tives regressed. Motion censoring (per TR motion > 0.25 mm) was included in the general linear model. Standard 
activation maps were also derived using AFNI’s 3dClustSim (p < 0.05, ≥20 voxels).

Resting-state functional MRI. Data were de-spiked, slice time corrected, motion corrected, aligned with the 
structural MRI, normalized to MNI space, resampled to 3.5 mm3, and spatially smoothed with a 4-mm FWHM 
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Gaussian kernel. Motion censoring (per TR motion > 1 mm or 1°), nuisance regression, and bandpass filtering 
(0.01–0.1 Hz) were performed simultaneously in one regression model. Nuisance signals regressed out included 
six motion estimates and their temporal derivatives, and the voxel-wise locally averaged white matter signal. 
Global signal regression was not performed.

Data analysis. All data analyses to follow were carried out with the Statistics and Machine Learning Toolbox 
in MATLAB R2018a (The MathWorks, Inc., Natick, Massachusetts, United States).

E1: Consistency of functional connectivity. Objective. In order to understand whether the alternative 
measures capture FC based on resting-state data, it is important establish the ground truth FC for each. Given that 
the spatial FC patterns derived from resting-state BOLD signals have been reported to overlap with those derived 
from task-based data across brain networks and individuals, task-functional MRI was used to represent ground 
truth5,40–42. Thus, the FC derived from resting-state data was compared with the FC derived from task-functional 
MRI data to evaluate the consistency of each measure.

Participants. Neuroimaging data were acquired from 22 young healthy right-handed participants (age = 18–28 
years). Of the 22 participants, 3 were excluded due to excessive head movement as a result of motion censoring 
leading to too few degrees of freedom, leaving data from 19 participants for subsequent analyses. Detailed demo-
graphic information for included participants can be found in Table 1.

Data analysis. BOLD time courses were extracted from preprocessed task functional MRI and resting-state 
functional MRI data in the motor and language networks based on standard functional (Power) atlas43. For the 
left and right finger-tapping task functional MRI, the motor network, comprised of 35 regions, was used. For the 
verbal fluency task functional MRI, the working memory and fronto-parietal sub-networks were combined to 
include 30 regions. All these networks were also evaluated for resting-state functional MRI. Within each network, 
pairwise FC was evaluated, generating a 35 × 35 and 30 × 30 matrix for motor and language (working memory 
and fronto-parietal areas) functions respectively for each individual.

FC matrices for all individuals were averaged to generate a group-level mean FC matrix for each network. 
This meant that each element in the average FC matrix was obtained by computing the mean of FC values in the 
cell of each of the 19 individual matrices. Then the mean group-level FC matrix was thresholded to reveal a bina-
rized FC pattern within a given network. The threshold was empirically determined to be one standard deviation 
higher than the mean overall (all values pooled across subjects) FC value so as to have stronger within-network 
and weaker between-network connectivity. Binarized FC patterns were compared between task functional MRI 
and resting-state functional MRI by computing a Sørensen-Dice similarity coefficient44,45 which measures the 
consistency of each of the alternative FC measures.

E2: Population-based classification using functional connectivity. Objective. After examining the 
consistency of the various measures of FC, a data-driven comparative analysis was performed to further evaluate 
the alternative measures. This consisted of population-based, specifically age-based, classification in the healthy 
population. The goal was to compare and contrast the different FC measures at the brain network-level in differ-
entiating between younger brains from older ones.

Participants. Neuroimaging data were acquired from 64 healthy right-handed participants, subdivided into 32 
older (age = 46–74 years) and 32 younger (age = 18–45 years) participants. The two groups differed significantly 
by age but were matched in terms of gender distribution, education, verbal fluency and head motion to avoid 
these possible confounds. These criteria led to the exclusion of 8 older and 3 younger adults, leaving 24 older and 
29 younger participants for further analysis (n = 53). Greater head movement in older adults may be a potential 
reason for exclusion of a greater number46. Group-wise characteristics are provided in Table 4.

Data analysis. BOLD time courses were extracted from preprocessed resting-state functional MRI in 9 major 
brain networks based on a second standard functional (Willard) atlas8 as it has a specific language network 
defined (used in subsequent analysis). The networks included dorsal and ventral default mode networks (D. 
DMN, V. DMN), left and right executive control networks (L. ECN and R. ECN), anterior and posterior salience 
networks (A. Salience and P. Salience), auditory, language and motor networks. Within each network, pairwise 
FC was evaluated, generating a symmetric square matrix for each individual.

Each network-based FC matrix was vectorized to extract only the unique pairwise FC coefficients ( −n n( 1)
2

, 
where n = number of regions of interest in the network) for each participant (from either the upper or lower tri-
angular matrix). Then these vectors were compiled across subjects (feature size = × −53 n n( 1)

2
) and fed into a 

binary support vector machine classifier. A nested cross-validation approach, comprised of two loops, with 
leave-one-out strategy was adopted to maximize the training dataset. The inner loop determined an optimal 
number of discriminatory FC features with NCA (neighborhood component analysis) which is a non-parametric 
and embedded feature selection approach47. It selects features (a subset of −n n( 1)

2
 features) by learning a linear 

transformation which maximize the leave-one-out classification performance. The outer loop was used to per-
form model selection by classifying an independent left-out subject with the NCA-chosen features. The classifica-
tion label (i.e. group membership) across all the left-out subjects was considered to compute the average accuracy 
and the classification probabilities of the left-out-samples were used to compute the area under the curve. These 
steps were repeated for each of the FC measures and results were compared. In addition to examining the dis-
criminatory power of each FC measure separately, the above steps were also repeated by combining (concatenat-
ing) FC measures from all identified metrics, forming a composite multi-metric FC measure, i.e.,
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E3: Large-scale brain configurations based on functional connectivity. Objective. The large-scale 
brain networks, such as the DMN, ECN, language, etc., are typically derived from activation patterns from task 
functional MRI6,8,43,48. In experiments so far, these networks were assumed to be pre-defined and used to compare 
all FC measures. The goal of this experiment was to further characterize each FC measure by testing whether 
this assumption holds true across the alternative FC measures. In other words, the aim was to understand if FC 
patterns are dependent on the measure used to define it.

Participants. Data from only the young healthy group of 29 participants included in E2 were considered here 
since these effects would first need to be tested and validated in a typical brain.

Behavioral data. In addition to neuroimaging, behavioral data were collected from these participants. 
Specifically, behavioral verbal fluency was measured by completing the following examination outside the scan-
ner. Forms of the Controlled Oral Word Association Test (COWAT)49, were administered which requires par-
ticipants to produce words beginning with the letters, “F,” “A,” “S” in three respective 1-min trials. Responses to 
each letter were recorded and verbal fluency scores were based on the total number of correct responses (after 
excluding perseverative and rule-breaking errors) produced by the participants across the three letter conditions. 
Since verbal fluency can be impacted by age and education, the raw scores were adjusted for each individual. The 
normalized verbal fluency score served as a behavioral outcome, most likely reflective of the language, working 
memory or executive control functions in the brain.

Data analysis. The analysis followed five main steps which are pictured in Supplementary Fig. 4. For each of the 
9 FC measures:

 (i) Ten large-scale brain networks consisting of 68 regions based on the atlas defined by Shirer et al.8, were 
included to generate a whole-brain symmetric FC matrix of size 68 × 68 for each individual. A mean FC 
matrix across all participants was used as a representative of group-level FC in subsequent steps. The 
idealized block structure along the diagonal of the FC matrix with 10 networks was defined as depicted in 
Supplementary Fig. 4. These matrices represent the original brain configuration.

 (ii) The group mean FC matrix was shuffled by randomly permuting rows (and corresponding columns) so as 
to maintain the symmetry in FC matrix as an initialization step to remove potential bias of initial distribu-
tion on clustering result50. In the original brain configuration, the regions were arranged by network along 
the rows and columns symmetrically (i.e. regions in the same network appear in consecutive rows and 
columns). The shuffling process removes this network structure by randomly assigning each region to a 
different location while preserving the value of FC of each region to all others (i.e. symmetry).

 (iii) A standard unsupervised k-means clustering algorithm was applied to this initialized, shuffled FC matrix 
with k = 10 (corresponding to the ten major brain networks that were part of the original brain configu-
ration) and a sparsity (L1) distance function. Since the clustering by k-means algorithm is not unique, it 
was applied for 1000 iterations, each iteration initialized with a randomly shuffled FC matrix. An idealized 
block structure along the diagonal of the FC matrix with 10 clusters was defined for the clustered FC ma-
trix as depicted in Supplementary Fig. 4. Clustered FC matrix and corresponding idealized FC matrix from 
each iteration represent an alternative brain reconfiguration.

 (iv) Sørensen-Dice similarity coefficient was computed for the original brain configuration and each of the al-
ternative brain reconfigurations by comparing the idealized FC structure and the thresholded FC matrix in 
each case. The two overlap coefficients were compared to determine the best possible functional configura-
tion. The ρcomposite was also fed to the regression model for both configurations and compared.

To validate the plausibility of an alternative brain reconfiguration, brain-behavior associations were examined. 
A data-inspired linear regression was applied to study the association between the mean FC within a network 
(or cluster) of individual participants and their verbal fluency scores. In the original brain configuration, for each 
standard brain network, this procedure was performed to identify the specific FC measure that showed the best 
association with verbal fluency scores. In the best alternative brain reconfiguration, this was performed for each 
identified cluster. The strengths of this brain-behavior association were compared between the original brain con-
figuration and the best observed alternative brain reconfiguration. Finally, a multi-metric approach was adopted 
similar to that in E2. For each FC measure, the mean FC within the one network was evaluated which exhibited 
the highest association with behavior, concatenated to form a composite multi-metric representation and then 
associated with the verbal fluency scores for the original brain configuration. Similarly, in the best alternative brain 
reconfiguration, the mean FC from the single cluster demonstrating the greatest association with behavior was 
computed for each FC measure, concatenated and associated with verbal fluency score. A stepwise regression 
model was employed which was initialized by including all linear terms of features (i.e., FC measures part of the 
composite multi-metric definition) and added/removed features with the criterion of maximizing the coefficient 
of determination (R2).
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