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Abstract
Background: Computational approaches, specifically machine-learning techniques,
play an important role in many metagenomic analysis algorithms, such as gene
prediction. Due to the large feature space, current de novo gene prediction algorithms
use different combinations of classification algorithms to distinguish between coding
and non-coding sequences.

Results: In this study, we apply a filter method to select relevant features from a large
set of known features instead of combining them using linear classifiers or ignoring
their individual coding potential. We use minimum redundancy maximum relevance
(mRMR) to select the most relevant features. Support vector machines (SVM) are
trained using these features, and the classification score is transformed into the
posterior probability of the coding class. A greedy algorithm uses the probability of
overlapped candidate genes to select the final genes. Instead of using one model for all
sequences, we train an ensemble of SVM models on mutually exclusive datasets based
on GC content and use the appropriated model to classify candidate genes based on
their read’s GC content.

Conclusion: Our proposed algorithm achieves an improvement over some existing
algorithms. mRMR produces promising results in gene prediction. It improves
classification performance and feature interpretation. Our research serves as a basis for
future studies on feature selection for gene prediction.

Keywords: Feature selection, mRMR, Gene prediction, Metagenomics, ORF,
Prokaryotes

Background
Metagenomics is the study of genetic information in uncultured organisms obtained
directly from the environment [1–3]. The term metagenomics was coined in 1998 by
Handelsman et al. as, the total genetic information ofmicrobiota found in an environmen-
tal sample [4, 5]. Studies have shown that the number of species present in a metagenome
can reach thousands of different species [1]. Metagenomics analysis rely on different anal-
ysis pipelines in order to answermany questions such as identifying the organisms present
in a given sample and what are these organisms doing.
Gene prediction is a fundamental step in most metagenomics analysis pipelines [6].

Gene prediction is the process of locating genes in genomic sequences [6, 7]. Initially,
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studies identified genes through reliable experiments on living cells and organisms. How-
ever, it is usually an expensive and time-consuming task [8]. Computational approaches
are the most commonly used method for finding genes as they have proven their effec-
tiveness in identifying genes in both genomes and metagenomes at a fraction of the
cost and time of experimental approaches. Computational approaches are divided into
similarity-based and content-based approaches [9, 10]. Similarity-based methods iden-
tify genes by searching for similar existing sequences. Basic Local Alignment Search Tool
(BLAST) [11] is used to search for similarities between a candidate gene and existing
known genes. However, this approach is expensive and cannot be used to discover novel
genes or species. Content-based methods try to overcome these limitations using statisti-
cal approaches to detect variations between coding and non-coding regions [1, 8]. While,
these approaches are very successful in genomic sequences, there is still work to be done
for metagenomics due to the nature of the data [6, 12]. The greatest challenges for gene
prediction algorithms in metagenomics are the short read-length and the incomplete and
fragmented nature of the data [1, 13].
Machine learning is widely and successfully used in metagenomics analysis [14].

Various methods for predicting genes based on machine learning algorithms were
developed. Orphelia [15], Metagenomic Gene Caller (MGC) [16], and MetaGUN [17] are
examples of such tools. Orphelia is a web-based program designed to predict genes in
short DNA sequences that have unknown phylogenetic origins. First, Orphelia extracts
all open reading frames (ORFs) from input DNA sequences. Then, all ORFs are scored
using the Orphelia gene predictionmodel, which consists of a two-stagemachine learning
approach. In the first stage, some features from the ORF are extracted using monocodon
usage, dicodon usage and translation initiation sites [15]. Then, linear discriminants are
employed to reduce the feature space. In the second stage, a neural network is used to
combine the features from the previous step with the ORF length and GC content of the
read. The neural network approximates the probability that an ORF encodes a protein.
Finally, a greedy method is used to select the most likely genes from the ORFs that over-
lap by at most 60 bases [15]. MGC [16] is an improvement over Orphelia. The MGC
algorithm uses the same two-stage machine learning approach but creates separate clas-
sification models based on several pre-defined GC-content ranges. It uses the appropriate
model to predict genes in a fragment based on its GC content. Moreover, MGC uses two
new features based on amino-acid usage in order to improve the overall gene prediction
accuracy [16]. The MGC method shows that the use of separate learning models instead
of a single model improves gene prediction performance. Both Orphelia [15] and MGC
[16] use a linear discriminant classifier as a feature selectionmethod that combines a large
number of features to produce new features.
Feature selection can be considered as a preprocessing technique that aims to improve

the performance of the classification, reduce training and build time and help to under-
stand the domain [18–20]. Feature selection methods can be classified as wrapper, filter,
embedded and hybrid methods according to the way that learning algorithms select
features [20, 21]. Wrapping methods use supervised learning approaches to validate fea-
ture sets. Therefore, wrapper methods are computationally expensive and do not scale
well to high-dimensional data [20, 22, 23]. In addition, search overhead, overfitting and
low generality are other disadvantages of wrapper methods [20]. Filter methods use
general characteristics of the dataset without the involvement of supervised learning
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algorithms [20, 23, 24]. Filter methods have more generality, require less computation and
scale well to high-dimensional data [19, 20]. Hybrid methods combine filter and wrap-
per methods. For example, filter methods are used to select a specific number of features.
Then, wrapper methods are applied to choose the final best features [23]. Filter methods
is more suitable in our problem, because there are large number of features.
In this paper, we introduce a content-based approach that uses machine learning tech-

niques to predict genes in metagenomic samples. We introduce a new method that use
recent feature selection technique mRMR instead of combining features from single
source into a new feature.

Method
Dataset

To evaluate the effectiveness of our approach, we use two datasets, including one for
training and the other for testing the models. The training data were used by Orphelia
[15] and theMGC [16]. The training data contain 7million ORFs in 700 bp fragments that
were excised from 131 fully sequenced prokaryotic genomes (bacterial and archaeal) [15]
and their gene annotations that obtained from GenBank [25]. The 700 bp fragments are
randomly excised to create 1-fold genome coverage from each training genome and 5-fold
coverage for each genome in the testing dataset. Previous research prove the effectiveness
of the use of separate learning model for several pre-defined GC ranges in increasing the
prediction accuracy [16]. The training dataset was split into 10 mutually exclusive parts
based on pre-defined GC ranges as shown in Table 1. Each GC range contains around
700,000 sequences (ORFs). We used 100,000 sequences for feature selection and 600,000
sequences were used to build the classification model. The testing data contain three
archaeal genomes and eight bacterial genomes. Table 2 lists the genomes that were used in
testing with the number of ORFs in each genome. ORFs are extracted from fragments and
classified into coding and non-coding based on annotations in the genomes. We refer to
both complete and incomplete ORFs simply as ORFs. Complete ORFs are sequences that
contain both start and stop codons, while incomplete ORFs are either missing upstream
codons, downstream codons or both [26].

The proposedmethod

Our proposed method consists of four phases: feature extraction, feature selection, train-
ing, classification and a post processing phase, as shown in Fig. 1. First, we extract a large

Table 1 Training data

GC range GC content ranges Number of ORFs

1 0-36.57 713,474

2 36.57-41.57 716,896

3 41.57-46 728,133

4 46-50.14 705,792

5 50.14-54.28 741,691

6 54.28-58.14 710,639

7 58.14-61.85 705,692

8 61.85-65 724,478

9 65-68.28 729,822

10 68.28-100 742,300
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Table 2 Testing data

Genomes Gene bank accession no. Number of ORFs

Archaeoglobus fulgidus NC_000917 206,257

Methanocaldococcus jannaschii NC_000909 111,202

Natronomonas pharaonis NC_007426 241,784

Buchnera aphidicola NC_002528 38,541

Corynebacterium jeikeium NC_007164 239,797

Chlorobaculum tepidum NC_002932 206,807

Helicobacter pylori NC_000921 120,138

Prochlorococcus marinus NC_007577 117,755

Wolbachia endosymbiont NC_006833 86,338

Burkholderia pseudomallei NC_006350 311,856

Pseudomonas aeruginosa NC_002516 494,924

number of features from each candidate ORF. Using mRMR, we select the effective and
relevant features which are then used by SVM classifier to approximate the posterior
probability of each ORF coding for gene. Finally, we use a greedy approach to select the
final gene list.

Features extraction

In order to distinguish coding from non-coding sequences, we extract commonly used
features in gene prediction: mainly codon and amino acid usages [7, 15, 16]. In addi-
tion to combining these usages into small set of features, gene finders also use features
related to the translation initiation sites (TIS) such as the position weightmatrices (PWM)
around candidate sites. However, since not all our candidate ORFs are complete, we will

Fragment

ORF

Gene Probability

Monocodon
usage (64)

length
complete

length 
incomplete

GC-content
Dicodon

usage (4096)

Monoamino-
acid usage

(20)

Diamino-acid
usage(441)

mRMR

SVM classifier

Feature 
extraction

Fig. 1 The proposed algorithm
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not extract any TIS related features but rather rely on post-processing techniques to cor-
rect the TIS in our predictions [27]. The following shows the different categorizations of
our features:
monocodon usage: The frequency of occurrences of each codon. Since there are 64

different codons, the monocodon usage produces 64 features.
dicodon usage: The frequency of pairs of successive half-overlapping codons. Dicodon

usage produces 4,096 features.
monoamino acid usage: The frequency of occurrences of each amino acid [16]. Since

there are 20 amino acids, this usage produces 20 features.
diamino acid usage:The frequency of pairs of successive half-overlapping amino acids.

Diamino acid usage produces 441 features.
In addition to features based on usage, we also consider the following three features:
ORF length ratios: The ratio between the length of the candidate ORF and its read

length. Since we have complete and incomplete ORFs, we compute two features (com-
plete length ratio and incomplete length ratio). If the candidate ORF is complete, then its
incomplete length feature is set to zero and vice versa.
GC content: The percentage of cytosine and guanine in the read is assigned a feature

for all candidate ORFs extracted from the particular read. Usually, coding regions have a
higher GC content than non-coding regions [28].

Feature selection

Our method uses minimum redundancy maximum relevance (mRMR) [29] as it scales
well to high-dimensional data and has promising results under different applications
[29, 30]. In 2005, Peng et al. proposed the mRMR filter-method which aims to select
features that are maximally dissimilar to each other but as similar as possible to the clas-
sification variable [30]. Since our data are continuous, we use the F-test as a relevance
measure and the Pearson correlation among variables as a redundancymeasure. Themax-
imum relevance of feature set S for class c is defined by the average value of all F-test
values between the individual feature i and the class c as follows:

maxVF ,VF = 1
|S|

∑

i∈S
F(i, c) (1)

The minimum redundancy of all features in feature set S is defined by the average value
of all Pearson correlations between the feature i and the feature j as follows:

minWc,Wc = 1
|S|2

∑

i,j∈S

∣∣c(i, j)
∣∣ (2)

where c(i, j) represents the Pearson correlation coefficient. We use an F-test with a corre-
lation quotient (FCQ) as the mRMR optimization condition that combines the two above
criteria of maximal relevance and minimal redundancy as follows:

max
(
VF
Wc

)
(3)

We explore different mRMR feature sizes and compute k-nearest neighbor classifica-
tion error rates for each feature set. Table 3 shows the error rate for different number of
features. The results are based on sequences with GC content between 50.40 and 55.90.
We select the top 500 features for the next phase of our algorithm since the classification
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Table 3 Classification error rates vs. number of features

mRMR Feature-set size Error rate

60 0.0321

200 0.0264

250 0.0257

300 0.0253

350 0.0249

400 0.0246

450 0.0245

500 0.0242

gain from 300 to 500 features is not significant (less than .1%). For each GC range, we
repeated the same experiment and selected the best 500 features to train SVMmodels.

Trainingmodels

We train support vector machines to produce the posterior probabilities of the coding
class. The posterior probability P(class/input) is the probability of a class given evi-
dence input. This technique was first introduced by Platt in 1999 [31]. Platt proposed
a method to extract posterior probability from the SVM output. In binary classification
with two classes +1 and -1, for input x, the posterior probability is calculated by the
following formula:

P(y = 1/x) = 1
1 + exp(Af (x) + B)

(4)

where A and B are two scalar parameters that are learned by the algorithm and function
f is the output from the SVM. Moreover, Platt [31] suggests transforming the label y to
target probabilities t+ for positive samples and t− for negative samples:

t+ = N+ + 1
N+ + 2

(5)

t− = 1
N− + 2

(6)

where N+ and N− are the number of positive and negative samples, respectively.
In order to train the SVM, we first partition the training data to 10 mutually exclusive

partitions using pre-defined GC ranges. The GC ranges were decided by simply dividing
the training data into 10 partitions. Previous research shows that using smaller ranges
does not improve the prediction [16]. Thus, an ensemble of SVM models based on GC
content is used for classification. Each SVM model will produce the probability that a
given ORF is a gene, as shown in Fig. 1. Prior to training the SVM models we use a grid
search approach in order to tune the parameters for the RBF kernel of the SVM clas-
sifier. Table 4 presents the best cost and gamma for each GC range. The best features
from mRMR and the best parameters from the grid search are used to create the final
SVMmodels.

Classification and post-processing

In this stage, all complete and incomplete ORFs are extracted from each input fragment.
Based on the GC content of the fragment, appropriately 500 features are extracted from
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Table 4 Best RBF parameters for each GC range

GC range Best cost Best gamma Accuracy Sensitivity Specificity

1 100 1.5 97.89 94.03 98.53

2 100 1.5 98.37 95.68 98.75

3 100 1.5 98.40 95.66 98.74

4 100 2 98.28 94.67 98.71

5 100 2 98.22 94.80 98.61

6 100 2 98.05 94.05 98.49

7 100 2 98.30 94.93 98.71

8 100 1.5 98.70 96.51 98.99

9 100 2 98.95 97.09 99.22

10 100 2 99.08 97.66 99.31

each ORF. These features are the same features that were used to build the model. Addi-
tionally, we extract three more features: GC content of the fragment, complete length,
and incomplete length of the ORF. Then, the appropriate SVM model based on the GC
content of the fragment is selected to score the ORF. The output from the SVM is the
probability that a given ORF is a gene.We consider ORFs with probability greater than 0.5
as candidate genes. However, some of candidate genes can be overlapped and only one of
them can be a gene. Genes in prokaryotes can maximally overlap by 45 bp [32]. Thus, a
greedy algorithm [15, 16] is used as a post-processing step to solve the overlap between
candidate genes and select the final gene list. The candidate gene with highest probability
is more likely to be a gene. Algorithm 1 describes the final candidate selection where g
is the final gene list for a particular fragment and C contains the candidate list. To allow
for direct comparison with other algorithms, we set the maximum overlap omax to be the
minimum gene length which is 60 bp. The last step is to run the post-processing tool to
correct the TIS, such as MetaTISA [27].

Algorithm 1 The final gene candidate selection
1: Input: Candidate gene list C for a particular fragment
2: Output: The final gene list g for a particular fragment
3: while C is non-empty do
4: find imax=argmaxi Pi with respect to all ORFs i in C
5: move ORF imax from C to g
6: remove all ORFs in C that overlap with ORF imax by more than omax bp
7: end while

Results and discussion
Performance measures

Gene prediction performance is measured by comparing the model prediction with the
true gene annotation in fragments that were obtained from GenBank [25]. Then, we
count the number of true positives, false positives, and false negatives. True positive (TP)
means the ORF correctly matched at least 60 bp in the same reading frame of annotated
gene. False positive (FP) means the predicted ORF is incorrectly identified as a gene. False
negative (FN) means an overlooked gene is incorrectly identified as non-coding. Then,
we compute sensitivity, specificity, and harmonic means:
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Sensitivity = TPgene
TPgene + FNgene

(7)

Specificity = TPgene
TPgene + FPgene

(8)

HarmonicMean = 2 × Sens × Spec
Sens + Spec

(9)

Results

In this section, we compare the performance of the proposed mRMR-SVM algorithm
with the mRMR-neural network algorithm for all 11 datasets presented in Table 2. Table 5
presents the comparison of the SVM and neural networks using the testing data. The
results, as shown in Table 5, indicate that the SVM has a higher average harmonic mean
than the neural networks: 92.17% and 90.33%, respectively. Based on these results, we
select the mRMR-SVM algorithm for comparison with state-of-the-art algorithms.
We compare our algorithm with state-of-the-art algorithms, namely, Orphelia [15],

MGC [16], and Prodigal [33], using the testing data. We test 10 random replicas per
genome and then, we compute the mean and standard deviation for the specificity, sen-
sitivity, and harmonic mean for each genome. Table 6 and Fig. 2 present the comparison
results. Our method achieves an average specificity of 96.53%, a sensitivity of 88.31%, and
a harmonic mean of 92.17%. Our algorithm outperforms Prodigal in terms of specificity,
but Prodigal outperforms our algorithm in terms of sensitivity and harmonic mean. In
addition, our algorithm outperforms Orphelia and MGC in terms of specificity, sensi-
tivity, and harmonic mean. Meanwhile, our method outperforms Orphelia by an average
of 11% and MGC by an average of 1%. Our experiments confirm the MGC hypothe-
sis that building several models based on several GC content is better than building a
single model.

Discussion

The aim of our study is to apply feature selection techniques to metagenomics gene
prediction. The motivation for applying feature selection is to improve gene prediction,

Table 5 Comparison of SVM and neural network on testing data

SVM Neural network

Genomes Sp Sn H.M. Sp Sn H.M

A. fulgidus 96.46 87.26 91.61 95.60 82.09 88.33

M. jannaschii 97.29 94.58 95.91 97.21 93.30 95.21

N. pharaonis 97.37 82.71 89.44 96.10 77.27 85.66

B. aphidicola 97.94 93.28 95.56 98.11 92.16 95.04

C. jeikeium 97.31 88.64 92.77 97.15 84.84 90.58

C. tepidum 95.93 80.84 87.74 94.71 75.99 84.32

H. pylori 97.67 92.09 94.80 97.45 91.28 94.26

P. marinus 98.58 87.65 92.79 98.71 85.22 91.47

W. endosymbiont 88.10 89.66 88.87 88.69 87.04 87.86

B. pseudomallei 97.56 85.83 91.32 97.95 81.43 88.93

P. aeruginosa 97.64 88.88 93.05 97.70 86.90 91.98

Average 96.53 88.31 92.17 96.31 85.23 90.33
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Fig. 2 Harmonic mean of our method, Orphelia, MGC, and Prodigal

reduce computational time, and increase domain understanding. Overall, the results pro-
vide important insights into using feature selection techniques in gene prediction. The
experiments show the power of the mRMR-SVM framework. Furthermore, our experi-
ments show that only a small number of features among thousands contribute to accurate
gene prediction. mRMR selects the top 500 features and creates a balance between pre-
diction accuracy and computational cost. Our method outperforms Prodigal in terms of
specificity, and the overall performance of our method is higher than some prominent
gene prediction programs, such as Orphelia and MGC. Additionally, our method and
MGC achieve better results than Orphelia because both methods use several pre-defined
GC classification models instead of a single model. There are some differences between
our method and MGC. First, MGC uses a linear discriminant classifier method. Our
method uses mRMR, which selects the features that correlate the strongest with a clas-
sification variable and that are mutually different from one another. Second, our method
uses the SVM classifier, while MGC uses neural networks. Third, MGC has a feature
called the Translation Initiation Site (TIS) score. In our study, we pick the leftmost TIS
of each ORF-set, because the next step is to use the MetaTISA program [27] to correct
the TIS.

Conclusion

We investigate the use of feature selection in gene prediction for metagenomics frag-
ments. This is an important step toward enhancing the gene prediction process. We use
filter feature selection methods because they scale well for high-dimensional data. We
propose applying the mRMR algorithm to our data to reduce features and then apply
the SVM to find the gene probability. Future work will investigate the use of deep learn-
ing to predict genes in metagenomics fragments. Deep learning is successfully used in
bioinformatics and is able to handle a large number of features.
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