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Abstract: The bioactive and biocompatible properties of hydroxyapatite (HAp) promote the osseoin-
tegration process. HAp is widely used in biomedical applications, especially in orthopedics, as well
as a coating material for metallic implants. We obtained composite coatings based on HAp, chitosan
(CS), and FGF2 by a matrix-assisted pulsed laser evaporation (MAPLE) technique. The coatings
were physico-chemically investigated by means of X-ray Diffraction (XRD), Transmission Electron
Microscopy (TEM), Infrared Microscopy (IRM), and Scanning Electron Microscopy (SEM). Further,
biological investigations were performed. The MAPLE-composite coatings were tested in vitro on
the MC3T3-E1 cell line in order to endorse cell attachment and growth without toxic effects and
to promote pre-osteoblast differentiation towards the osteogenic lineage. These coatings can be
considered suitable for bone tissue engineering applications that lack toxicity and promotes cell
adhesion and proliferation while also sustaining the differentiation of pre-osteoblasts towards mature
bone cells.

Keywords: hydroxyapatite; fibroblast growth factor; chitosan; metallic implants; biocompatibility;
matrix-assisted pulsed laser evaporation (MAPLE)

1. Introduction

Bone-related defects and diseases from traumatism, tumors, infection, and congenital
deformity occur in millions of people, and in some cases, these can be fatal [1,2]. Usually, the
repair and treatment of bone defects cannot be performed without intervention; therefore,
it continues to be challenging in dental implantology and orthopedics [1]. The graft-
based methods, i.e., allografts, autografts, and xenografts, considered standard treatment
options in the healthcare practice, are of concern regarding the immunologic reaction, and
potential disease transmission [3,4], availability, and donor site morbidity [5]. However,
their drawbacks and potential risks have encouraged surgeons and engineers to find new
methods to repair bone defects [6,7].

Tissue engineering, a comprehensive multidisciplinary methodology, has provided a
unique option for repairing or replacing biological tissues [8]. In tissue engineering, bone
regeneration can be facilitated by various approaches such as bone substitutes, scaffolds,
and implant coatings, to create a suitable microenvironment in favor of osseointegration.
The materials used for bone tissue engineering must possess good bone conductivity and
inductivity [9,10].
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Surface modifications using coatings represent multipurpose approaches to facilitate
the osseointegration of implantable devices [11]. An ideal coating dedicated to hard
tissue repair should entail components, structure, and biomechanical properties similar
to natural bone, regulate cell adhesion, proliferation, and differentiation, and provide
cells with a microenvironment for osteogenic differentiation [12,13]. Surface modification
of implantable medical device surfaces with calcium phosphate is a practical option for
improving implant integration and the overall biofunctional performance [14].

With the aim to develop functional and performance-enhanced biomaterials and
devices for bone tissue therapy, impressive results have been evidenced with respect to
non-degradable biopolymers [15,16]. Besides their indisputable biomechanics and bio-
chemical stability, the facile processability and functionality and the tunable composition
and microstructure of such biopolymers represent key aspects of being explored for bone-
related applications. In addition, the compositional and microstructural characteristics of
mineral hydroxyapatite are of great importance for modulating the intricate molecular,
cellular, and biochemical processes that occur both within the natural bone tissue and at
the bone/implant interface [17]. Thereby, the modification of non-degradable-based bioma-
terials with hydroxyapatite represents a multifaceted strategy to engineer new platforms
and devices, with boosted bioactivity and superior outcomes regarding the restoration,
replacement, and regeneration of hard tissue [18–21].

Due to its physicochemical and microstructural similitude to the inorganic phase of the
natural bone, hydroxyapatite (Ca10(PO4)6(OH)2) is an inductive reagent for the proliferation
of osteoblasts and the growth and differentiation of mesenchymal stem cells [22,23]. Thanks
to its non-immunogenic properties, biocompatibility, bioactivity, and bone conductivity,
hydroxyapatite has been extensively utilized in diverse coating applications for hard tissue
therapy [24–26]. Synthetic hydroxyapatite coatings proved to have high performance in
sustaining bone growth around the implant [27,28]. Nevertheless, to boost its brittleness
and low mechanical strength, hydroxyapatite can be coupled with or incorporated within
high-molecular polymers, which further demonstrate better bone-forming ability [29,30].

Biodegradable polymers with adequate mechanical strength and degradation rate
are desirable materials for hard tissue therapy [31]. The polymer must also promote
the adhesion of osteoblasts to the coating and, finally, create new bone. Biodegradable
polymers, such as polylactic acid (PLA) [32], polylactide-co-glycolide (PLGA) [33,34],
and chitosan (CS) have been used to develop hydroxyapatite/polymer coatings for bone
regeneration. The latter candidate, CS, is a natural-derived polymer and owing to its
exceptional biocompatibility, low toxicity, and biodegradability, CS can be used for bone
regeneration [35]. CS coatings support cell adhesion and reduce the number of reactive
oxygen species in the surrounding environment, leading to osteoblasts accumulation [36].
The combination of CS-coatings and HAp in the same vector stimulates cell growth [37].
HAp/CS biocomposites can induce osteoinduction and osteointegration and promote bone
formation in different bone defects [38].

Angiogenic and osteogenic growth factors, as well as the sequential expression of
pro-inflammatory proteins, can encourage cell activity, such as the differentiation of osteo-
progenitor cells during bone formation [39]. Growth factors attached to the extracellular
matrix of the bone have the potential to offer “indications” for bone growth. For instance,
in the bone formation stage, fibroblast growth factor-2 (FGF2) regulates the proliferation
and differentiation of osteoblasts and osteocyte formation [40,41].

HAp-CS coatings can be obtained by plasma spraying [42], electrophoretic deposi-
tion [43,44], spin coating [45], and laser-assisted methods [46]. From these techniques, the
matrix-assisted pulsed laser evaporation (MAPLE) method has several advantages over
existing techniques, including the production of uniform coatings of different materials and
onto various substrates [47,48]. The high experimental versatility of the MAPLE technique
allows for the synthesis of delicate compounds (e.g., proteins or polymers) in the form
of thin films without altering the stability of their functional characteristics. Specific for
MAPLE is the use of a cryogenic target made from the compounds of interest, in our case
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HAp, CS, and FGF2, diluted in a proper solvent. The laser beam hits the target placed in the
vacuumed deposition chamber and transfers the compounds without any damage [41,49].

In our current study, we aimed to obtain composite coatings based on hydroxyapatite,
chitosan, and fibroblast growth factor-2, by the MAPLE technique in order to endorse cell
attachment and growth without toxic effects and to promote pre-osteoblast differentiation
towards the osteogenic lineage. Our study is of interest in the context of the need for
quicker bone formation and healing, which can be facilitated by various approaches such
as implant coatings made from materials that favor an osseointegrating microenvironment.

2. Materials and Methods
2.1. Materials

All reagents required for the synthesis of HAp-based composite coatings were purchased
from Sigma–Aldrich (Merck Group, Darmstadt, Germany), namely CaCl2, Na2HPO4*2H2O,
NaOH (10%), chitosan 2% (CS) medium molecular weight, dimethyl sulfoxide (DMSO)
and fibroblast growth factor 2 (FGF2).

For the biological investigations, the cell line MC3T3-E1 (ATCC® CRL-2593™) was
purchased from American Type Culture Collection (ATCC, Manassas, VA, USA), the fetal
bovine serum (FBS) and phosphate saline buffer (PBS) from Life Technologies (Foster City,
CA, USA), Alkaline Phosphatase Activity Colorimetric Assay Kit from Biovision (Milpitas,
CA, USA) and the StemPro Osteogenic Differentiation Kit from Thermo Fischer Scientific
(Waltham, MA, USA). All the antibodies employed for fluorescence microscopy staining
were purchased from Santa-Cruz Biotechnology (Heidelberg, Germany), while the rest of
the reagents and kits were purchased from Sigma-Aldrich.

2.2. Synthesis Methods
2.2.1. Hydroxyapatite Synthesis

To synthesize the HAp powdery sample, CaCl2 and Na2HPO4*2H2O were dissolved
in ultrapure water. The phosphorous-containing solution was then added dropwise to
the calcium-containing solution under continuous stirring. Subsequently, the alkaline pH
adjustment was performed by adding 10% NaOH, and the resulted solution underwent a
one-day maturation process. The final product was subjected to filtration, triple-washing,
and drying process.

2.2.2. Composite Coatings Synthesis

Titanium grade 4 discs, commercially pure Ti, (with diameter and thickness of 12 mm
and 0.1 mm, respectively), were used as substrates during the MAPLE experiments. Prior
to surface modification by laser processing, all substrates were subjected to an ultrasonic
cleaning treatment with acetone, ethanol, and deionized water (10 min each step), followed
by drying under a high purity nitrogen jet.

A ns-beam (λ = 248 nm, τFWHM = 25 ns, repetition rate = 10 Hz) from an KrF* excimer
COMPexPro 205 Lambda Physics from Coherent was focused on HAp/CS/FGF2 sample
(irradiation spot 34 mm2) generating laser fluences of 200, 300, and 400 mJ/cm2. For
MAPLE deposition, the targets were prepared from powders mixed in DMSO (2.5%) and
frozen at liquid nitrogen temperature. The coatings were deposited on titanium discs and
Si substrates, which were cleaned according to an internal procedure. The depositions were
made for an average number of pulses of 40,000 at room temperature and 1 Pa residual gas.
During the deposition, the target was continuously rotated to avoid deep crated formation,
and the target to substrate distance was kept constant at 5 cm.

2.3. Physicochemical Investigation
2.3.1. X-ray Diffraction (XRD)

The compositional identification and crystalline structure of the white powdery sample
were performed using an XRD-6000 diffractometer from Shimadzu (Duisburg, Germany).
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The analysis was performed using the CuKα radiation (λ = 1.056 Å) of the equipment, and
the data were collected in the 20–50◦ range of 2θ diffraction angle.

2.3.2. Transmission Electron Microscopy (TEM)

The TEM analysis of HAp powder was made with a TecnaiTM G2 F30 S-TWIN high-
resolution transmission electron microscope equipped with a selected area electron diffrac-
tion (SAED) accessory from FEI (Thermo Fischer Scientific, Waltham, MA, USA). The
instrument operated in the transmission mode (300 kV voltage), with point and line resolu-
tions of 2 Å and 1 Å, respectively.

2.3.3. Infrared Microscopy (IRM)

The compositional analysis of HAp-based powder and coatings was performed using
a Nicolet iN10 MX Fourier transform (FT)-IR microscope from Thermo Fischer Scientific.
All scans were recorded in the 4000–600 cm−1 wavenumber range (4 cm−1 resolution), in
the reflection mode. The IR data were processed by using the OmincPicta 8.2 software
(Thermo Fischer Scientific).

2.3.4. Scanning Electron Microscopy (SEM)

SEM investigation was performed on pristine HAp powder, as well as on composite
coatings obtained by MAPLE. Before analysis, all samples were capped with a thin con-
ductive gold layer. The micrographs were recorded using the secondary electron beam
(30 keV) of an electronic microscope equipped with energy-dispersive X-ray spectroscopy
(EDS) accessory from FEI (Thermo Fischer Scientific).

2.4. Biological Investigations
2.4.1. In Vitro Cell Culture Model

The MC3T3-E1 cell line (CRL-2593, ATCC) was employed as the in vitro cell culture
model to assess the cellular response of mouse pre-osteoblasts toward HAp/CS/FGF2
coatings, as well as for evaluating the osteogenic differentiation potential of the compos-
ites. For all biological experiments, the composites were sterilized by UV light exposure
prior to cell seeding for 20 min on both sides. Non-coated substrates (titan discs) were
employed as experimental control samples and were processed identically as described for
the HAp/CS/FGF2-coated samples.

In order to investigate the biocompatibility of the HAp/CS/FGF2-coated samples, the
MC3T3-E1 pre-osteoblasts cells were seeded at an initial density of 104 cells/cm2 on the
surface of the samples. The cellular suspension was seeded as a 20 µL drop placed onto
the surface samples. After 2 h, the bioconstructs were immersed in Dulbecco’s modified
Eagle medium (DMEM), supplemented with 10% FBS and 1% penicillin/streptomycin
mixture (10,000 units/mL penicillin and 10 mg/mL streptomycin). The bioconstructs were
maintained for 7 days under standard culture conditions (37 ◦C, 5% CO2), while refreshing
the cell culture media every other day.

For the osteogenic differentiation experiments, the MC3T3-E1 pre-osteoblasts cells
were seeded at an initial density of 2 × 104 cells/cm2. The cellular suspension was seeded,
and a 20 µL drop was placed onto the surface samples. The samples were left 2 h before
immersion in a complete DMEM culture media to allow cellular attachment. After 24 h,
the cell culture media was replaced with a commercially available osteogenic induction
culture medium (StemPro Osteogenic Differentiation Kit). Under these conditions, the
bioconstructs were maintained in culture for 21 days under standard culture conditions
(37 ◦C, 5% CO2), while the osteogenic induction culture medium was refreshed three times
a week.

2.4.2. In Vitro Biocompatibility Assessment

To investigate the biocompatibility of the HAp/CS/FGF2-coated samples, the bio-
logical response of murine pre-osteoblasts after 2 days and 7 days of interaction with the
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novel materials was screened by investigating cell viability, proliferation potential, and
morphology, as well as measuring the cytotoxic potential of the samples.

MTT assay was employed to reveal cell viability and proliferation potential of MC3T3-E1
seeded in contact with the HAp/CS/FGF2-coated samples. Briefly, the cell culture media was
discarded and replaced with 1 mg/mL 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium
bromide MTT solution, freshly prepared in FBS-free culture media. After 4 h of incubation
in the dark at 37 ◦C, the MTT solution was removed, and the resulting formazan crystals
were dissolved in DMSO. To measure the cell metabolic health, the absorbance of the
resulting solution was measured at 550 nm using a FlexStation III microplate multimodal
reader (Molecular Devices, San Jose, CA, USA). To present the obtained results as a % of
cell viability, the mean OD obtained for the experimental control 48 h post-seeding was
considered as 100% cell viability.

To assess the cytotoxic potential of the HAp/CS/FGF2-coated samples, lactate de-
hydrogenase (LDH) leakage from damaged MC3T3-E1 cells was measured as a measure
of cells that lost their cell membrane integrity in response to material contact. For this,
cell culture media samples were harvested at the experimental time points and mixed
with LDH based in vitro toxicology assay kit reagents (TOX7 kit) according to the man-
ufacturer’s instructions. The resulting solutions were placed at room temperature in the
dark for 20 min, and the reaction was stopped by adding 1 N HCl. The optic density of
the solutions was finally measured by spectrophotometry at 490 nm on the FlexStation III
microplate multimodal reader (Molecular Devices). To present the obtained results as % of
LDH release, the mean OD obtained for the experimental control 48 h-post-seeding was
considered 100% cytotoxicity.

The impact of HAp/CS/FGF2-coated samples on the morphology of MC3T3-E1 was
investigated by fluorescence microscopy. After discarding the cell culture media, the
HAp/CS/FGF2-coated samples were washed with PBS, immersed in a 4% paraformalde-
hyde solution (PFA) for 20 min for cell fixation, and further incubated for 1 h at room
temperature in the 2% BSA permeabilization solution with 0.1% Triton X100. To reveal the
cell morphology and nuclei, samples were subsequently stained with fluorescein isothio-
cyanate (FITC)-conjugated phalloidin for 1 h at 37 ◦C and 20 min with 4, 6-diamidino-2-
phenylindole (DAPI). Microscopy micrographs were captured using the Olympus IX73 fluo-
rescent microscope (Olympus Life Science, Waltham, MA, USA) and CellSense F software.

2.4.3. In Vitro Osteoinductive Potential Assessment

To investigate the potential of the HAp/CS/FGF2-coated samples to sustain the
osteogenic differentiation process, different relevant markers for the osteogenesis process
were investigated during 21-days of exposure to osteogenic inductors of MC3T3-E1 cells
cultured on the HAp/CS/FGF2-coated samples, at 2 time points: 14 and 21 days.

The alkaline phosphatase (ALP) activity was determined spectrophotometrically using
the Alkaline Phosphatase Activity Colorimetric Assay Kit. Briefly, the culture media
was harvested at the chosen time points and mixed with the p-nitrophenyl phosphate
substrate, according to the manufacturer‘s recommendations. Following the incubation
step (60 min/25 ◦C), the optical density of the resultant p-nitrophenol (pNP) was measured
at 405 nm using a FlexStation III microplate multimodal reader. To quantify the amount
of pNP generated by ALP in the experimental samples, the obtained results were plotted
on the p-nitrophenol standard curve. ALP activity was determined as described in the
kit protocol, and the final readings were normalized against the total cell number, as
recommended by the manufacturer.

To reveal the protein expression levels of the osteogenic-specific markers osteopontin (OPN)
and osteocalcin (OCN), samples were fixed and permeabilized by paraformaldehyde/BSA-
Triton X100 solutions as described above and incubated overnight at 4 ◦C, with rabbit
polyclonal anti-OCN and goat polyclonal anti-OPN antibodies. Prior to fluorescence
microscopy investigation, the samples were further incubated in tetramethylrodamine-5,6-
isothiocyanate (TRITC)-conjugated goat anti-rabbit and FITC-conjugated rabbit anti-goat
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secondary antibodies solutions for 30 min at room temperature in darkness and 10 min
with DAPI for nuclei staining.

The potential of HAp/CS/FGF2-coated samples to allow MC3T3-E1 cells to form
calcium deposits was investigated by alizarin red S staining. Briefly, samples were washed
with PBS, immersed in a 4% PFA fixative solution for 2 h, and afterward for 30 min at room
temperature in a freshly prepared solution of 1% alizarin red. After staining, the dye was
removed, and the samples were washed with distilled water until the washing solution
remained colorless. Images were captured with the Nikon inverted optical microscope. The
dye extraction was performed using a 10% acetic acid solution, and the resulting solution’s
optical density was determined spectrophotometrically at 405 nm using a Flex Station III
multimodal reader (Molecular Devices). Pristine HAp/CS/FGF2-coated samples were
processed identically, and the data was subtracted from the obtained results to address the
presence of HAp in the coating structure.

All the presented biological experiments were performed in triplicate (n = 3), and
for the spectrophotometric assays, the results were analyzed using GraphPad 6 software
(one-way ANOVA, Bonferroni test). All the data are expressed as mean ± standard error of
the mean. A p-value of ≤0.05 was considered statistically significant.

3. Results and Discussions
3.1. Physicochemical Investigation of HAp Powder

Starting from calcium and phosphorous precursors and conveniently adjusting var-
ious reaction parameters (temperature range, pH value, etc.), the hydroxyapatite (HAp)
nanoparticles were obtained by the co-precipitation method [50,51]. The white powder that
resulted after drying the viscous precipitate was analyzed compositional and microstruc-
tural by XRD (Figure 1) and TEM (Figure 2). The diffractogram pattern evidences the
presence of broad diffraction peaks, which indicate the powder’s reduced crystallinity. Spe-
cific peaks are identified at 2θ values of 25.9◦, 28.9◦, 31.8◦, 34◦, 40◦, 46.7◦, and 49.5◦, these
maxima correspond to (0 0 2), (2 1 0), (2 1 1), (2 0 2), (1 3 0), (2 2 2), and (2 1 3) diffraction
planes of hydroxyapatite crystals [52–55]. The XRD analysis confirms that hexagonal HAp
represents the sole crystalline phase of the obtained powder.
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Figure 2. SAED pattern (a) and TEM images (b,c) of HAp powdery sample.

The TEM measurements (Figure 2) showed the presence of HAp aggregates, consisting
of needle-like nanosized individual particles. Those observations were in good agreement
with other reports on the microstructure of synthetic HAp [56–58]. The HAp obtained has
a width of ~10 nm and a length between 10−80 nm.

Structural information about HAp nanoparticles was also obtained from SAED analy-
sis, as presented in Figure 2a. The identified diffraction rings indicate the polycrystalline
nature of prepared nanostructures. The SAED pattern confirms the synthesis of a high
purity HAp sample.

3.2. Physicochemical Characterization of HAp/CS/FGF2 Coatings

In order to investigate the compositional integrity of the composite laser-processed
materials, comparative infrared studies were conducted between the drop-cast sample and
the coatings obtained by MAPLE (Figure 3). Fourier transform infrared spectroscopic (FT-
IR) analysis mainly provides information about the functional properties which correlate
with functional group and structure of composite blended coatings.

The FT-IR spectral details of chitosan showed that the OH peaks can be assigned at
~3565 cm−1, and alkyl C–H stretching vibration was identified at ~2925 cm−1 [59]. Strong
peaks were observed at ~1650 cm−1, ~1585 cm−1 and ~1456 cm−1 showing the presence of
C=O stretching (amide-I band) [60], N-H bending, and C-H deformation, respectively. In the
IR spectra of initial material (drop-cast), absorption maxima that originate from HAp can
be identified, such as stretching vibrations from structural hydroxyl groups (~3565 cm−1),
ν3 asymmetric stretching of PO4

3− (~1110, ~1012 cm−1) and PO4
3− ν1 stretching (~962

and ~868 cm−1) [61].
When compared to the drop-cast, the lowest laser fluence (200 mJ/cm2) did not

affect the chemical integrity of HAp/CS/FGF2 material. Slightly modified and reduced
IR maxima indicate an insufficient amount of transferred material, as confirmed by the
presence of predominant blue areas in the complimentary infrared maps. An increased
transfer of HAp/CS/FGF2 is noticed for the 400 mJ/cm2 fluence. In terms of efficient and
uniform transfer of HAp/CS/FGF2 material and preserved chemical integrity, optimal
results are evidenced by using the 300 mJ/cm2 laser fluence. As a general remark regarding
the IR microscopy analysis, the absorbance intensity of the collected infrared spectra is
directly related to the color changes within the resulted IR maps, ranging from blue to red
(corresponding to the lowest and highest intensity, respectively).
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The absorbance maxima previously identified for synthetic HAp can also be noticed in
the IR spectra of drop-cast and MAPLE processed HAp/CS/FGF2 materials. The infrared
peaks identified at ~2925 cm−1 (which may result from overlapped stretching of hydroxyl
from HAp and N–H from primary amines of organic compounds), ~1110 cm−1, 868 cm−1

(PO4
3− stretching), and ~1418 cm−1 (stretching and bending vibrations of carbonaceous

bonds from organic molecules), confirm the successful transfer of HAp/KAN/FGF2 com-
posite materials.

Relevant microstructural data about the obtained HAp/CS/FGF2 coatings were col-
lected from the SEM analysis, corresponding images are presented in Figure 4 and offer
information regarding the textured aspect of the coating formed at a laser fluence of
300 mJ/cm2 (Figure 4a,b). Figure 4c provides useful data concerning the thickness of the
nanostructured coatings obtained at 300 mJ/cm2 laser fluence. As it can be seen, the thick-
ness varies between 400 nm and 1 µm, which delineates the small agglomeration tendency.
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(c) cross section.

3.3. Biocompatibility Evaluation of HAp-Based Coatings

To investigate whether the HAp/CS/FGF2 coatings fulfill the basic requirements of a
biocompatible material, MC3T3-E1 cell adhesion, viability, and proliferation, as well as the
cytotoxic potential of the samples were assessed.

The cellular metabolic activity revealed by the spectrophotometric MTT assay (Figure 5)
showed a significant increase (p < 0.05) of viable MC3T3-E1 cells cultured on HAp/CS/FGF2
coatings as compared with control samples even after 2 days of culture. While on both
samples, the cell viability increased gradually with the prolonged culture time, the coating
strategy significantly increased (p < 0.0001) the number of viable cells adhered on the mate-
rial surface in comparison with the control sample after 7 days of culture. Moreover, both
samples sustained and promoted MC3T3-E1 cell proliferation as revealed by the significant
increase (p < 0.0001) of cell viability 7 days post-seeding compared to 2 days. However,
on HAp/CS/FGF2-coated samples, a significant enhancement of cell proliferation was ob-
served, showing that surface tuning stimulates pre-osteoblast proliferation. This dramatic
increase of cell proliferation on HAp/CS/FGF2 could be attributed to the presence of FGF2,
which is a well-known molecule involved in stimulating osteoblasts proliferation [62,63].

To reveal the cytotoxic potential of the samples, the amount of LDH released in the
culture media by damaged MC3T3-E1 cells that possess compromised cell membranes
in response to materials contact was measured (Figure 6). After 2 days of culture, the
LDH levels in the culture media collected from the HAp-based samples were significantly
lower (p < 0.001) as compared with the control sample. The same pattern of the LDH
release was also observed after 7 days of culture, highlighting that the coating absence
induces a significant higher (p < 0.001) damage on pre-osteoblast cells compared with the
HAp/CS/FGF2-coated samples that exhibited low cytotoxicity.
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Figure 6. Graphical representation of LDH leakage levels from damaged MC3T3-E1 cells after 2 days
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Fluorescence microscopy was employed to study MC3T3-E1 cell behavior and mor-
phology after HAp/CS/FGF2-coated samples interaction (Figure 7). After 2 days of culture,
cells were capable of adhering to both samples, no differences being noticed in the cell
distribution pattern on the sample’s surfaces or cell morphology. However, pre-osteoblasts
responded slightly differently to HAp/CS/FGF2 coatings as a larger number of cells were
noticed on the material surface, which presented a more well-developed cytoskeleton, most
probably because the coating favored a more tight cell adhesion. After 7 days of culture, in
the control sample, no differences were observed in the cell morphology compared with
2 days, the pre-osteoblasts still expressing low levels of actin, condensed around the nuclei
and lacking organization, the sample surface being randomly scattered with cells. On
the other hand, on the HAp/CS/FGF2-coated samples, pre-osteoblasts were organized
in a compact cellular network distributed evenly on the entire material surface. Probably
because the entire surface was covered with cells and also, as revealed by the MTT assay, the
coating strategy highly stimulated cellular proliferation on different parts of the material,
cells organized in 3D cellular structures.

The biocompatibility screening revealed that the coating strategy significantly im-
proves the biological performance of the metallic implants as the HAp/CS/FGF2 coating
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sustains cell viability and proliferation, and overall sustains MC3T3-E1 cell development.
This positive outcome is determined by the chosen materials for the enrichment of the
metallic implants. On one hand, HAp is a major component of the bone and is widely used
for bone tissue engineering biomaterials fabrication due to its excellent bioactivity and os-
teoconductivity [64]. On the other hand, CS also lacks toxicity and is highly biocompatible,
but due to poor mechanical properties and lack of osteoconductivity, it cannot be used solely
for bone tissue engineering purposes [65]. However, CS supports osteoblasts’ adhesion
and proliferation, as well as in vitro formation of mineralized bone matrix in vitro [66], and
therefore, HAp is an ideal candidate to improve the mechanical properties of CS. Shahzadi
et al. showed an enhancement of cell adhesion, spreading, and proliferation of MC3T3-E1
cells on Nylon 6/CS/HAp nanofibers compared with pristine Nylon 6 fibers showing that
by tunning the material with HAp and CS, a better environment for cellular development
is achieved [67]. Excellent cytocompatibility with murine and human pre-osteoblasts was
also observed in response to interaction with a CS/agarose/Hap scaffold [68]. Moreover,
Hap/CS composites induce and sustain osteoinduction and in vivo studies showed that
Hap/CS composites promote bone formation in different bone defects [69,70].
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Figure 7. Fluorescence microscopy micrographs (scale bar 100 µm) highlighting the cytoskeleton
of MC3T3-E1 cells 2 days and 7 days post-seeding on control and Hap/CS/FGF2 samples. Actin
filaments were stained with phalloidin-FITC (green) and cell nuclei with DAPI (blue).

3.4. Osteoinductive Potential Evaluation of HAp-Based Coatings

To assess if the HAp/CS/FGF2 coatings favor and sustain the osteogenic differentia-
tion of MC3T3-E1 pre-osteoblasts towards the osteogenic lineage, cells were exposed to
osteogenic inductors for 21 days, during which time various characteristics of the early and
late stages of this process were screened.
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ALP activity measurement was performed after 14 and 21 days of culture to mon-
itor the osteogenic differentiation process in the early phase as the enzyme activity in-
creases, starting with the early stages of osteoblasts’ commitment [71]. The obtained
results (Figure 8) showed that both experimental samples increased the activity of ALP
over time, but a significantly higher ALP enzyme activity was observed in the media sam-
ples collected from HAp/CS/FGF2-coated samples as compared with the control samples
after 14 (p < 0.05) and 21 days of culture (p < 0.0001). While in the non-coated samples,
a modest increase of the ALP activity was obtained after 21 days of culture as compared
with 14 days of culture, the HAp/CS/FGF2-coated samples significantly enhanced the
enzyme activity. After 3 weeks of culture, the ALP activity in the HAp/CS/FGF2-coated
samples significantly increased (p < 0.0001) compared to 2 weeks of culture. This 4.6-fold
increment of the ALP activity between the 2 time points highlights that in contact with
HAp/CS/FGF2-coated, more and more pre-osteoblasts developed into mature osteoblasts.
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Figure 8. ALP activity assessment in culture media harvested from MC3T3-E1 cells seeded on control
samples and HAp/CS/FGF2 coatings during 21 days of exposure to osteogenic inductors (* p < 0.5;
**** p < 0.0001).

Furthermore, the protein expression of osteogenesis-related markers OPN and OCN
was investigated by fluorescence microscopy, both proteins being produced by differen-
tiated osteoblasts in the late stages of the process (Figure 9). The immunofluorescence
staining to reveal the protein expression of OPN and OCN was carried out on day 14 and
day 21 post-culture initiation and differentiation induction. After 14 days of osteogenic
induction of MC3T3E1 cells, the positive expression of OPN and OCN was observed in
both non-coated and HAp/CS/FGF2-coated samples. However, a significantly lower
ratio of cells expressing OPN and OCN was observed in control samples. In contrast, the
HAp/CS/FGF2-coating stimulated the expression of OPN and OCN, with almost all cells
on the material surface expressing OPN and OCN proteins at different levels. In contact
with the HAp/CS/FGF2 coatings, cells organized tightly in a 3D cellular network, the ex-
pression of both OPN and OCN being lower where cells formed packed cell clusters. After
21 days of osteogenic induction, no increase in the OPN and OCN protein expression was
triggered by cell contact with the reference samples. On the HAp-based coating samples,
cells were organized into a more evolved 3D tubular-like structure, where all cells still
expressed OPN and OCN. Moreover, a small population of cells detached from the 3D com-
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pact cellular network formed on HAp/CS/FGF2 samples and condensate into a 3D cellular
spheroidal structure, where the expression of OPN and OCN were not identified. At this
level, most probably, cells that generated this 3D cellular spheroidal structure transitioned
to the condensation phase and, as a result, lost their active state in which they are able to
synthesize these proteins.
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Figure 9. Fluorescence micrographs (scale bar 100 µm) revealing the protein expression of osteogenic
specific markers OPN (green) and OCN (red) after 14 (A) and 21 (B) days of MC3T3-E1 cells’ exposure
to osteogenic inductors in contact with control surfaces and HAp/CS/FGF2 coatings. Cell nuclei are
stained with DAPI (blue).

To monitor the calcification process of MCT3-E1 cells cultured in contact with non-
coated and HAp/CS/FGF2 coatings and exposed to pro-osteogenic stimuli, alizarin red
S staining was employed (Figure 10). After 14 days of culture, the positive presence of
calcium deposits was identified in both non-coated and coated samples, with a significant
increase (p < 0.001) of the mineralization process in HAp/CS/FGF2 coatings samples.
After 21 days of culture, a significant acceleration of the calcification process was noticed
in control and HAp-based coating samples, sustained by the increase of the number of
calcium deposits as compared with levels registered at 14 days of culture. Even though both
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substrates promoted at this time point to the calcification process, a significant enhancement
(p < 0.001) of the mineralization process was triggered by cell contact with HAp/CS/FGF2
coatings as compared with non-coated samples, as highlighted by the 4.4-fold increase of
the positive cells for alizarin red S staining that show that surface coating promotes the
extracellular matrix mineralization process.
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Figure 10. Quantification of the alizarin red S staining after 14 and 21 days of MC3T3-E1 os-
teogenic differentiation in contact with control samples and HAp/CS/FGF2 coatings (*** p < 0.001;
**** p < 0.0001).

The obtained results show that the novel HAp/CS/FGF2 favors the osteogenic differ-
entiation of MC3T3-E1 pre-osteoblasts in comparison with the reference sample, where a
modest differentiation process was observed. These significant changes are most probably
due to the coating composition, the HAp, and CS facilitating both early and late stages of the
differentiation process by stimulating the ALP activity, and enhancing the mineralization
process [72,73].

4. Conclusions

Suitable coatings were produced for bone tissue engineering applications that lack
toxicity and promote cell adhesion and proliferation while sustaining the differentiation
of pre-osteoblasts towards mature bone cells. The obtained results showed that the bio-
compatibility of the metallic implants is significantly increased by the HAp/CS/FGF2
coating, as highlighted by the superior potential in favoring cell adhesion and sustaining
cell viability and proliferation, exhibiting low cytotoxicity as compared with uncoated
samples. This profile was attributed to the coating’s structure, which was designed based
on HAp and CS, both excellent candidates for biomedical applications precisely for their
low capacity to induce cell toxicity. Proliferative status enhancement of the pre-osteoblasts
cells was attributed to the FGF2 blended in the coating status; this growth factor is asso-
ciated with cell proliferation stimulation. The potential of the HAp/CS/FGF2 coatings
to stimulate osteogenic differentiation of MC3T3-E1 cells exposed to osteogenic induc-
tive conditions was assessed. Different scenarios of the osteogenic differentiation process
were screened and revealed that the HAp/CS/FGF2 coatings endorse the metallic implant
with osteoinductive properties. Cells in contact with the HAp/CS/FGF2-coated sample
showed significantly elevated ALP activity, enhanced in vitro mineralization process, and
expression of osteogenic-related key markers OPN and OCN. Therefore, independent
of the osteogenic inductors supplied continuously, pre-osteoblasts fail to differentiate in
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mature bone cells when lacking the appropriate substrate. The reported results indicate
that the HAp/CS/FGF2 coatings are a suitable approach for improving traditional titanium
metallic implants. This coated-material could be further employed to guide and enhance
bone regeneration.
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