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Abstract: Nanoporous activated carbons-derived from agro-waste have been useful as suitable and
scalable low-cost electrode materials in supercapacitors applications because of their better surface
area and porosity compared to the commercial activated carbons. In this paper, the production of
nanoporous carbons by zinc chloride activation of Washnut seed at different temperatures (400–1000 ◦C)
and their electrochemical supercapacitance performances in aqueous electrolyte (1 M H2SO4) are
reported. The prepared nanoporous carbon materials exhibit hierarchical micro- and meso-pore
architectures. The surface area and porosity increase with the carbonization temperature and achieved
the highest values at 800 ◦C. The surface area was found in the range of 922–1309 m2 g−1. Similarly,
pore volume was found in the range of 0.577–0.789 cm3 g−1. The optimal sample obtained at 800 ◦C
showed excellent electrochemical energy storage supercapacitance performance. Specific capacitance
of the electrode was calculated 225.1 F g−1 at a low current density of 1 A g−1. An observed 69.6%
capacitance retention at 20 A g−1 indicates a high-rate capability of the electrode materials. The cycling
stability test up to 10,000 cycles revealed the outstanding stability of 98%. The fascinating surface
textural properties with outstanding electrochemical performance reveal that Washnut seed would be
a feasible agro-waste precursor to prepare nanoporous carbon materials as a low-cost and scalable
supercapacitor electrode.

Keywords: Washnut seed; chemical activation; micro/mesoporous carbon; supercapacitor

1. Introduction

Supercapacitors or electrical double-layer capacitors (EDLC), the most convenient and
state-of-the-art electrochemical energy storage systems, with outstanding power density (>400 kW kg−1),
unusually long cycle stability (>10,000), rapid charging-discharging with enhanced rate capability
and poor internal resistance, and environmentally friendly and low-cost, have been extensively used
for high power electronic devices [1–10]. In EDLCs, electrolyte ions are adsorbed at the electrode
surface by fast dynamic propagation and form double layers of electrical charges [11]. Supercapacitors
offer greater power densities compared to the traditional batteries and fuel cells; therefore, they have
been implemented in industrial power and energy management systems [12,13]. However, compared
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to batteries, supercapacitors exhibit low energy density, and hence, they have explored less in the
potential technological applications [14,15]. The energy density of supercapacitors is based on the
specific capacitance (Cs) and the real operating potential window (V). The specific capacitance directly
depends on the properties of the materials used for the electrode and potential window depends
on the electrolyte used for the construction of the supercapacitor cells [16,17]. Since the operating
potential window is fixed in aqueous electrolyte (~1.2 V), it is important to improve the structure and
properties of the materials to be used as supercapacitor electrodes so that introducing the novel and
smart electrode materials could exhibit high specific capacitances and also induces good combination
with electrolyte [18,19]. It is important to have a good match between electrolyte ions and pore size of
the electrode material, and wettability of electrode and electrolyte conductivity [20].

Recently, nanoporous activated carbons have received considerable interest as the leading
supercapacitor electrode materials because of the low production cost, outstanding cycle stability,
and excellent surface specific surface area and porosity [21–25]. Different porous carbon materials have
been produced either from synthetic carbon sources or natural biomasses by direct carbonization or
chemical activation methods as well as template method and explored as supercapacitor electrode
materials [26–30]. Of several methods, natural biomass or agricultural wastes-derived nanoporous
carbons by physical and chemical activation methods represent the feasible, scalable, and low-cost
method. Biomass-derived nanoporous activated carbons exhibit very high surface area and offer large
porosity because of their unique hierarchical micro- and meso-porous architectures, and also have
good electrical conductivity and excellent electrochemical stability, which are highly desired in the
emerging electrochemical energy storage supercapacitors applications [31–33].

All the natural biomasses or agricultural wastes are lignocellulose materials containing cellulose,
hemicellulose and lignin, which upon pyrolysis at lower temperatures (200–300 ◦C) under the air or
nitrogen gas atmosphere produces biochar with a low specific surface area and low porosity. Therefore,
the biochar is not useful in supercapacitors. Nevertheless, the biochar can be activated and transformed
into high surface area hierarchical nanoporous carbon materials with well-developed porosity desired
in supercapacitors by the direct carbonization and physical or chemical activation methods [34,35].
The industrial-scale manufacture of nanoporous activated carbons is based on the physical activation of
the biochar at higher temperatures (800–1100 ◦C) under the flow of steam/or carbon dioxide. This is a
simple and cost-effective fabrication process. Physically activated carbons exhibit specific surface area
in the range of 500–1000 m2 g−1. The surface area of the biomass-derived physically activated carbons
can further be enhanced, which can be enabled by the chemical activation method and the resulting
carbon materials achieve a surface area far more than 1000 m2 g−1 [36]. The chemical activation method
includes the impregnation of biomass or biochar with an activating agent and then the mixture is
carbonized in the temperature ranges of 400–1000 ◦C in an inert atmosphere of nitrogen or argon
gas [37]. Activating agents generally include dehydrating salts, such as zinc chloride (ZnCl2), sodium
carbonate (Na2CO3), and also acid and alkali. Lignocellulose undergoes pyrolytic decomposition
upon mixing with these activating agents and porosity enhancement can be achieved as a result of the
depolymerization and dehydration of the biochar. Of several activating reagents, ZnCl2 is a widely
used chemical activating agent, which dehydrates and accelerates the decomposition of carbonaceous
materials during the carbonization process and also restricts the formation of tar giving a high yield
carbon. ZnCl2 contributes to creating a porous structure acting as a template; intercalated ZnCl2 upon
washing creates the void space in the carbon matrix. Recently, using various agricultural wastes or
biomass such as rice husks [38], corncob [39,40], pistachio shell [41], pitch [42], bamboo [43], Batata
leaves and stalks [44], Peanut dregs [45], Lapsi seed (Choerospondias axillaris) [46], etc. high surface area
nanoporous carbons with large porosity, interconnected mesopores and uniform pore size distribution
essentially required in supercapacitor applications have been produced.

In this paper, the synthesis of nanoporous activated carbons from Washnut seed agro-waste by
the ZnCl2 activation method and their electrochemical supercapacitance performance are reported.
Electrochemical measurements were carried out on three-electrode cells in 1 M H2SO4. Pre-carbonized
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Washnut seed powder (char) was impregnated with the activating agent, ZnCl2 at 1:1 weight ratio,
and carbonizations were carried out at different temperatures from 400 to 1000 ◦C. ZnCl2-activated
Washnut seed-derived nanoporous carbons display a hierarchical porous architecture containing both
the micro- and meso-porous and offer a high specific surface area (1309 m2 g−1) and pore volume
(0.789 cm3 g−1). An increase in carbonization temperature increases the surface area giving the
best surface textural properties at 800 ◦C. The working electrode prepared with the optimal carbon
sample showed excellent supercapacitance performance with the high specific capacitance calculated
225.1 F g−1 at 1 A g−1. The electrode sustained 69.6% capacitance retention at a high current density
of 20 A g−1 showing the high-rate capability of the electrode. Furthermore, an outstanding cycling
stability of 98% was recorded after 10,000 charging–discharging cycles demonstrating that Washnut
seed could be an appropriate alternative low-cost biomass for the production scalable carbon electrodes
for high-performance supercapacitors.

2. Materials and Methods

2.1. Preparation of Nanoporous Activated Carbons

Agro-waste Washnut seed was washed with distilled water, dried at 80 ◦C for 6 h and ground into
the powder form in a mechanical crusher. The Washnut seed powder was pre-carbonized at 300 ◦C
in air for 3 h. Pre-carbonized Washnut seed powder was mixed with ZnCl2, a chemical activating
agent at 1:1 weight ratio and carbonizations were carried out at different temperatures (400–1000 ◦C)
under the nitrogen flux (120 cc min−1) in a tube furnace (KOYO, Tokyo, Japan). Temperature ramp and
hold time was set to 5 ◦C min−1 and 3 h, respectively. The obtained nanoporous carbon samples were
treated with a dilute hydrochloric acid solution (0.5 M HCl) for removing the unreacted zinc chloride
followed by distilled water washing (several times). The product was dried in vacuum at 80 ◦C for 6 h
and further grounded into fine powders, and sieved through 250 µm mesh size. The obtained samples
were referred to as WNC_400, WNC_600, WNC_800, and WNC_1000 depending on the carbonization
temperature. For comparison, Washnut seed powder was also directly carbonized at 800 ◦C without
an activating agent and the product is referred to as WNP_800.

2.2. Characterizations

Washnut seed-derived nanoporous carbon materials were subjected to advanced characterizations.
Surface morphology and the pore structure were studied by scanning electron microscopy (SEM:
S-4800, Hitachi Co., Ltd. Tokyo, Japan). The S-4800 was operated at an operating voltage of 10 kV and
a field emission current of 10 µA. SEM samples were platinum-coated (~2 nm) on a Hitachi S-2030
ion-coater, to avoid sample charging effects. For the structural determination, powder X-ray diffraction
(XRD) patterns were recorded on a Rigaku X-ray diffractometer, RINT, Tokyo, Japan, operating the
X-ray diffractometer at 25 ◦C in the range 10 to 50◦ at 40 kV and 40 mA with Cu-Kα radiation.
Graphitization and defects of the carbon samples were studied by Raman scattering (Jobin-Yvon T64000
Raman spectrometer, Edison, NJ, USA). Sample on glass substrate were excited with a green laser
(514.5 nm) at 0.01 mW power and exposed for 30 s. Fourier-transformed infrared (FTIR) spectra were
recorded by KBr pellet method on a Nicolet 4700 (Thermo Electron Corporation, Walthan, MA, USA)
at 25 ◦C. For the determination of surface textural properties (surface areas, pore volumes, average
pore sizes, and pore size distributions, nitrogen adsorption/desorption isotherms were measured
using on Quantachrome Autosorb-iQ2, Boynton Beach, FL, USA: an automatic adsorption instrument.
Carbon sample (~20 mg) was degassed at 120 ◦C for 24 h before measurements and isotherms were
recorded at liquid nitrogen temperature 77.35 K. From the sorption isotherms, Brunauer–Emmett–Teller
(BET) surface area, and pore size distributions were determined by Barrett–Joyner–Halenda (BJH: for
mesopore) method and density functional theory (DFT: for micropore).
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2.3. Electrochemical Measurements

Cyclic voltammetry (CV) and galvanostatic charge-discharge (CD) measurements were carried out
in a three-electrode system in an aqueous (1 M H2SO4) solution at 25 ◦C to study the electrochemical
supercapacitance performances of the Washnut-derived nanoporous activated carbons. Modified
glassy carbon electrode (GCE, ALS Co., Ltd, Tokyo, Japan) was used as the working electrode. For the
working electrode preparation, the GCE was mirror polished with alumina (Al2O3) slurry, sonicated
in acetone for 10 min and cleaned with distilled water. The prepared carbon material was dispersed
in water-ethanol (4:1) mixture (1 mg mL−1) by sonicating the mixture for 45 min in a bath sonicator
(BRANSON 3510, Hampton, NH, USA). The obtained suspension (3 µL) was dropcast onto the GCE
and dried at 60 ◦C for 6 h to evaporate the solvents. Nafion solution (5 µL: 5% in ethanol) was then
added on top of the carbon materials on the GCE surface as a binder and dried at 80 ◦C in vacuum for
12 h before the electrochemical measurements. The CV and CD measurements were carried out on a
CHI 850D work station (CH Instruments, Inc. Austin, TX, USA) using a platinum wire was used as a
counter and Ag/AgCl as the reference electrode.

From CD profiles, specific capacitance was calculated as:

Cs =
I·t

m·V
(1)

where Cs, I, t, m, and ∆V, respectively, represent the specific capacitance (F g−1), discharge current
(A), discharge time (s), mass of active electrode materials (g), and the operating potential window
(Vfinal–Vinitial).

3. Results and Discussion

Surface morphology and pore architecture of the ZnCl2 activated Washnut seed-derived
nanoporous carbon materials were studied by scanning electron microscopy (SEM) imaging. Figure 1
depicts typical SEM images of the activated samples WNC_400, WNC_600, WNC_800, and WNC_1000
both at low- and high-magnification modes. For comparison, SEM images of a directly carbonized
sample (WNP_800) without ZnCl2 is also included. The SEM images at low magnification
(Figure 1a,c,e,g,i) reveal the Washnut seed-derived carbons have irregular morphology with micron-size
particles containing visible microporous surface structure. In the high-magnification SEM images
(Figure 1b,d,f,h,j), the chemically activated carbon surface display hierarchical micro- and meso-pore
architectures. While in the directly carbonized WNP_800 sample, a significantly smaller number of
visible micro/mesopores is observed. A marco-sized interconnected channel like surface morphology
can be visible in the high-magnification images of WNC_400 (Figure 1d), and WNC_600 (Figure 1f).
On the other hand, a rather uniform mesoporous surface with interconnected pore structure can be
seen in the high-magnification SEM images of WNC_800 (Figure 1h), and WNC_1000 (Figure 1j).
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Specific surface area, pore volumes, pore size distribution and average pore size were detected
using nitrogen adsorption/desorption analysis. Figure 2a shows the nitrogen sorption isotherms
of WNP_800, WNC_400, WNC_600, WNC_800, and WNC_1000 measured at 77 K and Figure 2b,c
show the pore size distributions estimated from the BJH and DFT method, respectively. The sorption
isotherms reveal that all the chemically activated samples exhibit mixed Type-I/Type-IV isotherms,
indicating the hierarchical micro- and meso-porous characteristics of the samples [47]. The strong
nitrogen adsorption of chemically activated samples at lower relative pressure (P/P0 < 0.03) is the
indication of plenty of micropores. While the hysteresis loops at higher relative pressures suggests that
the samples also contain mesopore structure. Unlike the chemically activated samples, the sorption
isotherm of the directly carbonized sample, WNP_800, exhibits Type-III isotherm suggesting nonporous
or microporous characteristics of the sample. The pore size distributions profiles (Figure 2b: obtained
by BJH analysis; Figure 2c: obtained by DFT analysis) further confirm the presence of hierarchical micro-
and meso-porous structures in the activated samples, WNC_400, WNC_600, WNC_800, and WNC_1000.
The average micro- and meso-pore diameters are calculated 0.57 and 3.88 nm, respectively. These micro-
and meso-pore distributions over the prepared carbon materials provide a sufficiently large surface
area, where electrolyte ions can be adsorbed and also promotes the fast and easy diffusion in the
electrode surface required in high energy storage systems [48].

Figure 2. (a) Nitrogen sorption (adsorption/desorption) isotherms of WNP_800, WNC_400, WNC_600,
WNC_800, and WNC_1000 measured at 77 K, and the pore size distributions profiles obtained by
(b) Barrett–Joyner–Halenda (BJH) method and (c) density functional theory (DFT) method.

Due to the lack of well-developed porosity, specific surface area of the directly carbonized sample
WNP_800 is low (39.2 m2 g−1). As a result, low energy storage performance is expected compared to
the ZnCl2 activated samples. The surface textural properties of the prepared samples obtained from
the nitrogen sorption analysis are presented in Table 1.

Table 1. Surface textural properties of the Washnut seed-derived nanoporous activated carbons.

Carbon
Sample

SSA
(m2 g−1)

Smicro
(m2 g−1)

Smeso
(m2 g−1)

Vp
(cm3 g−1)

Vmicro
(cm3 g−1)

Dmeso
(nm)

Dmicro
(nm)

WNP_800 39.2 15.3 23.9 0.099 0.037 3.09 −

WNC_400 922.4 836.5 85.9 0.577 0.444 3.88 0.573
WNC_600 1157.6 1080.5 77.1 0.662 0.535 3.88 0.548
WNC_800 1309.8 1196.1 113.7 0.798 0.618 3.88 0.599
WNC_1000 1170.3 1045.9 124.4 0.786 0.601 3.88 0.573

SSA (specific surface area), Smicro (micropore surface area), Smeso (mesopore surface area), Vp (total pore volume),
Vmicro (micropore volume obtained from the DFT method), Dmeso (average mesopore diameter obtained from the
BJH method), and Dmicro (average micro diameter obtained from the DFT method) were obtained from the analysis
of nitrogen sorption isotherms.
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Figure 3a shows the FTIR spectrum of Washnut seed powder precursor materials before
pre-carbonization or ZnCl2 activation. As expected, the precursor contains oxygen-containing
functional groups (–OH, C=O, COOH, ether, phenol and lactones) [33,38,49]. Some of these functional
groups sustain even after carbonization at high temperature. FTIR spectra of the carbon samples
display a broad peak centered nearly at 3435 cm−1 (Figure 3b), which can be attributed to the O−H
functional groups and a weak FTIR peak approximately at 1634 cm-1 come from the aromatic C=C
stretching vibration commonly observed in the activated carbons [38,49].
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Powder X-ray diffraction (pXRD) and Raman scattering and analysis were also carried out to
further evaluate the structural features of the Washnut seed-derived nanoporous carbon materials.
Figure 4 shows the pXRD patterns and Raman scattering spectra of the prepared carbon samples.
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The pXRD patterns (Figure 4a) display characteristics of amorphous carbon with two broad peaks
approximately at ~23 and 43◦ equivalent to the (002) and (100) planes observed in graphitic carbon
particles. Broad (002) diffraction profile at a diffraction angle of ~23◦ indicates that the Washnut
seed-derived nanoporous carbon materials have poorly ordered amorphous structure and also smaller
graphitic clusters of the samples [50]. Raman spectra (Figure 4b) of all the samples exhibit D and
G bands approximately at ~1350 and ~1588 cm−1, respectively [50]. The D band corresponds to the
disordered structure of carbon induced by defects and impurities, while G band corresponds to the
ordered graphitic layer structure. The presence of obvious D and G bands confirms the formation of
activated carbons. The intensity ratio of G and D Raman bands (IG/ID) measures the graphitization
degree of the carbons. The IG/ID ratio is found in the range of 1.008 to 1.1042 characteristics of graphitic
carbons commonly observed in activated carbon materials with a low degree of defects [50,51].

Electrochemical supercapacitance performance of the prepared activated nanoporous carbon
materials was performed in a three-electrode system in aqueous electrolyte (1 M H2SO4). Cyclic
voltammetry (CV) profiles were measured in a wide scan rates of 5 to 500 mV s−1 and galvanostatic
charge-discharge (CD) curves were recorded at from 1 to 20 A g−1 at 25 ◦C. Figure 5a compares the CV
profiles of WNP_800, WNC_400, WNC_600, WNC_800, and WNC_1000 at 5 mV s−1 as typical example.
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As can be seen in Figure 5a, all the CV profiles exhibit quasi-rectangular shape characteristics of
the EDLC behavior [50,52]. Depending on the carbon sample, the current differs. The lowest current
of the directly carbonized sample, WNP_800, shows the poor supercapacitance performance of the
materials, which can be attributed to the poor surface textural properties (surface area and porosity).
The current collection under the CV profile increases with temperature up to 800 ◦C, i.e., from WNC_400
to WNC_800 sample and declines slightly in the WNC_1000, which is directly correlated to the surface
area and porosity of the carbon samples (see Table 1). Due to the highest surface area (plenty of
micropores), the WNC_800 electrode offers a large surface area for the adsorption of electrolyte ions.
Furthermore, due to large porosity, and interconnected hierarchical porous structure, the electrode also
offers an easy path and fast diffusion of the electrolyte ion to the electrode surface and thus showed
excellent energy storage capacity. Figure 5b–f shows the CV profiles of directly carbonized sample
WNP_800, and ZnCl2 activated samples WNC_400, WNC_600, WNC_800, and WNC_1000 at different
scan rates from 5 to 500 mV s−1. The area under the CV profiles increases with scan rate sustaining the
semi-rectangular shape of the CV curve even at the high scan rate of 500 mV s−1 indicating the fast
electrolyte ions diffusion [46–48,50].

The electrochemical supercapacitance performances of the WNP_800, WNC_400, WNC_600,
WNC_800, and WNC_1000 was also studied performing galvanostatic charge-discharge (CD)
measurements over a wide range of current densities (1 to 20 A g−1). As seen in Figure 6a, triangular
shape CD curves, which indicate the EDLC behavior of the electrode material are commonly observed
in the CD profiles of WNP_800, WNC_400, WNC_600, WNC_800, and WNC_1000 electrodes at
1 A g−1 [50,53]. Here again, the CD profile of the optimal sample, WNC_800, has the longest
discharging time suggesting the maximum energy storage capacity compared to the electrodes.
Using Equation (1), the CS measurements were calculated 18.3 F g−1 (WNP_800), 71.9 F g−1 (WNC_400),
155.8 F g−1 (WNC_600), 225.1 F g−1 (WNC_800), and 188.7 F g−1 (WNC_1000), which is highly
interrelated with the porosity of the materials; the higher the microporosity the better the energy
storage capacity (see Table 1). In Figure 6b–d, the CD profiles vs. current densities of selected samples
are shown as typical examples. All the CD profiles represent characteristics of the EDLC and sustain
high capacity even at 20 A g−1, a high current density. All the chemically activated nanoporous carbon
materials display more than 50% capacitance retention achieving outstanding 69.6% for the optimal
sample (Figure 6e), which demonstrates the high rate capability of the electrode material required
in supercapacitor devices. Furthermore, cycling stability tested for the 10,000 charging-discharging
cycles revealed outstanding stability with a very low capacitance loss of about 2%–3% (Figure 6f)
indicating that the Washnut derived-nanoporous carbons have a huge potential and can be explored as
supercapacitor electrodes [54,55].
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(c) WNC_800, and (d) WNC_100 as typical examples, (e) specific capacitance (Cs) vs. current density,
and (g) cycling stability performances of the WNC_800 and WNC_1000 electrodes for 10,000 cycles as
typical example.

The specific capacitance of the Washnut-derived carbon electrode is comparable with the specific
capacitances of other nanoporous carbon materials prepared from different biomass (Table 2).

Table 2. Comparison of specific capacitance of the Washnut carbon electrode with other biomass-derived
nanoporous carbon electrodes.

Biomass Electrolyte Current
Density/Scan Rate

Specific Capacitance
(F g−1)

Reference

Washnut 1 M H2SO4 1 A g−1 225.1 This work
Bio-decomposited product

(Humic acids) 6 M KOH 0.05 A g−1 209 [26]

Cotton 3 M KOH 0.3 A g−1 221.7 [29]
Bamboo 1 M H2SO4 5 mV s−1 256 [31]
Corn cob 0.5 M H2SO4 0.5 A g−1 210 [39]

Lapsi seed 1 M H2SO4 1 A g−1 284 [46]
Beech (Fagus sylvatica) 1 M KOH 20 mA g−1 133 [56]
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The obtained specific capacitance of 225.1 F g−1 is not sufficient for the design of high energy
density advanced supercapacitors [32,33,48,55]. Several previous examples have demonstrated that
the electrochemical supercapacitive performance of the nanoporous carbon materials depends on the
various important parameters such as surface area, porosity, pore size distribution, the hierarchy on
the pore (micro/mesopore) architecture, and interconnectivity of the mesopores for easy electrolyte
ion diffusion, conductivity, and wettability of the electrode surface [48]. Tailoring micro-porosity,
nitrogen-doping, and composite preparation with pseudocapacitive metal oxide nanoparticles would
offer effective strategies to enhance the supercapacitance of biomass-derived nanoporous carbons to
address the social demands.

4. Conclusions

In conclusion, nanoporous activated carbon materials have been prepared by ZnCl2 activation of
Washnut seed powder and their electrochemical supercapacitance performances have been investigated
in an aqueous electrolyte (1 M H2SO4) on a three-electrode cell. Specific surface area and pore volume
were found in the ranges 922–1309 m2 g−1 and 0.577–0.789 cm3 g−1, respectively, depending on
carbonization temperatures. Because of the excellent textural properties including high surface areas,
well-developed porosity, and bimodal micro- and meso-pore architecture with graphitic pore walls,
the Washnut seed-derived nanoporous activated carbons display outstanding supercapacitance such
that the electrode achieved a high specific capacitance of 225.1 F g−1 at a current density of 1 A g−1

and retained a high rate capability of 69.6% at 20 A g−1. Furthermore, the electrode showed excellent
cycling stability sustaining 98% capacity retention even after 10,000 charge-discharge cycles. Therefore,
it can be concluded that as an agricultural waste, Washnut seed denotes a suitable biomass for the
scalable production of high surface area and large porosity carbons essentially desired as the electrode
materials for high-performance supercapacitors.
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