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Adrenocorticotropic hormone together with arginine vasopressin and oxytocin, the 
neuropeptides regulating the stress response and the hypothalamic-pituitary-adrenal 
axis activity, are known to modulate aggressive behavior. The functional role of the 
adrenocorticotropic hormone immunoglobulin G autoantibodies in peptidergic signaling 
and motivated behavior, including aggression, has been shown in experimental and in 
vitro models. This review summarizes some experimental data implicating autoantibodies 
reactive with stress-related peptides in aggressive behavior.

Keywords: human aggression, adrenocorticotropic hormone, oxytocin, vasopressin, autoantibodies, 
hypothalamic-pituitary-adrenal axis, cortisol, epitopes

INTRODUCTION
In humans, aggression has developed to become part of our defense and protection, but it may also 
be a symptom reflecting certain medical conditions. As a state of mind, it may be directed towards 
objects, animals, or human beings, without any obvious motive, and aggression could be a means 
of self-infliction or be a result from illegal use of drugs and anabolic steroids. It may be elicited by 
provocation (1, 2) and be detrimental to a person's health through stress as in e.g. cardiovascular 
disorders (3, 4). As stress-related, aggression involves cortisol and activity in the hypothalamic–
pituitary axis (HPA axis) (5).

In his theory of the general adaptation syndrome, Hans Selye emphasized the role of the 
immune system following the response to stress (6). Since then, we have learned that stress is a 
broad category including some aversive events which can elicit an aggressive response (1), and 
that the immune system interferes with normal and pathological brain functioning and behavior 
(7). Pheromones and odors from the urine have been associated with aggressive behavior (8) and 
over the years, scientists have had several hypothesis such as the frustration-aggression hypothesis 
proposed as early as in 1941 (9). It is currently accepted that aggressive behavior can be viewed as 
a strategy by humans and animals to cope with stress, implying that neurobiological mechanisms 
involved in stress responses should underlie both physiological and pathological aggression 
(10–13). Studies of the HPA axis, has later linked the brain's control of cortisol secretion via 
pituitary release of the adrenocorticotropic hormone (ACTH) (14). Both deficient and increased 
activation of the HPA axis have been associated with aggressive behavior and Cortisol suppresses 
the activity of the HPA axis through a mechanism of negative feedback. Cortisol also modulates 
behavioral modalities including anxiety and distress (15), and diminishes the production 
of testosterone (16). Berkowitz (17) was convinced that high aggressive drive together with 
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personality factors could explain aggression displacement whereas 
hypo-arousal-associated aggressiveness, a proposed characteristic 
of antisocial personality disorder, has been linked to glucocorticoid 
deficiency (18). In contrast, hyper-arousal-driven aggressiveness, 
which could be related to the acute exaggerated glucocorticoid 
response to stress, can be seen in conditions such as post-traumatic 
stress disorder (PTSD) and intermittent explosive disorder. In fact a 
study showed that more than twice the individuals with diagnosed 
intermittent explosive disorder (IED) met the PTSD criteria, 
compared to individuals without IED(19).

After the introduction of the neuropeptide concept (20, 21) 
further studies have revealed that peptide hormones are the key 
modulators of the homeostasis, stress response, and motivated 
behavior (22, 23). In this regard, not only the centrally produced, 
but also peripherally derived peptides can access the brain (24), 
including transport across the blood-brain barrier (25), and 
diffusion together with macromolecules via the perivascular spaces 
(26). The circumventricular organs in the brain, with their extensive 
and highly permeable capillaries, represent important sites of action 
of peripheral peptide hormones, e.g. the median eminence located 
in the vicinity of the ventromedial hypothalamic nucleus involved 
in the regulation of aggressive behavior (27). Thus, aggressive 
behavior may involve specific brain circuitries and activation of the 
HPA axis as a mechanism of altered response to stress, however, the 
biological background is so far not fully understood (28–31).

Immunoglobulins (Ig) or autoantibodies (autoAbs) reactive 
with neuropeptides and peptide hormones have been identified in 
humans and rodents showing associations of their plasma levels 
with aggressive or antisocial behavior, anxiety, and depression. 
For instance, in 2002 Fetissov et al. described IgG reactive with 
melanocortin peptides alpha-melanocyte-stimulating hormone 
(α-MSH) and ACTH in patients with eating disorders (ED) (32), 
results which later were followed by data showing increased 
plasma levels of ACTH-reactive autoAbs in subjects with 
increased aggressive and antisocial behavior (33). Most recently, 
a modulatory role of ACTH-reactive IgG in ACTH-induced 
cortisol secretion was demonstrated (34).

Understanding the modulatory role of autoAbs reactive with 
stress-related peptide hormones represents a new approach to 
aggressive behavior. Few studies are published on this immuno-
modulated behavior, and the purpose of this review is to 
present the most recent knowledge integrating such autoAbs in 
neurobiological mechanisms of aggression.

SUBTYPeS OF AGGReSSIve BeHAvIOR
There are long traditions of claiming that aggression falls into 
proactive or reactive types and that the basis for aggressive behavior 
is to inflict harm (12). Human aggression varies from purely 
reactive cases with unplanned fighting and strong emotions, to 
purely proactive, premeditated, and deliberate efforts to harm (35).

Reactive aggression is a response to a threat or a frustrating 
event, with the goal being only to remove the provoking stimulus. 
Reactive aggression is always associated with anger, as well as 
with a sudden increase in sympathetic activation and a failure 
of cortical regulation. In animals, reactive aggression is typically 

a response by the defender without any proactive elements (35), 
such as when a fight concerns food, whereas proactive aggression 
is seen rarer in most species.

Proactive aggression may refer to a planned attack with a 
purpose driven by an external or internal reward, and the 
proactivity is characterized by attention to a consistent target, 
and often by a lack of emotional arousal. Psychologists often 
distinguish between two different types of aggression, impulsive 
and instrumental. Impulsive or affective aggression with strong 
anger is not planned and it usually occurs during the heat of 
the moment, whereas in instrumental or predatory aggression, 
the aggressive behavior is goal oriented and thus normally 
well planned.

In this review, focus is set on the type of aggression seen in 
criminals sentenced to imprisonment due to their impulsive 
violent and extreme antisocial actions, but also where there are 
elements of both proactivity and premeditation, as well as of 
impulsivity and other personality issues. Consequently, some 
forms of aggressive behavior can be difficult to classify as being 
either one or the other, since an analysis of the kind of aggression 
observed in practice, often contains elements from various 
defined categories.

Hypothalamic-Pituitary-Adrenal Axis
The HPA axis refers to the interaction between the hypothalamus, 
the pituitary gland and the adrenal cortex, and the secretion of 
hormones involved in the stress response. This interaction is 
important for the early development and later consolidation of 
human behavior.

Neuronal co-localization of functionally related peptides is 
important for an immediate physiological response in which 
more than one transmitter participates. Neuropeptides, normally 
involved as a part of long-term response to stress, e.g. a trauma 
or an allergic- or inflammatory reaction, need more time to 
upregulate than classical neurotransmitters (36). Corticotropin-
releasing hormone (CRH) links the HPA axis (14) to the brain's 
response with stress required behavior, and its activity may thus 
influence anxiety and stress reactions (15). For human beings, 
the impact of stress already experienced during a child's early 
rearing environment may influence the development of later 
psychopathology and possibly identify hormonal substrates 
related to behavioral changes as the child gets older (37). Recent 
data have revealed that the HPA axis and associated stress-related 
behavior can be influenced by immunoglobulins or natural 
autoAbs reactive with peptide hormones involved in regulation 
of the HPA axis activity (34). Furthermore, experimental 
studies have shown enhanced activation of the hypothalamic 
paraventricular nucleus and amygdala in glucocorticoid-
deficient rats after exposure to the resident intruder (RI) stress 
protocol (33, 38).

CORTICOTROPHIN-ReLeASING HORMONe
Specific neurons of the paraventricular nucleus (PVN) of 
the hypothalamus secrete CRH in response to stress. Under 
physiological conditions, its secretion varies during the 24 h 
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cycle of the day; being highest in the morning and lowest 
during the night. The stimulation of ACTH secretion into 
the blood stream leads to the release of cortisol from the 
adrenal cortex (39). This is an automatic regulation based on 
negative feedback so that the blood levels of cortisol shuts 
down the relevant CRH release activity in the hypothalamus, 
thereby preventing CRH levels from becoming too high 
(40). It is related to aggressive behavior as part of the stress 
response (41).

ADReNOCORTICOTROPHIC HORMONe 
ACTH consists of 39 amino acids and is a peptide originating 
from the precursor pro-opiomelanocortin (POMC) (42), 
synthetized mainly in the pituitary and in the brain. CRH 
stimulate the synthesis and secretion of ACTH and act in 
synergy with the central nervous modulatory effects of 
arginine vasopressin (AVP), releasing stored ACTH from 
corticotropic cells. ACTH binds to the melanocortin type 2 G 
protein-coupled receptor (MC2R) expressed in the fasciculate 
and reticular zones of the adrenal cortex (39, 43), and triggers 
intracellular signaling pathways regulating the adrenal cortisol 
production. Acute administrations of ACTH fragments 
increase fighting in mice, independently of corticosterone 
secretion (44), but ACTH injections in isolated mice may also 
decrease their aggressiveness (45). It was shown that there is a 
link between ACTH and aggressive behavior (46), and recently 
this link has been strengthened through studies on ACTH 
autoAbs (34).

CORTISOL
Cortisol is a steroid and the body's main stress hormone, released 
from the adrenal cortex. One of the first studies described a model 
in which the HPA axis was linked to aggression (47) and later, 
cortisol and aggression were seen in wrestlers who after fighting 
showed an increased level in serum cortisol (48). Cortisol is 
known from general physiology to be released during stress (49), 
and it contributes positively to the hormonal balance throughout 
the body, and most of our cells have cortisol receptors. Examples 
of cortisol functions are control of blood sugar levels, regulation 
of metabolism, anti-inflammatory effects, help to forming our 
memory, and depression (50).

MeLANOCYTe-STIMULATING HORMONe
The peptide hormone and neuropeptide melanocyte-stimulating 
hormone (MSH), is produced by the brain and pituitary and 
consists of α-MSH, β-MSH, and γ-MSH, which are in the family 
of melanocortin peptides. The sequence of α-MSH consists of 
the 13 first amino acids of the ACTH molecule with antibody 
cross-reactivity as a consequence since antibodies to ACTH and 
α-MSH are not specific and will detect POMC, but only to an 
unknown degree (51).

Experiments on male mice showed that when a dominant/
subordinate pair was injected 15 min before the testing with 
α-MSH, the attacks on the α-MSH-treated animal were more 
frequent compared to when the MSH was administered 24 h 
before testing (52) indicating that α-MSH increases aggressive 
behavior. In the context of externalizing behavior, α-MSH 
involvement in stress (32) and aggression has been associated 
with melanocortin peptides since injection of α-MSH or ACTH 
fractions (amino acids 4–10) (45) induced aggression in mice. In 
addition, the melanocortin peptide pharmacophore also seems 
necessary for the pro-aggressive ACTH effects.

OXYTOCIN
Oxytocin (OT) and AVP are both nine amino acid peptide 
hormones (53) and their sequences differ by two amino acids 
(54). OT is acting as a neuromodulator in the brain regulating 
social and sexual behavior. It is involved in anxiety and stress 
response, and in aggression (22, 55, 56). OT has protective 
effects against stress and studies have shown that it modulates 
neural circuitry for social cognition and fear in humans (57), and 
may disrupt the common output from the amygdala to the rat 
brainstem effector sites of the autonomic nervous system (58). 
Intracerebral OT modulation is known to inhibit stress-induced 
activity of the HPA axis (59, 60), causing behavioral and neural 
effects such as reduced anxiety (61). Administration of OT with 
concomitant social support during stress exposure provides the 
lowest cortisol response and an anxiolytic effect (62).

ARGININe vASOPReSSIN
AVP has several peripheral and central functions, but relevant 
to this review regarding aggressive behavior, AVP functions as 
a neuromodulator. Its role in the central nervous system (CNS) 
seems to depend on the region in which AVP is released, including 
modulation of aggressive behavior (22, 56, 63, 64). AVP and CRH 
are found to co-exist in CRH nerve terminals (65, 66), and together 
with CRH, AVP strongly potentiates its ACTH-releasing activity 
(67, 68). As to the regulation, the function of the HPA axis has 
shown that in acute stress, CRH is a major player causing increased 
ACTH secretion, whilst in chronic stress; AVP modulation takes 
over as the main stimulator of ACTH release (69).

During an RI test, release of AVP, specifically in the hypothalamic 
mediolateral septum, was found to regulate intermale aggression 
in laboratory rats specifically bred for low (LAB)- or high (HAB)- 
anxiety‐related behavior (63). During the test exposure, LAB 
residents showed more aggression than the HAB residents, and the 
septal AVP release was found decreased in high-aggressive LAB 
rats compared to HAB males. Studying the patterns of AVP release 
within the hypothalamic mediolateral septum in the two respective 
groups of rats, revealed that changes in AVP release varied with 
intermale aggressive behavior. Thus, high levels of aggressive 
behavior, as seen in LAB residents, were associated with decreased 
release of AVP in the septum. On the other hand, the low levels 
of aggression found in HAB residents were associated with an 
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increase in septal AVP release (63). Furthermore, during exposure 
to a non-social stressor, LAB rats responded with a stronger rise 
in plasma ACTH compared with HAB rats (70–72), reflecting a 
generally lower stressor susceptibility in the latter group, and at 
the same time, presenting a low trait anxiety. These findings are 
somewhat in line with the evidence that innate anxiety is inversely 
related to the level of intermale aggressive behavior (46).

IMMUNOGLOBULINS
Ig are natural antibodies produced by B1 cells, including the processes 
in germ-free animals after activation by both T cell-dependent and 
independent mechanisms (73). Ig's are divided into five classes or 
isotypes of which IgG is the most common type of antibody.

An autoAb is an antibody directed against one or more of the 
individual's own proteins. The natural autoAbs are part of normal 
physiology of the innate and adaptive immune defense, and may 
in addition be involved in several homeostatic functions (74), e.g. 
in removal of old erythrocytes (75), and fighting any invaders or 
toxins in the body, including e.g. bacteria and viruses. The various 
IgG autoAbs are relatively stable throughout life as opposed to IgG-
reactive to bacterial antigens, demonstrating individual differences 
which in turn increase as we get older (76). Natural autoAbs of 
immunoglobulin M (IgM), IgG and immunoglobulin A (IgA) classes 
are present in all human beings without health problems (74, 77), 
they are polyreactive, and bind with different affinities to a variety of 
unrelated antigens, including those from micro-organisms.

Although the functional role of peptide hormone-reactive 
autoabs still needs to be further clarified, it appears that autoabs 
play a role in the transportation of peptide hormones and 
cytokines (78–81), and they seem to protect these peptides from 
degradation by plasma enzymes, thereby preserving biological 
activity (82).

ACTH-ReACTIve AUTOABS
The few studies on ACTH IgG autoAbs in human aggression 
shown in Table 1 are those we are left with after thorough 
research in available databases.

It has been shown that autoAbs reactive with peptide 
hormones of the HPA axis are naturally present in rodents and 
in healthy humans (84), and may contribute to a more general 
regulation of motivated behavior, emotion, and stress-response.

Results from RI tests have shown an ACTH increase only for 
the intruders, but not in the aggressive residents (85). Reduced and 
increased stimulation of the HPA axis are to be linked to aggressive 
behavior (85), possibly reflecting a coping strategy to stress exposure 
(11, 12). With this in mind, increased plasma levels of IgG ACTH 
autoAbs have been found in perpetrators with increased aggressive 
and antisocial behavior, thereby suggesting a possible association 
(33). Experiments on violent criminals and non–violent individuals 
describe elevated levels of ACTH autoAbs which may block ACTH 
secretion and an instant cortisol release during stress. The blocking 
and non-blocking IgG effects (34) have confirmed a role for ACTH 
autoAbs in the HPA axis response, but at the same time makes it 
less likely that aberrant IgG modulation of ACTH induced cortisol 
response can be causal for violent aggression.

A link between autoAbs and behavior (33) is supported by a 
study on the general population which found increased levels of 
ACTH-reactive IgG in adolescent males with antisocial behavior. 
Psychological stress-induced cortisol release in adolescents has 
been found to be negatively associated with anti-ACTH IgG 
levels (83) and hence, it is possible that some ACTH-reactive IgG 
may have the analogue blocking properties as described, thereby 
preventing ACTH-induced activation of cortisol.

In the latest study on aggression and ACTH autoAbs, ACTH-
reactive IgG were found elevated in prisoners sentenced for 
common crimes, but not in the extremely violent aggressors 
(34). An ACTH epitope overview showed that IgG binding 
for the cortisol responders in the group of non-aggressive 
controls, occur at the ACTH sequence containing the MC2R 
pharmacophore KKRRP (amino acids 11–24). Violent aggressors 
showed no binding to the ACTH amino acids 11–24, but instead 
to the amino acids 1–13, a section containing the melanocortin 
pharmacophore HFRW (34) (see Figure 1).

Some previously mentioned associations between ACTH 
autoAbs and α–MSH (32) and the blocking and non-blocking 
properties of the ACTH autoAbs in behavioral conditions (33) 
have been confirmed in the latest study, and a further step 

TABLe 1 | Selected studies on ACTH-reactive IgG autoAbs and human aggressive behavior.

Year Title Authors Conclusive comments

2018 “Autoantibodies reactive to ACTH 
can alter cortisol secretion in both 
aggressive and non-aggressive 
humans”.

Vaeroy, et al (34) “ACTH-reactive plasmatic IgGs exhibit differential epitope preference in controls and 
violently aggressive subjects. IgGs can modulate ACTH-induced cortisol secretion” 
and the stress response. There were different epitopes between non-aggressive and 
violent criminals

2013 “Corticotrophin (ACTH)-reactive 
immunoglobulins in adolescents in 
relation to antisocial behavior and 
stress-induced cortisol response”.

Schaefer, et al. (83) “High total and free ACTH IgG are associated with higher antisocial behavior scores 
in boys. In girls, antisocial behavior is associated with low free ACTH IgG levels. 
Stress-induced cortisol release is associated with free ACTH IgG in boys and with 
total ACTH IgG in girls. ACTH IgG levels are related to antisocial behavior and HPA 
axis response to stress in adolescents”.

2006 “Aggressive behavior linked 
to corticotrophin-reactive 
autoantibodies”.

Fetissov, et al. (33). “High levels of ACTH-reactive autoAbs and altered levels of oxytocin- and 
vasopressin-reactive autoAbs in aggressors may interfere with the neuroendocrine 
mechanisms of stress and motivated behavior. A new biological mechanism of 
human aggressive behavior” (33) is suggested.
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has been made, linking different epitope binding sites to non-
aggressive subjects and extreme violent aggressors (34).

A lower association rate of IgG for ACTH, found in boys with 
antisocial behavior indicate that such autoAbs are different, not 
only by their plasma levels, but also possibly by their molecular 
structure (83). Consequently, since questions regarding potential 
differences in molecular structure still have to be clarified, final 
conclusions are premature

In a recent study applying the RI test, ACTH IgG injections from 
severely aggressive criminals shortened the latency for the first 
attack without affecting the total number of the resident's attacks 
(34). In addition, aggressive behavior was reduced in resident mice 
receiving ACTH together with IgG from non-aggressive controls 
(34). Other studies on rodents indicate that a rapid positive 
feedback exists, in which a social challenge or stressors unrelated 
to aggression can activate the HPA axis (86), (87).

It has been found that administration of ACTH alone, 
peripherally in resident mice, did not alter their aggressive 
behavioral expression significantly, but when co-injecting ACTH 
together with IgG from violent aggressors, the latency of the 
first attack was reduced without affecting the total number of 
attacks (34). Furthermore, the aggressive behavior was reduced 
in resident mice who received the combination of ACTH and 
IgG from non-aggressive controls. Such behavioral responses 
are supportive for a role where peripheral IgG regulates both 
impulsive and defensive aggressive behavior (34), and applying 
this model on healthy individuals, a result could be that plasma 
IgG may suppress natural aggressiveness (34).

OT-ReACTIve AUTOABS
Relevance of autoAbs reactive with OT to human behavior has 
been shown by statistically significant correlation between levels 

of anti-OT IgG in plasma and conditions with symptoms of 
anxiety (88). Plasma anti-OT IgM has been found to correlate 
with interceptive awareness, maturity fears (89). Lower plasma 
levels of OT reactive IgG autoAbs were also found in patients 
suffering from moderate levels of major depressive disorder, 
levels which correlated negatively with the Montgomery and 
Aasberg Depression Rating Scale (MADRS) (90).

Elevated levels of IgM autoAbs against OT are found in male 
subjects with conduct disorder (CD) and in prison inmates as 
compared with non-aggressive healthy controls (33). Considering 
OT's modulatory role in the HPA axis, increased levels of 
OT-reactive autoAbs may possibly interfere with OT-mediated 
inhibition of HPA axis during stress response in the hypo-arousal 
type of aggressive behavior frequently characterizing CD. Various 
levels of OT and AVP reactive autoAbs in patients with CD suggest 
that the observed changes may result in an increased AVP to OT 
ratio and consequently to aggressive and antisocial behavior. 
Furthermore, significant changes in the respective levels of OT- 
and AVP-reactive autoAbs may represent a factor influencing the 
central mechanisms behind aggressive behavior (33).

AvP-ReACTIve AUTOABS
Studies of autoAbs in mild and moderate depression have shown 
that mood changes can be associated with changes in antibody levels. 
However, such changes were not seen in binding the affinity of OT- 
and AVP-reactive autoAbs. Moreover, the levels of AVP-reactive 
autoAbs are associated with cortisol secretion (90). Low levels of 
total plasma AVP-reactive IgG autoAbs have been found in a greater 
proportion of depressed patients, and the free AVP IgG autoAbs 
showed positive correlation with plasma cortisol after physical 
activity (90). Similarly to anti-OT IgG, plasma levels of AVP-reactive 
IgG correlated with symptoms of anxiety and somatization (88) and 

FIGURe 1 | Plasma ACTH-reactive IgG modulate ACTH-induced cortisol secretion. Legend to Figure 1. ACTH-reactive IgG are naturally present in human plasma 
and modulate ACTH-induced cortisol secretion depending on the ACTH binding epitope. In the non-aggressive subjects IgG bind mainly the central part (11–24) of 
ACTH, containing the MC2R pharmacophore, while IgG in violent aggressors display increased affinity for ACTH and bind mainly its N-terminal part (1–13). Some IgG 
from both the non-aggressive and aggressive study persons have both been shown to prevent ACTH-induced cortisol secretion from the adrenal cortex cells, such 
inhibitory effect was associated with low IgG binding to the central ACTH part (11–24), i.e. similar to the binding pattern characterizing IgG of violent aggressors (34).
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that the levels of CRH-reactive IgG in plasma of healthy subjects 
correlate positively with obsessive or hypochondriac behavior, but 
negatively (as anti-AVP IgG) with somatization (88).

The central effects, including behavior, of AVP is as a 
neuromodulator. In male subjects with CD, both plasma levels 
of IgG and IgM classes of autoAbs reactive with AVP, have been 
found lower than in non-aggressive controls, but in some prison 
inmates, anti-AVP IgG levels were found elevated (33). If a role of 
the autoAbs is to protect and transport the peptide, such changes 
of levels of AVP-reactive autoAbs, would signify a diminished 
AVP-modulatory activation of the HPA axis and thus, being 
in agreement with the hypo-arousal theory of antisocial and 
aggressive behavior (91) in CD (33).

α-MSH-ReACTIve AUTOABS
Recent data suggest that α-MSH autoAbs can interfere with normal 
signal transduction in the melanocortin type 4 receptors, involved 
in the regulation of feeding behavior (32, 92). AutoAbs reacting 
with α-MSH could play a pathogenic role in psychiatric-behavioral 
problems in subjects with ED (93), but the presence of α-MSH- 
and/or ACTH- reactive autoAbs does not imply the presence of 
dysfunctional feeding behavior, the molecular properties of such 
autoAbs underlie their physiological or pathogenic role (93). 
Stress and gut microbiota composition may represent common 
denominators for production of α-MSH- and ACTH- reactive 
antibodies with various binding properties (80, 93, 94).

Whether or not autoAbs can pass across the blood–brain barrier 
(BBB) or reach the brain possibly via circumventricular organs, is 
a matter of controversy. It has been claimed that certain regulatory 
peptides may cross the BBB in both directions (95) and that such 
passing can be blocked by corresponding antibodies (96). There 
is a study (97) showing that the tritiated synthetic ACTH (4–10) 
analogue, Met-Glu-His-Phe-Pro-Gly-Pro has been detected in brain 
extracts at two time points (97), which according to the hypothesis 
suggests penetration into the brain tissues (97). Thus, further 
evidence is needed to strengthen any claims that the BBB function 
allows crossing of autoAbs, including supportive evidence of their 
potential modulatory role in peptide transport to the brain.

CONCLUSIONS
Since the initial finding linking aggressive behavior to 
corticotrophin autoAbs by showing their high plasma levels in 
prisoners and in subjects with CD, there has been a development. 
Indeed, ACTH IgG were significantly associated with antisocial 
behavior and the HPA axis response in stressed adolescents. As 

such, higher plasma levels of ACTH IgG were present in boys with 
increased antisocial behavior. Girls however, showed a different 
picture, where the antisocial behavior was associated with low 
ACTH IgG levels. Moreover, recent studies were able, at least partly, 
to clarify the molecular mechanisms underlying an observed link 
between ACTH autoAbs, stress response, and aggressive behavior. 
It was found that in some subjects that ACTH IgG may prevent 
ACTH-induced cortisol secretion i.e. may disrupt a normal HPA 
activation. Such IgG blocking properties were associated with 
specific ACTH binding epitopes which were more prevalent 
in prisoners who had committed acts of violent aggression. 
Furthermore, experiments in mice showed ability of plasmatic 
IgG of aggressive subjects to facilitate ACTH-induced attacks in 
the resident-intruder test. Taken together, these data support a 
mechanistic role of ACTH-reactive autoAbs in the stress-related 
aggressive behavior. Moreover, since autoAbs reactive to others 
than ACTH stress-related peptides, such as OT and VP, were 
found at different levels in subjects with various neuropsychiatric 
disorders, it is likely that they may also modulate stress-induced 
aggressive behavior. Further studies should clarify the functional 
effects and origin of such autoAbs aiming at a better understanding 
of the neurobiological mechanism of aggressive behavior.

LIMITATIONS AND STReNGTHS
A limitation of this review is the low number of studies published on 
immunobiology of human aggression including peptide hormone-
reactive autoAbs. Supportive for further research on ACTH IgG in 
aggression is that results from studies in other clinical conditions 
and disorders have underlined the functional significance for 
autoAbs also in a topic like aggressive behavior. In this regard, we 
believe that recent data from studies on the microbial antigens and 
peptide hormone cross-reactivity as well as the gut microbiota-
brain axis will influence future design of studies.
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