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Abstract—Determining the variations in SARS-CoV-2 variant is considered main factor for understanding
the pathogenic mechanisms, aid in diagnosis, prevention and treatment. The present study aimed to deter-
mine the genetic variations of SARS-CoV-2. The sequences of SARS-CoV-2 were obtained from National
Center for Biotechnology Information (NCBI) and studied according to the time of isolation and their origin.
The genome sequence of SARS-CoV-2 accession number NC_045512 which represented the first isolated
sequence of SARS-CoV-2 (Wuhan strain) was used as the reference sequence. The obtained genome
sequences of SARS-CoV-2 were aligned against this Wuhan strain and variations among nucleotides and pro-
teins were examined. The sequence of SARS-CoV-2 accession number MT577016 showed very low homol-
ogy 98.75% compared to Wuhan strain NC_045512. The analysis identified 301 nucleotide changes, which
correspond to 258 different mutations; most of them 80% (207/258) were missense point mutations followed
by 17.1% (44/258) silent point mutations. The critical mutations occurred in viral structural genes;
16.7% (43/258) mutations reported in S gene and 1 missense mutation was observed in E gene. Our finding
showed the lowest homology and relatively distant phylogenetic relation of this SARS-CoV-2 variant with

Wuhan strain along with high frequency of mutations including those in spike S and envelope E genes.
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1. INTRODUCTION

Six human coronaviruses had been identified before
the emergence of SARS-CoV-2 (Razaet al., 2020; Wang
et al., 2020) SARS-CoV-2 caused COVID-19 infec-
tion which is a more pathogenic form in comparison
to the earlier identified SARS-CoV (2002) and Middle
East respiratory syndrome coronavirus (MERS-CoV,
2013) (Naqvi et al., 2020). CoVs is enveloped, single
strand and positive-sense RNA virus, have the largest
RNA viral genome, (Lokman et al., 2020; Lu et al., 2020;
Naqvi et al., 2020). The genome size of the SARS-
CoV-2 varies from 29.8kb to 29.9 kb and followed the
same pattern of gene characteristics of known CoVs
(Khailany et al., 2020). The first study of full length
genomic sequence of SARS-CoV-2 was done in China
by Yongzhen Zhang team (Wu et al., 2020); it revealed
that SARS-CoV-2 encodes 27 proteins from 14 ORFs
including 15 non-structural, 4 major structural and

8 accessory protein. Spike glycoprotein (S), mem-
brane (M), envelope (E) and nucleocapsid (IN) are the
four major structural proteins of SARS-CoV-2 (Lok-
man et al., 2020;Naqvi et al., 2020; Wang et al., 2020),
the products of these structural genes play important
roles in viral pathogenicity (Lokman et al., 2020). The
accessory proteins are encoded by ORF8, ORF7a,
ORF7b, ORF6 and ORF3a genes (Khailany et al., 2020).

However, RNA viruses tend to harbor error prone
RNA dependent RNA polymerases which make the
occurrence of mutations and recombination events
rather frequent, this might play a role in the evolution
of SARS-CoV-2. A recent study using phylogenetic
network analysis has shown that the virus appears to
be evolving into three distinct clusters; A and C being
found mostly in Europe and America along while B
being most common type in East Asia (Uddin et al.,
2020). The study on genomic variation of SARS-CoV-2
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is very important to analyze the disease course, patho-
genesis, diagnosis, treatment and prevention (Wang
et al., 2020), moreover it gives insights into the pattern
of spread, genetic diversity and the dynamics of evolu-
tion (Khailany et al., 2020).). The present study investi-
gated the molecular variations of Telangana CoVID-19
variant MT577016.

2. METHODS

This study is an in Silico case report study; it is part
of a project aimed to study the genetic variations of
SARS-CoV-2 isolated in India; the study covered pub-
lished sequences over a period of six months from March
2020 to September 2020. The genome sequences of
SARS-CoV-2 were obtained from National Center for
Biotechnology Information (NCBI) Virus Variation
Resource repository (https://www.ncbi.nlm.nih.gov/
genbank/sars-cov-2-seqs/) and these strains had been
determined according to the time of isolation and their
origin. The sequence of SARS-CoV-2 accession num-
ber NC_045512 which represented the original Wuhan
strain was used as the standard sequence. Genome
sequences of SARS-CoV-2 was aligned against the
Wuhan strain. The study was done using NCBI
Nucleo-BLAST (NCBI) and variations of the nucleo-
tides and proteins were stated. During collection of the
data for this project; the sequence of SARS-CoV-2
accession number MT577016 showed very low homol-
ogy when compared with Wuhan reference strain,
other variants isolated from the same geographical
area (India) and global variants therefore the changes
in the nucleotides and mutations of this genome was
determined.

Evolutionary relationships: the evolutionary rela-
tionship was inferred using the Neighbor-Joining
method (Saitou and Nei, 1987). The optimal tree is
shown. The percentage of replicate trees in which the
associated taxa clustered together in the bootstrap test
(500 replicates) is shown next to the branches (Felsen-
stein, 1985). The evolutionary distances were computed
using the Maximum Composite Likelihood method
(Tamura et al., 2004) and are in the units of the num-
ber of base substitutions per site. This analysis involved
30 nucleotide sequences of SARS-2. All ambiguous
positions were removed for each sequence pair (pair-
wise deletion option). There were a total of 29903
positions in the final dataset. Evolutionary analyses
were conducted in MEGA X (Kumar et al., 2018).

3. RESULTS

The SARS-CoV-2 accession number MT577016
which is the subject of this study was submitted by Yadav
etal., 2020 on 14 March 2020 to Maximum Containment
Laboratory, National Institute of Virology, Pashan, Pune,
Mabharashtra (India) and it got the accession number on
21 September 2020 (https://www.ncbi.nlm.nih.gov/
nuccore/MT577016.1?report=GenBank). This iso-
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late was named Telangana CoVID-19 variant in this
study, as it was isolated in Telangana (India).

All the sequences of SARS-CoV-2 isolated in India
showed high similarity (99.95—99.99%) to Wuhan
strain NC_045512 except Telangana CoVID-19 vari-
ant which showed 98.75% homology. The Telangana
CoVID-19 variant showed 98.75% homology com-
pared to the Wuhan strain NC_045512. The analysis
identified 301 nucleotide changes; most frequent
nucleotide changes were T: A 120(39.9%), followed by
C:A 62(20.6%) and T: G 53(17.6%) whereas the less
frequent nucleotide changes showed in G:T and C:T
(Fig. 1). These nucleotide change correspond to 258
different mutations; most of them 80.6% (208/258)
were missense point mutations (Figs. 2a, 2b), followed
by 17.1% (44/258) silent point mutations. The major-
ity of these mutations 76.4% (197/258) occurred in the
open reading frame 1 a/b (ORF1 a/b) while the
ORF3a showed 4.7% (12/258) and few mutations
1.6% (4/258) occurred in 3'UTR terminal loop. The
critical mutations occurred in viral structural genes;
16.7% (43/258) mutations reported in S gene; 8 were
silent and 34 missense. One missense mutation was
observed in E gene, whereas no mutation was detected in
membrane (M) gene and nucleocapside (N). Table 1
showed the mutations associated with the Telangana
variant MT577016. As presented in Figs. 2a, 2b, the
majority of the missense mutations that resulted in
the change in codons are associated with the ORF1ab
and relate to the changes in the corresponding amino
acids encoded for several proteins such as leader pro-
tein, 3C-like proteinase, RNA-dependent RNA poly-
merase, helicase, 3'-5' exonulease, endoRNAse, 2'-O-
ribose methyl transferase.

The Phylogenetic tree showed that Telangana
CoVID-19 variant was located in separate node
whereas all other SARS-CoV-2 variants clustered
together closely in comparative analysis with Indian
(Fig. 3a) and global variants (Fig. 3b), the accession
number of each sequence was mentioned. Number at
nodes indicates percent bootstrap value above 50 sup-
ported by more than 1000 replicates. The bar indicates
the Jukes-Cantor evolutionary distance.

4. DISCUSSION

SARS-CoV-2, like other coronaviruses, contains a
nonstructural gene with proofreading activity (Deng
et al., 2020). As a typical RNA virus the average evo-
lutionary rate for Co-Vs could be 10-4 substitute per
bp per year during each replication cycle (Ahmed-
Abakura, 2020; Wang et al., 2020)However, knowl-
edge of genomic interindividual variability and genetic
variations could explain the discrepancies of spread,
severity, and mortality of COVID-19 (Ahmed-Abakur
and Alnour, 2020; Wang et al., 2020). As reported the
present study determined the comparative genomic
variations associated with the Telangana CoVID-19
variant.
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Fig. 1. Showed the frequency and types of nucleotide changes.

The genomic sequences of SARS-CoV-2 had been
released by the worldwide scientific community in the
last months to understand the molecular characteris-
tics and evolutionary origin of this virus. Several
authors determined the genetic variations of SARS-
Co-19, and contrary to our findings all of them
reported high homology. The Telangana CoVID-19
variant showed the lowest homology 98.75% com-
pared to the published data and revealed high inci-
dence mutations (302 nucleotides were changed and
258 different mutations were detected). Khailany
et al., 2020 analyzed 95 SARS-CoV-2 complete genomes
and reported only 116 mutations. While among 66
SARS-CoV-2 variants Ahmed-Abakur and Alnour
2020 reported 143 mutations and showed one variant
as hyper mutated variant as it displayed 28 different
point mutations. Further, Lu et al., 2020 studied 10
genome sequences of 2019-nCoV and showed more
than 99-98% homology whereas Wang et al., 2020 ana-
lyzed 95 full-length genomic sequences of SARS-

CoV-2 and reported that the homology among differ-
ent isolates was extremely high (99.91%-100%) at the
nucleotide level. In addition, Ceraolo and Giorgi,
2020 studied 56 SARS-CoV-2 genomes and showed
high level of conservation (>99% sequence identity)
and pointed only two core positions of high variability,
one a silent variant in the ORFlab and the other in
ORF8 which resulted in two variants, ORF8-L and
ORF8-S. Recently new variant of SARS-CoV-2 (VUI
202012/01) characterized with multiple spike protein
mutations has been identified in United Kingdom that
lead to huge increase in COVID-19 cases (with an esti-
mated rise in reproductive number (R) by 0.4) (Euro-
pean Centre for Disease Prevention and Control,
2020). Thus the Telangana Covid 19 variant could be
considered unique variant of SARS-2 based on
sequence identity, frequency and occurrence of muta-
tions, particularly as it displayed high incidence of
mutations on structural genes which may affect the
structural of the structural proteins and subsequently

Table 1. Distribution and site of mutations among Telangana variant MT577016

Site & type of mutation 5'UTR ORFlab S gene ORF3a E gene 3'UTR Total
5'UTR 1 0 0 0 0 0 1
Silent 0 34 8 2 0 0 44
Missense 0 162 34 10 1 0 207
Nonsense 0 1 0 0 0 0 1
Unknown 0 0 1 0 0 0 1
3'UTR 0 0 0 0 0 4 4
Total 1 197 43 12 1 4 258
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Fig. 2. (a) Showed the landscape (ORF1ab) of Telangana CoVID-19 (MT577016) genome representing amino acid changes. The
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Fig. 3. (a) Showed the phylogenetic affiliation of Telangana CoVID-19 (MT577016) variant and sequences of closest phylogenetic
neighbors which were retrieved from India. (b) Showed the phylogenetic affiliation of Telangana CoVID-19 (MT577016) variant
and sequences of closest phylogenetic neighbors which were retrieved from different countries.
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the pathogenicity. However, the emergence of the new
variant could be attributed to; prolonged infection
which may lead to accumulation of immune escape
mutations at high rate, virus adaptation processes that
occurs in susceptible animal species and then could
transmitted back to humans (European Centre for
Disease Prevention and Control, 2020).

Our study indicated that most of mutation
occurred on ORF1 followed by S gene; these findings
were in alignment with many reports in term of site of
mutations (Ahmed-Abakur and Alnour, 2020; Khai-
lany et al., 2020). However spike glycoprotein play
important role during the entry of coronaviruses into
host cells (Chang et al., 2012; Lokman et al., 2020;
van Pesch et al., 2020; Shu and Gong, 2016), therefore
any mutation in this gene might change the pattern of
pathogenicity. It is understood that the hotspot muta-
tions have the ability to cause changes in the amino
acid sequences (Wang et al., 2020), resulting in signif-
icant changes in the stability, favoring various interac-
tions, and conformational diversity (40. Our finding
agreed with Khailany et al. 2020 where they did not
detected mutations in N and M genes and disagreed
with Wang et al., 2020 who stated that SARS-COV-2
is relatively conserved, especially in the E gene.

CONCLUSIONS

This study presented evidence of a reportedly existing
SARS-CoV-2 variant, which has shown an extraordi-
nary ability to mutate even at the structural genes.
Further studies are required to elucidate the exact role
of genetic variations in SARS-CoV-2 that has chal-
lenged the human race, unprecedented in the recent
history.
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