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Abstract

In recent years, drug sensitivity prediction has garnered a great deal of attention due to the

growing interest in precision medicine. Several computational methods have been developed

for drug sensitivity prediction and the identification of related markers. However, most previous

studies have ignored genetic interaction, although complex diseases (e.g., cancer) involve

many genes intricately connected in a molecular network rather than the abnormality of a sin-

gle gene. To effectively predict drug sensitivity and understand its mechanism, we propose a

novel strategy for explainable drug sensitivity prediction based on sample-specific gene regu-

latory networks, designated Xprediction. Our strategy first estimates sample-specific gene

regulatory networks that enable us to identify the molecular interplay underlying varying clinical

characteristics of cell lines. We then, predict drug sensitivity based on the estimated sample-

specific gene regulatory networks. The predictive models are based on machine learning

approaches, i.e., random forest, kernel support vector machine, and deep neural network.

Although the machine learning models provide remarkable results for prediction and classifica-

tion, we cannot understand how the models reach their decisions. In other words, the methods

suffer from the black box problem and thus, we cannot identify crucial molecular interactions

that involve drug sensitivity-related mechanisms. To address this issue, we propose a method

that describes the importance of each molecular interaction for the drug sensitivity prediction

result. The proposed method enables us to identify crucial gene-gene interactions and

thereby, interpret the prediction results based on the identified markers. To evaluate our strat-

egy, we applied Xprediction to EGFR-TKIs prediction based on drug sensitivity specific gene

regulatory networks and identified important molecular interactions for EGFR-TKIs prediction.

Our strategy effectively performed drug sensitivity prediction compared with prediction based

on the expression levels of genes. We also verified through literature, the EGFR-TKIs-related

mechanisms of a majority of the identified markers. We expect our strategy to be a useful tool

for predicting tasks and uncovering complex mechanisms related to pharmacological profiles,

such as mechanisms of acquired drug resistance or sensitivity of cancer cells.
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Introduction

Drug sensitivity prediction and related markers identification are critical tasks in precision

medicine. In recent years, drug response prediction has drawn increasing attention in the vari-

ous research fields because of growing interest in precision medicine and the availability of

pharmacogenomics datasets from large-scale projects (e.g., Genomics of Drug Sensitivity in

Cancer, PRISM drug repurposing resource).

Although various computational methods (e.g., machine learning including deep neural

network) have been developed for drug response prediction [1–3], molecular interactions have

been largely ignored in the previous studies. Heterogeneous genetic networks are crucial to

understanding complex mechanisms of diseases (e.g., cancer), because the molecular mecha-

nisms underlying diseases reflect the perturbations in the specific function of molecules in the

complex cellular network, rather than a consequence of an abnormality in a single gene [4].

Thus, the molecular interactions underlying a disease are crucial to understand the mechanism

related to drug sensitivity of cell lines and can provide vital information for drug response pre-

diction. The effectiveness of the networks-based analysis has been proven in various research

works, e.g., cancer prediction, drug combinations identification, and protein-protein interac-

tion [5–7]. However, only a few studies have been devoted to drug sensitivity prediction based

on gene networks [8–12]. Kim et al. [10] proposed a prediction method (DrugGCN) based on

deep learning approaches. The DrugGCN considered protein-protein interaction (PPI) net-

work and mapped gene expression levels to each gene on PPI network. Then, the constructed

graph with expression levels of genes was used as input of convolution network to predict drug

responses. Sokolov et al. [11] developed a prediction model based on the network constrained

regularization method, called generalized elastic net. The method incorporates gene networks

into elastic net penalty, and thus encourages smoothness of the coefficients on features con-

nected in network. Yang et al. [12] proposed a novel strategy to learning multiple tasks (predic-

tion of multiple drugs) and identifying feature interaction based on the Macau. They

generated the interaction matrix between feature of drugs and features of cell lines, and pre-

dicted drug response based on interaction of protein targets of drug and the pathway’s activity.

The existing studies on network-based drug sensitivity prediction were conducted by an aver-

aged molecular network for all samples, i.e., cell line specific characteristics of molecular inter-

action were ignored. However, the strengths of the relationships between genes vary

depending on cell line characteristics, e.g., cancer progression and drug sensitivity, and the

dynamic genetic networks reflecting characteristics of cell lines provide crucial information

for personalized medicine.

This study proposes a novel strategy for explainable drug sensitivity prediction based on

sample-specific gene regulatory networks, called Xprediction. First, we estimate sample-spe-

cific gene regulatory networks under varying conditions of samples, i.e., the n networks are

estimated for n cell lines. Then, the estimated multiple networks are used as input features of

the model for drug sensitivity prediction. We consider machine learning approaches, i.e., ran-

dom forest (RF), kernel support vector machine (kSVM), and deep neural network (DNN), for

the predictive model. Although the machine learning approaches, including deep neural net-

works, provide effective prediction accuracy, interpretation of the prediction results by the

approaches remains challenging. That is, the machine/deep learning approaches suffer from

the black box problem (i.e., the approaches cannot explain why the model reaches a certain

conclusion). In the black box model, our concern is the verifying impact of input variables on

the outputs and their importance, because the result can be explained by the importance of the

input features. To understand the importance of each molecular interaction on the drug sensi-

tivity prediction result, we propose a method that measures the impact of molecular
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interactions on drug sensitivity prediction. In the proposed method, the importance of molec-

ular interactions is measured by comparison of prediction results obtained with and without

the gene-gene interaction.

We apply the proposed Xprediction to predict five EGFR tyrosine kinase inhibitors (TKIs),

afatinib, dacomitinib, erlotinib, gefitinib, and osimertinib, where gefitinib and erlotinib are the

first, afatinib and dacomitinib are the second, and osimertinib is the third-generation

EGFR-TKIs. The five EGFR-TKIs were approved to treat EGFR mutation-positive non-small

cell lung cancer (NSCLC) and have a common target gene, EGFR. Erlotinib has an additional

target gene, NR1I2, and afatinib is also used for ERBB2 and ERBB4 -targeted treatment. From

the practical perspective, our interest lies in determining whether a cell responds sensitively to

a drug or not, rather than the sensitivity value of a cell. Thus, we consider the binary classifica-

tion problem of drug sensitive and resistant cell lines. For 536 cancer cell lines, we first esti-

mate drug sensitivity-specific gene networks under varying EGFR TKI sensitivity of cell lines.

We then predict drug sensitivities of other EGFR TKIs not used for gene network estimation.

Our strategy based on sample-specific gene regulatory networks shows effective prediction

results compared with prediction based on expression levels of genes. We then identified cru-

cial molecular makers for EGFR TKIs prediction. The identified crucial markers show differ-

ent regulatory systems between drug sensitive and resistant cell lines. The EGFR TKIs related

mechanisms of the identified markers are verified through the literature. To the best of our

knowledge, this study is the first on explainable drug sensitivity prediction based on sample-

specific gene networks.

The remainder of this paper is organized as follows: The Materials and methods section

introduces datasets used for drug sensitivity-specific gene regulatory networks estimation and

EGFR TKIs prediction. We then introduce a sample-specific gene network estimation method

and propose a method for explainable drug sensitivity prediction (Xprediction). We then

describe EGFR TKIs prediction results and the identified markers. Conclusions are provided

in the Discussion section.

Materials and methods

Datasets

Drug sensitivity-specific gene regulatory networks were constructed by gene expression data

and drug sensitivity obtained from the Cancer Dependency Map (DepMap) Potal (https://

depmap.org/portal/). RNA-expression of 19,144 genes and 1,305 cell lines was obtained from

the CCLE dataset (20Q). Drug sensitivity (DS) of 4,686 compounds and 578 cell lines was

obtained from the PRISM repurposing primary screen. CRISPR-Cas9 screening describing

gene dependency was also downloaded. From 19,144 genes, we extract 1,168 genes that

matched with 1,732 candidate regulators (i.e., 1,183 transcription factors, 47 nuclear receptors

and 502 miRNA) used in [13], as well as 1,000 genes with the highest variance in expression

levels, where 70 genes are duplicated in the two extracted genes sets. We consider the extracted

2,098 genes as candidate regulators and 19,144 genes as targets.

We focused on the five EGFR-TKIs, afatinib, dacomitinib, erlotinib, gefitinib, and osimerti-

nib, and extracted 536 cell lines by matching cell lines of gene expression, CRISPR-Cas9

screening, and the sensitivities of the EGFR-TKIs without missing values. We then constructed

536 afatinib sensitivity-specific gene networks for 536 cell lines. For the other four EGFR-TKIs,

all 536 networks were estimated.

PLOS ONE Xprediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0261630 May 18, 2022 3 / 22

https://depmap.org/portal/
https://depmap.org/portal/
https://doi.org/10.1371/journal.pone.0261630


Methods

Assuming X1; . . . ;Xp 2 R
n are the expression levels of p = 2, 098 possible regulators that

control transcription of the expression levels of lth target gene Yl 2 R
n, we considered the

following varying coefficient model [14] to construct a gene regulatory network of αth sam-

ple,

Yl ¼
Xp

j¼1

bjlðmaÞ � Xj þ εl; ð1Þ

where εl is a random error vector εl = (εl1, . . ., εln)T, which is assumed to be independently

and identically distributed with mean 0 and variance σ2, and βjl(mα) is the regression coeffi-

cient of jth regulator gene (Xj) on lth target gene (Yl) for the αth sample having modulator

(i.e., drug sensitivity) value M = mα.

The varying coefficients were estimated by the following kernel based L1-type regularization

method, called NetworkProfiler [13],

LðβlaÞ ¼
1

2

Xn

i¼1

fyil �
Xp

j¼1

bjlðmaÞxijg
2Kðmi � majblÞþ PðβlaÞ; ð2Þ

where P(βlα) is the L1-type penalty (e.g., elastic net [15]) and

Kðmi � majblÞ ¼ expf
� ðmi � maÞ

2

bl
g ð3Þ

is the Gaussian kernel function with a bandwidth bl. The kernel function is used to group cell

lines according to the drug sensitivity, and it controls the weight of each cell line on the model-

ing. For each EGFR-TKI, we estimate 536 gene networks consisting of 19,144 target and 2,098

regulator genes (i.e., 536 matrices consisting of 19,144 rows and 2,098 columns) by using Net-

workProfiler. Then, we performed drug sensitivity prediction based on the constructed drug

sensitivity-specific gene networks.

For each drug sensitivity-specific gene network, we focused on genes that have the highest

correlation between drug sensitivity and their CRISPR-Cas screening. In other words, we com-

puted the correlation between CRISPR-Cas screenings of 18,119 genes and drug sensitivity,

and extracted each 182 genes that had the top 1% highest correlation for five EGFR-TKIs,

respectively. For target genes matched with each 182 genes, we computed the following regula-

tory effect in the αth sample as follows [13]:

REalj ¼ b̂ ljðmaÞ � xaj; for j ¼ 1; . . . ; 2098; ð4Þ

where xαj is the expression level of jth regulator on αth cell line. For the αth cell line, the regula-

tory effect matrix Ra ¼ ðREa11; . . . ;REaLJÞ
T
2 RL�J was computed, where L is the number of

the selected genes and J is the number of regulator genes (i.e., L = 182, 180, 182, 181, 182 for

afatinib, dacomitinib, erlotinib, gefitinib, osimertinib, respectively, and J = 2, 098).

We defined drug sensitive and resistant cell lines based on 10th (10P) and 90th (90P) percen-

tiles of PRISM repurposing primary screen, i.e., sensitive cells: DS<P10 and resistant cells:

DS>P90, (P10 values are -1.31, -1.36, -1.31, -1.40, -1.30 and P90 values are 1.06, 1.04, 0.98,

0.59, 0.82 for afatinib, dacomitinib, erlotinib, gefitinib and osimertinib, respectively). We then

constructed a network-based predictive model based on the following kernel support vector

machine (kSVM), random forest (RF), and neural networks (NN).
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• Kernel support vector machine (kSVM)

SVM is the most widely used machine learning approach for regression prediction and clas-

sification. SVM finds boundaries correctly classifying the observations by maximize the dis-

tance separating the elements of classes. For nonlinear classification tasks, SVM was

extended by applying kernel function based on kernel trick, i.e., kernel SVM, as follows

max
d

Xn

i¼1

di �
1

2

Xn

i¼1

Xn

h¼1

didhDSiDShGðri; rhÞ

( )

ð5Þ

subject to di � 0 i ¼ 1; . . . n;
Xn

i¼1

diDSi ¼ 0; ð6Þ

where DSi is a class label of ith cell line and ri is reshaped L × J-dimensional vector of Ri. In

our analysis, we used the following Radial Basis Function (Gaussian kernel function),

Gðri; rhÞ ¼ expð� jjri � rhjj
2
=2s2Þ ð7Þ

where σ defines the width of the kernel.

• Random forest (RF)

Random forest is an ensemble learning model based on a combination of multiple decision

trees that are constructed by bootstrapped training samples. We first generate B boot-

strapped samples composed of different features. The B decision trees are created using each

B bootstrapped samples. After the multiple trees are generated, the classification results from

the trees are voted for the most popular class.

• Deep neural networks (DNN)

Artificial neural network (ANN) is a machine learning algorithm inspired by neural net-

works in brain. ANN consists of three types of layers of nodes, i.e., input layer, a hidden

layer, and output layer depending on the function. The input layer connects the external

input and the values of predictors are transferred to units of hidden layers. The hidden layers

are layers of nodes between input and output layers, and the output layer is the final layer

that directly outputs prediction results. DNN is an ANN with multiple hidden layers. In our

analysis, a six hidden layered, fully-connected feed-forward neural network was used. We

used the ReLU activation function on the hidden layers, and the Soft-max function was used

on the output layer.

In the models, the multiple regulatory effect matrices obtained from a drug (e.g., afatinib)

sensitivity-specific gene networks were considered as input features, and sensitivity of other

EGFR-TKIs (e.g., dacomitinib, erlotinib, gefitinib and osimertinib) were considered as the

response variables.

However, the machine learning approaches suffer from the black box problem, making it

difficult for explainable drug sensitivity prediction. To settle on the issue, we propose a method

describing the importance of molecular interaction on drug sensitivity prediction. To measure

the feature’s impact on the prediction results, we constructed a model by removing a feature

(i.e., removing molecular interaction between lth target and jth regulator genes) individually

and predicting the drug sensitivity of cell lines (ŷðl;jÞ). We then defined prediction accuracy

Acc ðŷðl;jÞÞ of the model. The impact of each molecular interaction was measured by comparing

with prediction accuracy based on all molecular interactions Acc ðŷÞ as follows.

Let Nit is a number of iterations for computing prediction accuracy from the randomly con-

structed cross validation dataset, AccðŷÞand sŷ are mean and standard deviation of the

PLOS ONE Xprediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0261630 May 18, 2022 5 / 22

https://doi.org/10.1371/journal.pone.0261630


prediction of accuracies in Nit iterations, respectively. In the model without (l, j) interaction,

corresponding notations are Nðl;jÞit , Accðŷðl;jÞÞand sŷðl;jÞ , respectively. We performed the follow-

ing t-test,

Tlj ¼
AccðŷÞ� Accðŷðl;jÞÞ

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nit
þ

1

Nðl;jÞit

s
ð8Þ

where sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sŷ ðNit � 1Þþs

ŷðl;jÞ
ðNðl;jÞit � 1Þ

NitþNðl;jÞit � 2

r

. Then, the feature’s impact (crucialness of (l, j)th interaction:

Ilj) on the drug sensitivity prediction was measured by the p.value of the t-test. The detail is

given as follows,

Algorithm 1 Xprediction: explainable drug sensitivity prediction
1: The predictive models were constructed by kSVM, RF, and NN.
2: Predict drug sensitivity by k-fold cross validation (CV), i.e., the

average of the prediction accuracies of k validation sets was given
as: Acc ðŷÞ.

3: Step 2 is iterated Nit times for randomly constructed k-fold CV
datasets.

4: If l � L then do
5: If j � J then do
6: Delete (l, j) elements from regulatory effect matrices.
7: Predict drug sensitivity without (l, j) elements: Accðŷðl;jÞÞ.
8: Steps 7 is iterated Nðl;jÞit times for randomly constructed k-fold CV

datasets.
9: Perform t-test between AccðŷÞ and Acc ðŷðl;jÞÞ obtained from Nit and Nðl;jÞit

iterations, and compute p.value.
10: Extract crucial molecular interaction based on p.value.

Results

In this section, we have described explainable EGFR-TKIs sensitivity prediction results. We

predicted the sensitivities of EGFR-TKIs based on the constructed drug sensitivity-specific

gene regulatory networks. For example, we considered four predictive models for predicting

gefitinib sensitivity, where inputs of the models were the sensitivity specific gene networks of

four drugs (i.e., afatinib, dacomitinib, erlotinib, and osimertinib). The predictive model was

generated using 10-fold cross-validation. The first 90% of cells were selected as a training set,

while the remaining 10% cells were used as a validation set. For each validation set, the follow-

ing prediction accuracy was measured,

Acccv ¼
TP þ TN

TPþ TN þ FPþ FN
; cv ¼ 1; ::; 10; ð9Þ

where TP and TN are the numbers of true positive/negative (an outcome where the model cor-

rectly predicts the sensitive/resistant cell), and FP and FN are the numbers of false-positive/

negative (an outcome where the model incorrectly predicts the sensitive/resistant cell), respec-

tively. We computed the average of the prediction accuracy of 10 validation sets, i.e.,

AccðŷÞ ¼
P10

cv¼1
Acccv, and the process was repeated 50 times. We also performed drug sensi-

tivity prediction based on expression levels of all 19,144 genes and randomly selected L = 182,

180, 182, 181, 182 genes for afatinib, dacomitinib, erlotinib, gefitinib, osimertinib, respectively,

without consideration of molecular interaction (Expression (all) and Expression (L) in column
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“Network” of Table 1), and 50 repeated 10-fold cross-validations to compute prediction

accuracy.

Furthermore, we consider gene interactions (pan-cancer interactions) existed in all cell

lines (1034, 1119, 874, 1373 and 1095 edges are extracted from afatinib, dacomitinib, erlotinib,

gefitnib and osimertinib sensitivity specific networks, respectively). Then, we perform EGFR

TKIs responses prediction based on the 1,361 genes in the pan-cancer interactions (Expression

(Pan) in Table 1). All pan-cancer interactions extracted from five EGFR TKIs sensitivity spe-

cific gene networks can be found in the S1 Table.

Table 1 shows the average of the accuracies and F1 score from the 50 iterations, where the

column “Drug” indicates predicted sensitivity of the drug and the column “Network” indicates

the modulator for drug sensitivity-specific gene networks estimation. As shown in Table 1,

network-based prediction provides effective results for drug sensitivity prediction compared

with that based on the expression levels of genes. Especially, the afatinib sensitivity-specific

gene network showed outstanding performances overall. Among the machine learning

approaches, the kSVM provided the best performances for network-based drug sensitivity pre-

diction. The prediction results imply that molecular interaction is crucial to drug sensitivity

prediction and may have crucial information to uncover the mechanisms of drug sensitivity of

cell lines, which cannot be extracted by expression levels of genes.

Interpret EGFR-TKIs sensitivity prediction results

To interpret the EGFR-TKIs prediction result, we measured the impact of each gene-gene

interaction (i.e., edge) on the prediction results by using Xprediction. We focused on the fol-

lowing best models for the drug sensitivity prediction of each EGFR-TKIs.

• afatinib: kSVM based on dacomitinib sensitivity specific networks

• dacomitinib: Random forest based on afatinib sensitivity specific networks

• erlotinib: kSVM based on afatinib sensitivity specific networks

• gefitinib: kSVM based on osimertinib sensitivity specific networks

• osimertinib: kSVM based on afatinib sensitivity specific networks

For the best models of each drug, we computed prediction accuracies based on the network

without the (l, j)th interaction Accðŷðl;jÞÞ, where the prediction accuracy is measured by 50

times repeated 10-fold cross validation processes. We then performed t-test between Accðŷðl;jÞÞ
and AccðŷÞ from the 50 interactions and computed the p.value of each gene-gene interaction.

The edges having a p.value smaller than 0.01 are considered as crucial molecular interactions

for drug sensitivity prediction. The overall framework of explainable EGFR TKIs prediction

based on Xprediction is given in Fig 1. For the dacomitinib sensitivity prediction, many edges

were extracted. In contrast, the least number of edges were identified for afatinib prediction

(i.e., afatinib: 15, dacomitinib: 549, erlotinib: 249, gefitinib: 325, and osimertinib: 223 edges

were extracted as a crucial feature). The distribution of importance of the edges is given in

Fig 2. All crucial edges and their crucialness (i.e., p.values) can be found in the S2 Table. We

visualize importance of gene-gene interaction for afatinib and dacomitinib sensitivity predic-

tion. For dacomitinib, we extracted the crucial 50 edges (i.e., edges corresponding to the small-

est 50 p.values) to visualize. Fig 3 shows the crucialness of the molecular interactions and their

gene regulatory networks. Edge thickness and darkness of color represent the crucialness of

each edge on prediction, where the crucialness was measured based on a p.value. Node size

represents hubness (i.e., node sizes based on the degree of connectivity of the nodes) of each
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Table 1. Drug sensitivity prediction accuracy based on gene networks.

Network Method Drug

afatinib dacomitinib erlotinib gefitinib osimertinib

Accuracy afatinib NN 0.935 0.922 0.885 0.925

KSVM 0.946 0.924 0.887 0.927

RF 0.948 0.897 0.853 0.912

dacomitinib NN 0.956 0.887 0.872 0.888

KSVM 0.962 0.897 0.888 0.902

RF 0.951 0.867 0.850 0.890

erlotinib NN 0.874 0.918 0.872 0.899

KSVM 0.897 0.889 0.887 0.872

RF 0.865 0.864 0.840 0.846

gefitnib NN 0.846 0.841 0.812 0.891

KSVM 0.836 0.849 0.817 0.898

RF 0.823 0.859 0.807 0.871

osimertinib NN 0.901 0.921 0.826 0.886

KSVM 0.892 0.923 0.865 0.906

RF 0.883 0.898 0.809 0.888

Expression (all) NN 0.809 0.721 0.771 0.771 0.761

KSVM 0.825 0.740 0.761 0.752 0.790

RF 0.815 0.712 0.759 0.761 0.822

Expression (L) NN 0.770 0.767 0.724 0.807 0.765

KSVM 0.762 0.754 0.757 0.823 0.778

RF 0.763 0.770 0.719 0.813 0.813

Expression (Pan) NN 0.765 0.758 0.720 0.805 0.769

KSVM 0.759 0.746 0.754 0.824 0.779

RF 0.758 0.750 0.729 0.813 0.822

F1 score afatinib NN 0.888 0.912 0.931 0.918

KSVM 0.891 0.914 0.943 0.922

RF 0.850 0.885 0.941 0.908

dacomitinib NN 0.860 0.879 0.954 0.882

KSVM 0.881 0.885 0.960 0.894

RF 0.836 0.863 0.949 0.880

erlotinib NN 0.868 0.871 0.911 0.892

KSVM 0.884 0.890 0.879 0.865

RF 0.824 0.850 0.844 0.833

gefitinib NN 0.801 0.842 0.828 0.882

KSVM 0.788 0.818 0.829 0.887

RF 0.780 0.800 0.844 0.857

osimertinib NN 0.883 0.806 0.889 0.915

KSVM 0.903 0.836 0.880 0.913

RF 0.882 0.772 0.868 0.883

Expression (all) NN 0.815 0.717 0.768 0.768 0.771

KSVM 0.822 0.731 0.773 0.773 0.774

RF 0.813 0.699 0.755 0.755 0.808

Expression (L) NN 0.806 0.719 0.778 0.763 0.767

KSVM 0.823 0.730 0.780 0.760 0.770

RF 0.811 0.695 0.767 0.766 0.799

Expression (Pan) NN 0.767 0.761 0.710 0.806 0.771

KSVM 0.770 0.754 0.730 0.825 0.773

RF 0.753 0.751 0.705 0.813 0.811

https://doi.org/10.1371/journal.pone.0261630.t001
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gene in the networks. As shown in Fig 3, Xprediction can describe importance of input fea-

tures of machine/deep learning models; thus, we can interpret the prediction results based on

crucial biomarkers. In other words, our methods provide effective drug sensitivity prediction

accuracy compared with expression-based prediction and present interpretable results for

drug sensitivity prediction. The networks of the crucial 50 edges for erlotinib, gefitinib and osi-

mertinib sensitivity prediction are given as S1–S3 Figs, respectively.

Table 2 shows the most crucial five molecular interactions corresponding to the smallest p.

values. The column “PN” indicates positive (+) and negative (-) features for prediction accu-

racy, i.e.,þ : ŷ � ŷðl;jÞ > 0 and � : ŷ � ŷðl;jÞ < 0. Molecular interactions of TP63 (CSTA!

TP63 and KRT5! TP63) were identified as the most crucial feature to predict erlotinib sensi-

tivity. Furthermore, the interactions of TP63 were extracted as a crucial feature for gefitinib

Fig 1. Overall framework of explainable EGFR TKIs prediction.

https://doi.org/10.1371/journal.pone.0261630.g001
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Fig 2. Disribution of importance scores (p-value) of edges for each EGFR-TKIs.

https://doi.org/10.1371/journal.pone.0261630.g002
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sensitivity prediction (see Fig 4). It implies that TP63 and its interaction with CSTA and KRT5

can be considered candidate markers related to EGFR-TKIs sensitivity.

A majority of the identified genes in including TP63 and its interactions have been verified

as biomarkers for prognosis and diagnosis of NSCLC. Their mechanism related to EGFR-TKIs

sensitivity is also revealed as follows.

Fig 3. Crucial molecular interaction for afatinib/dacomitinib sensitivity prediction.

https://doi.org/10.1371/journal.pone.0261630.g003
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Table 2. The most crucial five molecular interactions for drug sensitive prediction.

Drug Network Regulator Target p.value PN

afatinib dacomitinib TRIM66 KIF18A 0.002 +

SCARA3 FDX2 0.004 -

PCGF2 CISD3 0.004 -

TFEB TMEM129 0.005 +

DDIT3 CFL1 0.006 +

dacomitinib afatinib HOXC4 UBAP1 0.000 -

PROP1 CPNE5 0.000 -

SUPT3H DAND5 0.000 -

MAFG RAB35 0.000 -

NOTCH3 ENDOU 0.000 -

erlotinib afatinib CSTA TP63 0.000 +

KRT5 TP63 0.000 +

NR4A1 IRGC 0.000 +

ZBTB17 RELT 0.000 +

MDM2 ANGPTL5 0.001 +

gefitinib osimertinib ZIC1 NARS2 0.000 -

RELB LST1 0.000 -

NFX1 RIC1 0.000 -

PSMC3 UBA6 0.000 -

FOXO3 IRF2BP2 0.000 -

osimertinib afatinib SFRP1 MRGPRF 0.000 +

S100A13 P2RY6 0.000 +

EID1 ST20 0.001 +

GLI1 TSPAN16 0.001 +

HOXD11 BCAS2 0.001 +

https://doi.org/10.1371/journal.pone.0261630.t002

Fig 4. EGFR-TKI networks: Two drugs are connected if they have common crucial molecular interaction for

prediction of their sensitivities, and thickness of edges indicates number of common crucial molecular

interaction.

https://doi.org/10.1371/journal.pone.0261630.g004
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• Markers for prognosis and diagnosis of NSCLC

Variation in TP63 is associated with lung-adenocarcinoma (AC) susceptibility in Japanese

and Korean populations [16]. It was revealed through gene enrichment analysis that TP63

was an important upstream regulator, with elevated expression in SCC compared to that in

AC [17]. KRT5 and TP63 are known as the squamous cell carcinoma (SCC) of the lung-spe-

cific genes [18]. Exosomal TP63, KRT5, CEACAM6, and SFTPB mRNAs can be used as bio-

markers to differentiate between lung squamous cell carcinoma (LUSC) and lung squamous

cell carcinoma (LUAD), thereby, providing a novel strategy for their differential diagnosis

and treatment [19]. KRT5 and TP63 were selected as the biomarkers for distinguishing AC

from SCC (subtypes of NSCLC), as well as novel molecular targets for targeted therapeutic

agents [20, 21]. CSTA is one of the target molecules of TP63, and its expression was in the

same predicted direction as the TP63 activation in SCC. TP63 and CSTA play an important

role in epithelial tissue maintenance and development, and they are markers of squamous

differentiation [22]. TRIM66 is involved in the targetable axis for the treatment of NSCLC

[23]. CSTA was identified as a squamous cell lung carcinoma-associated gene [24]. TP63

and TTF-1 are useful for distinguishing both small cell carcinomas as well as AC from SCC

[25]. NR4A1 is a potential therapeutic target for non-smoking female NSCLC patients [26].

Overexpression of S100A13 protein is associated with tumor angiogenesis, and poor survival

in patients with early-stage NSCLC [27]. The mRNA level of CFL1 in NSCLC can discrimi-

nate between good and bad prognosis, in which tumors with high expression of CFL1 are

associated with low survival of NSCLC [28]. HOXD11 is an upregulated gene in AC and

SCC and is mainly associated with extracellular matrix and proliferation, promotion of

tumorigenesis, and apoptotic processes [29]. High RELB expression is a marker for judg-

ment of prognosis in patients with NSCLC [30]. SFRP1 is a candidate for epigenetic therapy

in NSCLC [31].

• Markers for EGFR-TKIs sensitivity

TP63 was identified as a differentially expressed gene (DEG) in cancer cell lines that acquired

gefitinib resistance, and CSTA is one of the top 10 hub genes in a network of DEGs for gefiti-

nib resistant cancer cell line [32]. TP63 expression is associated with survival outcomes in

patients with NSCLC, treated with erlotinib [33]. MDM2 is a novel biomarker and treatment

target for NSCLC and confers primary resistance to first-generation EGFR-TKIs induced by

MDM2 amplification in NSCLC [34]. The whole-exome sequencing of osimertinib-resistant

patient-derived cancer cell lines revealed amplification of GLI1, CDK4, and CCND1 [35].

GLI1 activation is a key mechanism of erlotinib resistance in human NSCLC [36]. A study

by Mambetsariev reported five mutations, CDK4 amplification, MDM2 amplification, FRS2

amplification, GLI1 amplification, and the EGFR exon 19 deletion,via a tissue biopsy test, a

few weeks into the osimertinib treatment [37]. FOXO3a is a significant factor in EGFR

mutation-independent gefitinib resistance. It suggests that targeting the NF-kB/miR-155/

FOXO3a pathway has potential therapeutic value in lung cancer with the acquisition of resis-

tance to EGFR-TKIs [38]. The transcription factor FOXO3a is a crucial cellular target of gefi-

tinib in breast cancer cells [39]. FOXO3 polymorphisms were correlated with gefitinib-

induced hepatotoxicity in patients NSCLC [40]. EGFR TKI therapy activates β-catenin sig-

naling in a NOTCH3 dependent manner. NOTCH3, β-catenin, and EGFR regulate each

other, and EGFR TKI therapy mediated NOTCH3 activation leads to β-catenin activation,

which is essential for the maintenance of drug persister cells in a positive feedback loop [41].

The treatment of EGFR-mutated lung cancer cell lines with erlotinib enriched then stem-

like cells with stem-like cell potential through EGFR-dependent activation of NOTCH3 [42].

CircPSMC3 overexpression increased the sensitivity of esophageal SCC cells to gefitinib. It

PLOS ONE Xprediction
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was suggested that upregulation of circPSMC3 overcame the resistance of gefitinib-resistant

esophageal SCC cells to gefitinib by modulating the miR-10a-5p/PTEN axis, which provides

a new therapeutic strategy for overcoming gefitinib resistance in esophageal SCC [43].

From these results, it can be considered that the identified crucial genes for EGFR-TKI pre-

diction are prognostic and diagnostic markers of NSCLC. Furthermore, these genes have vital

clues to uncover the molecular mechanisms related to EGFR-TKI sensitivity of cell lines. It

implies that our method provides biologically reliable results for explainable drug sensitivity

prediction.

EGFR-TKIs network

We constructed EGFR-TKIs network based on the selected crucial edges in Fig 4, where two

drugs are connected if they have at least one common edge.

The sensitivities of dacomitinib and osimertinib were explained by the most common

molecular interaction, thereby, implying that dacomitinib and osimertinib have similar mech-

anisms of action and pharmacological profiles. Previous studies support our result that the

combination of osimertinib and dacomitinib could induce more durable responses by prevent-

ing the emergence of resistance [44]. The sensitivity of almost EGFR-TKIs can be explained by

common molecular interactions, while afatinib has common features with only erlotinib.

To identify the biological process, molecular function, and cellular component of the cru-

cial markers for predicting EGFR TKIs, we perform Gene Ontology (GO) pathway analysis.

Fig 5 shows the enriched pathway (p<.01) of the genes consisting of the common edges and

corresponding p-value (i.e., −log(p.value)). GO enrichment analysis revealed that the 51 EGFR

TKIs markers are enriched in pathways involving transcription factor activity, transcription ini-
tiation from RNA polymerase II promoter, transcription, positive regulation of transcription, reg-
ulation of transcription, etc. This implies that the EGFR TKIs markers may dominate EGFR

TKIs sensitivity-specific gene networks by transcription.

Fig 5. GO enrichment analysis of the common markers for EGFR TKIs.

https://doi.org/10.1371/journal.pone.0261630.g005
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EGFR-TKIs sensitive and resistant specific molecular networks system

We focused on common sensitive (ST) and resistant (RS) cells of the five EGFR TKIs. Table 3

shows information of the cell lines, where ACH-000011 is a cell line sensitive to afatinib, daco-

mitinib, erlotinib, gefitinib, and osimertinib, while ACH-000231 is a cell line resistant to the

five EGFR TKIs. The EGFR TKIs sensitive cell lines include non-small cell lung cancer

(NSCLC), bladder carcinoma, and upper aerodigestive squamous cells. For the sensitive and

resistant cell lines of the EGFR TKIs, we showed the regulatory effect of the most crucial 50

edges described in Fig 3. Fig 6 shows regulatory effect values of the regulator on the target gene

(column indicates regulator> target) for common sensitive and resistant cell lines of the

EGFR TKIs, wherein the color of cell lines in rows of the heatmap is used to indicate sensitive

(red) and resistant (blue) cell line of EGFR TKIs. Some edges showed different regulatory sys-

tems between EGFR TKIs resistant and sensitive cell lines, suggesting that some edges exist in

only EGFR TKIs resistant or sensitive cell lines. CREB3L1>COPRS and ZNF14>ZRSR2 can

be considered afatinib resistant specific molecular interaction. For dacomitinib, APP>BCAS2,

RPL7>PPEF2, MSN>RAB34, TAF15>CLTC and DIP2A>GAK show large regulatory effect

values in sensitive cell lines, while TCF20>BCAS2, SUPT6H>LRRC37B, GATA6>POLD4

and PCGF2>B3GNT2 can be considered resistant markers. SAP30BP>VPS13B,

CBX4>TRIP13 and CCDC80>COA4 are considered as erlotinib resistant specific markers.

CSTA>TP63 and EPCAM>B3GNT2 show relatively large regulatory effect in gefitinib sensi-

tive cell lines than its resistant cells. For osimertinib, LRRFIP1>FDX2 is considered as drug

sensitive specific molecular interaction, and FI16>B3GNT2, HLA.B>GTPBP3,

SFRP1>MRGPRF and MYO1B>SREBF1 show large regulatory effect values in resistant cell

lines. Table 4 shows drug sensitive and resistant specific molecular markers of each EGFR

TKIs, where sensitive and resistant markers are interactions existed only in drug sensitive and

resistant cell lines, respectively.

We performed GO pathway analysis of the drug sensitive and resistant specific markers. Fig

7 shows the GO pathway of the identified markers, where colors are used to indicate enriched

pathways for drug sensitive (red) and resistant (blue) specific markers. The bottom part of the

Fig 7 shows the enriched pathways for both sensitive and resistant markers. As the pathways

Table 3. Information of cell lines.

DepMap ID Drug sensitivity sex age primary disease lineage subtype

ACH-000011 ST Male 53 Bladder Cancer bladder carcinoma

ACH-000012 ST Female 39 Lung Cancer NSCLC

ACH-000030 ST Male NA Lung Cancer NSCLC

ACH-000066 ST Male NA Lung Cancer NSCLC

ACH-000466 ST Female 46 Gastric Cancer gastric adenocarcinoma

ACH-000549 ST Male 60 Head and Neck Cancer upper aerodigestive squamous

ACH-000590 ST Female 47 Lung Cancer NSCLC

ACH-000620 ST Male 50 Liver Cancer hepatocellular carcinoma

ACH-000741 ST Female NA Bladder Cancer bladder carcinoma

ACH-000674 ST Female 35 Gastric Cancer gastric adenocarcinoma

ACH-000679 ST Male 72 Esophageal Cancer esophagus squamous

ACH-000719 ST Female 34 Ovarian Cancer ovary adenocarcinoma

ACH-000734 ST Male 50 Liver Cancer hepatocellular carcinoma

ACH-000762 ST Male 67 Head and Neck Cancer upper aerodigestive squamous

ACH-000231 RS Female NA Brain Cancer glioma

https://doi.org/10.1371/journal.pone.0261630.t003
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Fig 6. Regulatory effect of crucial molecular interaction on the commonly sensitive and resistant cells of the

EGFR TKIs, where color of cell lines (rows) indicates drug sensitive (red) and resistant (blue) cells.

https://doi.org/10.1371/journal.pone.0261630.g006
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Fig 7. GO enrichment analysis for the sensitive and resistant markers.

https://doi.org/10.1371/journal.pone.0261630.g007
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have different signs on the sensitive and resistant specific cell lines (i.e., −log(p.value)), we do

not describe the significance. As shown in Fig 7, drug sensitive-specific markers were enriched

in pathways involving protein binding, positive regulation of transcription from RNA polymer-
ase II promoter, sequence-specific DNA binding, etc. Meanwhile, pathways involving RNA
polymerase II core promoter proximal region sequence-specific DNA binding, osteoblast differen-
tiation, transcriptional activator activity, RNA polymerase II core promoter proximal region
sequence-specific binding, were identified for drug resistant specific markers. Interestingly,

response to drug (GO:0042493) and response to antibiotic (GO:0046677) were identified as

pathways for drug sensitive specific markers, where SREBF1, NAT8, MDM2, GATA6,

SLC1A3, TGFA, FOS, PPARGC1A were enriched in the pathway response to drug and MDM2,

SLC1A3, CCL2, TP53 were enriched in pathway response to antibiotic.
The results of Figs 6 and 7, Table 4, indicate that EGFR TKIs -resistant and -sensitive cell

lines have different molecular regulatory systems. The drug sensitive/resistant specific gene

regulatory system may be crucial clues to predict drug sensitivity and uncover molecular

mechanisms underlying the drug sensitivity of cell lines.

Table 4. Drug sensitivity specific markers.

afatinib dacomitinib erlotinib gefitinib osimertinib

Resistant markers ZNF14>ZRSR2 TFAP4>TRNAU1AP TBX10>ANKMY2 MEF2D>TSG101 SFRP1>MRGPRF

CREB3L1>COPRS SUPT6H>LRRC37B CBX4>TRIP13 FOXD1>TGIF1 S100A13>P2RY6

PCGF2>B3GNT2 CCDC80>COA4 SRPX>SNAI2 HLA.B>GTPBP3

CRIP2>NEU1 SAP30BP>VPS13B IFI16>B3GNT2

TCF20>BCAS2 EPB41L3>NEU1 GPC1>B3GNT5

PXDN>MRPL34 CYP1B1>ANLN STAP2>BIRC6

GTF2B>FAM49B SAP30>ATG14 MYO1B>SREBF1

GATA6>POLD4 MT1G>FLII

Sensitive markers HOXC4>UBAP1 ZBTB17>RELT PSMC3>UBA6 EID1>ST20

SUPT3H>DAND5 MDM2>ANGPTL5 LDB1>CBX1 HOXD11>BCAS2

SLC1A3>POLR3B LDB1>S1PR2 FOS>OST4 LRRFIP1>FDX2

DIP2A>GAK CFI>CDK8 TRIP4>VPS4B ZNF215>FBXO41

TAF15>CLTC CYLD>CNOT1 EPCAM>B3GNT2 PHOX2A>RAB3A

APP>BCAS2 NFIL3>UBAP1 ALDH7A1>DHX29 TAF12>PPEF2

BCL11A>TSPAN16 IKZF3>CLPB YY1>STAMBP POU2F3>GAB1

RPL7>PPEF2 GTF3C3>FDX2 MED17>INS CD99>TRNAU1AP

PYCARD>VPS4B FBLN2>SPIN1 ESRRG>PPP1R15B NRL>YJU2

HOXC8>PALM3 S100A1>ATM ANKRD10>INS TMEM139>UCP2

GATA6>ABHD8 PTK7>N4BP1 GPR87>TFG TP53>DOK1

NAT8>FAM3A CCL2>PPEF2 TGFA>NPAS4 LAMC2>MIEN1

CD37>SLC7A1 NFKBIB>TSPAN16 MYT1L>ATG14 POU2AF1>ITGB1

MSN>RAB34 GAS6>PLCB3 PRXL2A>FBXO41 MIA>S1PR2

SREBF1>TSPAN16 TMEM265>RAB10 PSMD10>FGF4

HEY2>LST1 GULP1>CLTC

HIVEP2>INS

ING2>METAP1

E4F1>UXT

PPARGC1A>KDM2A

TBX21>FAM49B

FOXG1>FBXO41

https://doi.org/10.1371/journal.pone.0261630.t004
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Discussion

We introduced a novel strategy for explainable drug sensitivity prediction based on sample-

specific gene regulatory networks. We focused not only on drug sensitivity prediction but also

on the interpretation of the prediction results. To understand complex disease mechanisms

and effectively predict drug response of cancer cell lines, we considered drug response predic-

tion based on gene regulatory networks under varying conditions of cell lines. To overcome

the black box problem of machine learning approaches in drug sensitivity prediction (i.e.,

interpretability of the prediction results), we proposed a method that reveals the importance of

molecular interaction on the results of prediction model based on machine/deep learning

approaches. We can explain the drug sensitivity prediction results and perform interpretable

drug sensitivity prediction by using the proposed method.

To illustrate our strategy, we applied the proposed Xprediction to EGFR-TKIs prediction. It

can be seen that the drug sensitivity-specific gene network-based prediction provides an effec-

tive result for EGFR-TKIs prediction, compared with the prediction based on expression levels

of genes. We identified important markers for EGFR-TKIs prediction, and mechanisms

related EGFR-TKIs of the majority of the identified markers are verified based on literature. It

implies that genetic networks can predict crucial information and understand the drug sensi-

tivity of cancer cell lines, which cannot be extracted by single gene-based analysis.

In this study, we focused on five EGFR-TKIs, and predicted the sensitivity of a EGFR-TKI

based on other EGFR-TKIs sensitivity specific networks. Our strategy can be extended to anti-

cancer drug response prediction based on various cancer characteristic specific gene networks,

e.g., status of caner progress, survival risk and clinical feature -specific gene networks.

Further work remains to be done towards experimental validation of the identified markers

to provide strong evidence of our results. In this study, we performed drug sensitivity predic-

tion based on estimated sample-specific gene networks. In other words, explainable drug sen-

sitivity prediction was performed by two separate models for gene network estimation and

drug response prediction. To achieve more effective prediction and interpretable results of

drug sensitivity prediction, we shall consider a model that simultaneously performs drug

response prediction and gene network estimation as one of our future works.
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