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Abstract: Thermoplastic polyurethanes (TPUs) and other elastomers are widely used in many
applications for the advantages they provide in terms of high elasticity, lightness, resistance to
breakage, and impact resistance. These materials exhibit strong hysteresis in the large strain stress-
strain behavior, known as cyclic softening or the Mullins effect. Despite the extensive studies on this
phenomenon and the importance of Poisson’s ratio, how the Poisson’s ratio of these materials changes
during cyclic uniaxial tests is still unclear. Here, we measure the nonlinear Poisson’s ratio of TPU
and investigate its correlation with cyclic softening using two-dimensional digital image correlation
(2D-DIC) combined with the reference sample compensation (RSC) method. This accuracy-enhanced
method can effectively eliminate the measurement errors induced by the unavoidable out-of-plane
displacements and lens distortion. We find that the Poisson’s ratio of TPUs also exhibits large
hysteresis in the first cycle and then approaches a steady state in subsequent cycles. Specifically, it
starts from a relatively low value of 0.45 ± 0.005 in the first loading, then increases to 0.48 ± 0.005
in the first unloading, and remains largely constant afterward. Such a change in the Poisson’s ratio
results in a slight volume increase (≈1%) at a maximum strain of 17.5%. Our findings are useful for
those who use finite element method to analyze the mechanical behavior of TPU, and shed new light
on understanding the physical origin of cyclic softening.

Keywords: cyclic softening; thermoplastic polyurethane (TPU); 2D-DIC; Poisson’s ratio

1. Introduction

Soft materials are widely used in various fields, such as bioelectronics [1,2], materials
science [3,4], shape morphing [5,6], and robotics [7–11], because of their merits of lightness,
resistance to breakage, and impact resistance. In recent years, soft robotics has emerged as a
viable alternative and has attracted a great deal of attention [7–9]. Unlike conventional rigid
robots, soft robots use soft materials as the main structural materials and have benefited
greatly from the advances in additive manufacturing technology using 3D printing. The
use of 3D printing allows for the rapid prototyping of diverse designs, and significantly
speeds up the design process. Among the various 3D printing materials, thermoplastic
polyurethane (TPU), a type of elastomer, is frequently used in soft robotics as it offers
the desirable elastic characteristics of rubber but can be processed as a thermoplastic [12].
However, TPU and other rubber-like materials are known to become softer after the first
deformation, referred to as cyclic softening or the Mullin’s effect [12,13]. Several theories
have been proposed but still no general agreement has been reached either on the physical
source or the mechanical modeling of this effect [14]. Cyclic softening can affect the
performance of soft robots, and should be carefully considered in design [10]. Although the
stress-strain behavior of TPU and its cyclic softening have been studied for many years [12],
how its Poisson’s ratio behaves during cyclic uniaxial loading is still unknown.

Poisson’s ratio is one of the most fundamental material properties of solids, and is
defined as the negative quotient of the transverse strain to the axial strain in the infinitesimal
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uniaxial extension of a homogeneous isotropic body. The value ranges from −1.0 to + 0.5,
based on thermodynamic considerations of strain energy in the theory of elasticity [1]. This
definition can be extended into the nonlinear regime of large strains for elastomers [15,16].
Although Poisson’s ratio is a constant in small strains, it is a scalar function, the Poisson
function, of the stretch ratio in large strains. Additionally, for a nonlinear elastic material,
the Poisson’s ratio may vary with the stretch and can be expressed using different strain
measures, such as Green (Lagrangian), Hencky (logarithmic or true), and Biot (nominal or
engineering) strains [17]. Moreover, in practice, linear elasticity with Young’s modulus and
Poisson’s ratio is often used to design and analyze structures of elastomers and rubber-like
materials for its simplicity and rapid convergence in finite element analysis. It is therefore
of great importance to measure the nonlinear Poisson’s ratio of TPU in large strains.

The accurate and precise measurement of the Poisson’s ratio of soft materials in
large strains is challenging, since conventional methods such as strain gauge may affect
the measurement due to the added weight and stiffness [18]. By contrast, digital image
correlation (DIC) is a novel choice that uses an easy-to-implement but effective optical
technique to achieve non-contact measurement [19,20]. DIC divides a patterned material
surface into small sections and tracks their displacements from the initially undeformed
image to successively analyzed images throughout the deformation. The strain field can
then be calculated from the measured displacement field to a high degree of accuracy [21].
Despite the powerful function of DIC, the accuracy of the measurement may still be affected
by out-of-plane translation and rotation of the specimen, as well as lens distortion. To
estimate the errors and enhance the accuracy, intensive studies have been conducted. For
example, Hoult et al. [22] and Zhu et al. [23] presented correction schemes by recording
both front and rear surfaces of a specimen. By averaging the two strain results of the
front and rear surface, the strains due to out-of-plane motion can be eliminated. Pan
et al. [19,24,25] presented the reference sample compensation (RSC) method by adding a
thin hollow compensation specimen (referred to as a region of compensation, ROC). The
ROC is attached to the surface of the testing specimen and is undeformed during the test.
By compensating for the error calculated from the ROC, all errors can be eliminated. With
these methods, high-accuracy 2D-DIC measurement can be realized by using low-cost
common lenses and cameras [26].

Here, we aim to measure the nonlinear Poisson’s ratio of TPU in large strains during
a quasi-static cyclic tensile test. Toward this end, several discussions are presented. First,
the RSC method is applied to 2D-DIC, and its improvement is quantified. Second, the
nonlinear Poisson’s ratios represented by Biot strain and Hencky strain are compared.
Third, we measure the hysteresis of nonlinear Poisson’s ratio during the first cycle and
estimate the TPU’s volume change.

2. Materials and Methods
2.1. Specimens

The investigated material was thermoplastic polyurethane (TPU, NinjaTek, Ninjaflex
85A, PA, USA), which can be 3D-printed and is widely used in soft robotics. We used
a 3D printer (FlashForge, Creator Pro 2016, Zhejiang, China) to directly print the elastic
specimen, avoiding the need for complex molding or assembly. For all printing in this
study, the temperatures of the liquefier and build plate were respectively adjusted to 235 ◦C
and 50 ◦C, and the printing speed was 30 mm/s. The nozzle was 0.25 mm and each printing
layer was 0.15 mm thick. There were three perimeter shells in each layer. To achieve a
filling density of 100%, outline overlap was set to 25% and 10 layers in both the top and
bottom layers were applied. The infill angle was fixed at 45◦ and −45◦. The test specimens
(165 × 13 × 3 mm3) for cyclic tensile tests were fabricated according to ASTM D638 [27] as
shown in Figure 1a.
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Figure 1. (a) Dimensions of the specimen (ASTM D638), the ROI, and the ROC. The blue dot indicates
the attachment location. (b) A close-up image near the ROC and the ROI. (c) Experimental setup of
the cyclic test. (d) Representative Green strain fields measured by DIC at a stretch ratio of 1.186. ROI:
region of interest; ROC: region of compensation.

2.2. Experimental Setup

The cyclic tensile tests were performed at room temperature, using a tensile machine
(Criterion 42.503 Test System, MTS, MN, USA) in the displacement-controlled mode. To
observe the cyclic softening in a quasi-static state, strains were applied at a cross-head
speed of 5 mm/min and 10 mm/min, according to ASTM D638, to approximately 20%
strain. A 0.1-mm pre-stretch was applied to eliminate the bending stress or pre-stress in
the specimens. A five-cycle test was selected because the stress-strain curve was known to
reach an equilibrium after approximately four cycles [12]. The total test time was roughly
40 min for each specimen at the rate of 5 mm/min.

The load data was obtained from the machine readings and the strain field was
measured on the surface of each specimen by a DIC system. An open-source 2D Digital
Image Correlation (Ncorr v1.2, Georgia Institute of Technology, GA, USA) analysis software
program was used [28]. To measure the strain with the DIC, a random pattern of small
black and white speckles was sprayed on the specimens, allowing the DIC to track relative
displacements. We used a camera (D5500, Nikon, Japan) with a microlens (AF-S MICRO
NIKKOR 105 mm 1:2.8 G ED, Nikon, Japan) to obtain images of the test section at the center
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of the specimen, that is, the region of interest, ROI (Figure 1). Video footage was taken
during the entire test at 25 fps at 1080p for a balance of memory storage and resolution.

To enhance the accuracy and compensate for the errors from the common lens, the RSC
method was applied. A specially designed ROC made of polylactide (PLA) was adhered
on the specimen in the same plane of the surface (Figure 1). The ROC moved rigidly with
the test specimen during loading and unloading. By compensating for the error with the
displacement calculated on the ROC, we obtained the correct value of Poisson’s ratio in the
cyclic test.

2.3. Transformation from Green Strain to Biot Strain and Hencky Strain under Uniaxial Tension

The output of Ncorr is the Green strain, a general description of strain tensor which can
represent a rigid rotation of an unstrained body without producing any strain. However,
the Biot strain and Hencky strain are more frequently used in practice. To transform the
strain tensor, we start from the definition of Green strain as follows [29]:
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where ∂u/∂x ≡ exx and ∂v/∂y ≡ eyy are the infinitesimal strains in the x and y directions,
respectively; ∂u/∂y = ∂v/∂x ≡ exy for isotropic materials.

Green strain may be regarded as the sum of small strain terms and quadratic terms.
The small strain terms possess all the desirable properties of Biot strain behavior. The
quadratic terms give the Green strain’s property of rotation independence. Recall that in
the case of uniaxial tension, the axial displacement u = (LF − L0)x/L0 = x ∆L/L0, where
L0 and LF are respectively the initial and final length. Therefore, the infinitesimal strain is
equal to the Biot strain as follows:

exx ≡
∂u
∂x

=
∆L
L0
≡ e(B)xx (4)

Additionally, the shear stain exy is zero in principle. Thus Equations (1) and (2) become
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Biot strains can then be calculated using the measured Green strains. Note that when
the strains are small, the quadratic terms are negligible and the Green strain is equal to the
Biot strain.

For any given stretch ratio a = LF/L0 > 0, we define the nonlinear strain [30]

en(a) =
{

ln(a) if n = 0,
an−1

n if n 6= 0,
(7)

where n = 0, 1, and 2 represent Hencky strain e(H) = e0 [31], Biot strain e(B) = e1, and Green
strain e(G) = e2, respectively. For a uniaxial tension in the x direction, the Hencky strains
(n = 0) are e(H)

xx = ln(a) and e(H)
yy = ln(λ), and the Biot strains (n = 1) are e(B)xx = a − 1
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and e(B)yy = λ− 1, where λ is the stretch ratio in the transverse direction. a and λ can be
determined from the known Biot strains, and are used to calculate the Hencky strains.

Hencky strain possesses a unique property that is useful for analyzing the vol-
ume change of a material undergoing large deformation. For compressible materials,
e(H)

xx + e(H)
yy + e(H)

zz = eTrue
Vol , where the volume change eTrue

Vol =
∫
(1/V)dV = ln(VF/V0) and

V, V0, and VF denote the intermediate, initial, and final volume of the material, respec-
tively. For incompressible materials, whose volume does not change during deformation,
e(H)

xx + e(H)
yy + e(H)

zz = 0. Unlike Biot strains and Green strains, this relationship is valid even
for large strains. In the present study, we use Hencky strain as the primary measure of
strain for analyzing nonlinear Poisson’s ratios following Pritchard et al. [32].

2.4. Nonlinear Poisson’s Ratios

The nonlinear Poisson’s ratios are defined as follows [17]:

νn(a) = − en(λ(a))
en(a)

(8)

where en represents the various strain measures defined in Equation (7). Similarly, they
are referred to as Hencky form with ν(H)(a) = ν0(a), Biot form with ν(B)(a) = ν1(a), and
Green form with ν(G)(a) = ν2(a). For infinitesimal deformation as a approaches 1, all these
coincide with the Poisson’s ratio from the linear elastic theory. Note that for incompressible
materials, only the Hencky form remains constant at 0.5 during deformation, and captures
the characteristic of volume conservation for incompressible materials.

3. Results and Discussion
3.1. Transformation from the Green Strain to Biot Strain and Hencky Strain under
Uniaxial Tension

The image quality greatly affects the accuracy of DIC analysis. Unlike those captured
with a bilateral telecentric lens, a photo captured by a normal lens is sensitive to the out-
of-plane motion of the test specimen. When the specimen moves away from its initial
position, the image of the specimen becomes smaller. As a result, DIC may produce
an erroneous negative strain. When subjected to an axial tension in the y direction, the
specimen contracts in the x and z directions if the material has a positive Poisson’s ratio.
The out-of-plane motion is caused by the contraction in the z direction (away from the
camera). Other inevitable measurement imperfections, including camera tilt and lens
distortion, may also cause out-of-plane motion. For example, Figure 2 shows that at a
stretch ratio of 118%, DIC gave non-zero strains on the undeformed ROC surface due
to out-of-plane motion; these erroneous strains were of magnitudes of approximately
−0.8% and −0.5% in the axial and transverse directions, respectively. These values may
appear small compared to the stretch, but in the following section we show that they
significantly affected the accuracy of the Poisson’s ratio calculation. Figure 3 shows that
axial and transverse strains versus time before and after the correction for the first cycle.
Without the correction, both strains were smaller than the actual values due to the out-
of-plane motion. A comparison of the equilibrium stress-strain curves also showed a
considerable discrepancy between the uncorrected and the corrected cases (Figure 4). Thus,
compensation of such errors, particularly in large deformations, is necessary for accurate
measurements using 2D-DIC [24,25].
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the same samples.



Polymers 2021, 13, 1498 7 of 11

Polymers 2021, 13, x  7 of 12 
 

 

 
Figure 3. Means and standard deviations of the (a) axial strain and (b) transverse strain at a speed 
of 10 mm/min. The shaded areas represent one standard deviation of six samples. The axial and 
transverse strains were measured simultaneously on the same samples. 

 
Figure 4. Means and standard deviations of the axial-strain curve at a speed of 10 mm/min. The 
shaded areas represent one standard deviation of six samples. 

3.2. Nonlinear Poisson’s Ratios Represented by Biot Strain and Hencky Strain 
We conducted tension tests using six TPU specimens, and analyzed their strains and 

Poisson’s ratios during the loading process (Figure 5). A careful investigation highlighted 
the following observations: first, the uncorrected and corrected average Poisson’s ratios 
(both Biot and Hencky forms) exhibited distinct patterns (Figure 5a). The uncorrected val-
ues were well above 0.5 and even larger at the beginning of the loading where the strains 
were small. This is unreasonable for an isotropic linearly elastic material. After they were 
corrected with the RSC method, however, the Poisson’s ratios of both forms dropped be-
low 0.5 and are expected to be more accurate in representing the actual material behavior. 
Second, the corrected Poisson’s ratio in the Biot form coincided with that in the Hencky 
form for small strains (< 2.5%). They deviated from each other as the strain increased⎯the 
Biot form slightly decreased, whereas the Hencky form slightly increased. Third, the cor-
rected Poisson’s ratio exhibited a much smaller standard deviation than the uncorrected 

Figure 4. Means and standard deviations of the axial-strain curve at a speed of 10 mm/min. The
shaded areas represent one standard deviation of six samples.

3.2. Nonlinear Poisson’s Ratios Represented by Biot Strain and Hencky Strain

We conducted tension tests using six TPU specimens, and analyzed their strains and
Poisson’s ratios during the loading process (Figure 5). A careful investigation highlighted
the following observations: first, the uncorrected and corrected average Poisson’s ratios
(both Biot and Hencky forms) exhibited distinct patterns (Figure 5a). The uncorrected
values were well above 0.5 and even larger at the beginning of the loading where the
strains were small. This is unreasonable for an isotropic linearly elastic material. After they
were corrected with the RSC method, however, the Poisson’s ratios of both forms dropped
below 0.5 and are expected to be more accurate in representing the actual material behavior.
Second, the corrected Poisson’s ratio in the Biot form coincided with that in the Hencky
form for small strains (<2.5%). They deviated from each other as the strain increased—the
Biot form slightly decreased, whereas the Hencky form slightly increased. Third, the
corrected Poisson’s ratio exhibited a much smaller standard deviation than the uncorrected
one, demonstrating the repeatability of the RSC method (Figure 5b). High repeatability is
critical when analyzing TPUs undergoing large deformations in a cyclic test.
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3.3. Verification of the Quasi-Static Condition of the Cyclic Test

To ensure that the measurement was conducted in a quasi-static state, we compared
the responses using two different rates: 5 mm/min and 10 mm/min. The former is
recommended by the ASTM D638 standard test for the tensile properties of plastics. The
stress-strain curves of both rates overlapped with each other for the first cycle and the
fourth cycle (Figure 6a). The Poisson’s ratios (Hencky form) measured by DIC at the first
cycle were also similar at both rates (Figure 6b). This verified that the measurement at the
rate of 5 mm/min was indeed in a quasi-static state. Thus, we can neglect the influence of
strain-rate dependence, which is common in viscoelastic materials but is beyond the scope
of the present study.
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3.4. Changes in Poisson’s Ratio during Cyclic Softening

A hysteresis loop was observed in the equilibrium stress-strain curve, indicating
that part of the strain energy dissipated during the loading-unloading cycle, which is
common in viscoelastic materials. The decrease of stress after the first cycle is known as
cyclic softening, which has been investigated since first reported by Mullins in 1969 [13].
Figure 7a shows that the cyclic softening reached equilibrium after the fourth cycle, which
is consistent with prior works [12]. Interestingly, we found that the Poisson’s ratio exhibited
a hysteresis loop in the first cycle and remained largely constant at 0.48 afterward. This
pattern appears to correlate with that of cyclic softening, and has not been reported before.

To investigate the changes of the Poisson’s ratio in more detail, we plotted the means
and standard deviations of the Poisson’s ratios of six samples at the first two cycles
(Figure 7b). We highlight three key observations. First, the standard deviation was gen-
erally small (e.g., ≈0.005 at a strain of 10%), indicating that the DIC and RSC method is
robust and repeatable. However, it was very large at small strains (e.g., <1%) due to low
signal-to-noise ratios. Thus, the data in the small strain regime are not reliable. Second,
similar to the equilibrium stress-strain curve, a clear hysteresis loop of the Poisson’s ratio
was present in the first cycle, as observed in Figure 7a. The Poisson’s ratio started at
a relatively low value of 0.45, and gradually increased with the strain until reaching a
relatively high value of 0.48 at the maximum strain (≈17.5%). It remained at a high value
during the unloading process. Third, the degree of hysteresis decreased in the second cycle;
the Poisson’s ratio during loading was also smaller than that during unloading.
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As pointed out previously, the cyclic softening is correlated with the hysteresis loop of
the Poisson’s ratio (Figure 7a). For simplicity, we assumed that the Poisson’s ratios were
respectively 0.45 and 0.48 for the loading and unloading processes of the first cycle. The
volume change of the specimen in the first loading (from 0 to a strain of 17.5%) can then be
estimated by

ln(VF/V0) = eTrue
Vol = e(H)

xx + e(H)
yy + e(H)

zz = 0.175− 0.175× 0.45× 2 = 0.0175, (9)

that is, VF/V0 ≈ 1.018. Similarly, the volume change in the first unloading was esti-
mated to be approximately 0.993. Thus, the overall volume change in the first cycle was
1.018 × 0.993 = 1.011. That is, the phenomenon of cyclic softening (the Mullins effect) was
accompanied by a slight increase in volume (≈1%). Our new experimental evidence may
be helpful in understanding the physical source of this important phenomenon.

4. Conclusions

In this work, we demonstrated the application of 2D-DIC and RSC for measuring the
nonlinear Poisson’s ratio of highly deformed TPU during a cyclic tensile test, and paid
particular attention to the cyclic softening phenomenon. We found that RSC was essential
to improve the accuracy and precision of 2D-DIC in this case. The uncorrected 2D-DIC
produced significant errors in the Poisson’s ratio (+15%). With the RSC method, repeatable
measurements of nonlinear Poisson’s ratio in large strains could be obtained by a low-cost
2D-DIC system without an expensive bilateral telecentric lens. In our experiments, the
Poisson’s ratio of TPU exhibited a hysteresis loop, accompanied by cyclic softening, in the
first cycle, and remained largely constant at 0.48 afterward. This change of the Poisson’s
ratios resulted in a slight volume increase (≈1%) at a maximum strain of 17.5%. Our
method has the merits of high resolution and high precision without the need of expensive
instruments, and can be readily applied to other soft materials. However, it is less effective if
the specimen experiences certain buckling deformation during compression. Our findings
may be useful for those who use finite element method to analyze the performance of
soft robots, and shed new light on understanding the physical origin of cyclic softening
in rubber-like materials. The present study focuses on the quasi-static behavior of TPU.
Since TPU is a viscoelastic material, it is expected that its Poisson’s ratio also varies with
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time and temperature [33–35]. How the strain rate and temperature affect the nonlinear
Poisson’s ratio in the cyclic test is a topic for future work.
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