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Drug-induced liver injury (DILI) is a matter of concern in the course of drug development
and patient safety, often leading to discontinuation of drug-development programs or
early withdrawal of drugs from market. Hepatocellular toxicity or impairment of bile
acid (BA) metabolism, known as cholestasis, are the two clinical forms of DILI. Whole-
body physiology-based modelling allows a mechanistic investigation of the physiological
processes leading to cholestasis in man. Objectives of the present study were: (1)
the development of a physiology-based model of the human BA metabolism, (2)
population-based model validation and characterisation, and (3) the prediction and
quantification of altered BA levels in special genotype subgroups and after drug
administration. The developed physiology-based bile acid (PBBA) model describes
the systemic BA circulation in humans and includes mechanistically relevant active
and passive processes such as the hepatic synthesis, gallbladder emptying, transition
through the gastrointestinal tract, reabsorption into the liver, distribution within the
whole body, and excretion via urine and faeces. The kinetics of active processes were
determined for the exemplary BA glycochenodeoxycholic acid (GCDCA) based on blood
plasma concentration-time profiles. The robustness of our PBBA model was verified with
population simulations of healthy individuals. In addition to plasma levels, the possibility
to estimate BA concentrations in relevant tissues like the intracellular space of the liver
enhance the mechanistic understanding of cholestasis. We analysed BA levels in various
tissues of Benign Recurrent Intrahepatic Cholestasis type 2 (BRIC2) patients and our
simulations suggest a higher susceptibility of BRIC2 patients toward cholestatic DILI
due to BA accumulation in the liver. The effect of drugs on systemic BA levels were
simulated for cyclosporine A (CsA). Our results confirmed the higher risk of DILI after CsA
administration in healthy and BRIC2 patients. The presented PBBA model enhances our
mechanistic understanding underlying cholestasis and drug-induced alterations of BA
levels in blood and organs. The developed PBBA model might be applied in the future
to anticipate potential risk of cholestasis in patients.
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INTRODUCTION

Drug-induced liver injury (DILI) places an enormous burden
on health care systems worldwide. About 2–19 incidences per
100,000 habitants occur annually in Europe, with symptoms
ranging from mild forms such as slightly elevated blood levels
of liver enzymes to fatal clinical incidents resulting in acute liver
failure (Kaplowitz, 2005; Björnsson, 2016). Due to this medical
relevance, the detection of DILI at an early stage would be highly
beneficial, both for a duly termination of treatment with the DILI-
causing compound as well as for an early start of therapeutic
interventions with curative counteragents. Manifestations of
DILI can be differentiated in hepatocellular DILI, where the
cellular damage of the hepatocytes dominates, in cholestatic
DILI, where impaired transport functions of hepatocytes and
cholangiocytes are the predominant alteration, or in a mixed type
showing clinical features of both phenotypes of DILI (Hamilton
et al., 2016). For the categorisation of DILI, current clinical
diagnosis guidelines rely on the increase in blood plasma levels of
the enzymes alanine transferase (ALT) and alkaline phosphatase
(ALP). Elevated ALT levels are a general surrogate marker
for hepatocellular damage as ALT is released into the blood
from the cytoplasm of severely injured hepatocytes (Chalasani
et al., 2014). In contrast, increased ALP levels are a specific
marker for cholestasis since ALP is released from damaged
cholangiocytes as a consequence of impaired bile flux in bile
ducts (Vinken, 2013). Still, increased ALT and ALP levels are
endpoints that only become noticeable once the liver damage has
already occurred.

Ideally, biomarkers would anticipate cholestasis before the
hepatic injury actually occurs in a DILI event. To achieve
this goal, a mechanistic understanding of the underlying
physiological alterations of bile production and transport is
required. For hepatocellular DILI, a number of in vitro
assays as well as computational models are already available
allowing the analysis of drug-induced responses and alterations
of intracellular metabolic pathways (Kullak-Ublick et al.,
2017). Cholestatic DILI on the contrary is more complex
to investigate since it originates from an altered crosstalk
between liver and gastrointestinal tract at the whole-body level.
The altered crosstalk results in impairment of bile acid (BA)
formation and circulation. BAs are endogenous metabolites with
various functions. Their detergent properties facilitate micelle
formation allowing the solubilisation of lipids and thereby
enabling the absorption of diet fat and fat-soluble vitamins
(Jansen et al., 2017). In addition, BAs are the result of the
catabolism of cholesterol and constitute a major pathway for
its elimination. Because of its amphipathic nature, BAs confer
the ability of bile to facilitate the excretion of lipophilic
substances (Hofmann, 1999a). Furthermore, BAs function
as endogenous signalling molecules in different pathways
like homoeostasis control of cholesterol, energy and glucose
(Houten et al., 2006).

BA metabolism is a nearly closed circuit including de novo
synthesis, transformation, diffusion and intestinal reabsorption
as well as multiple active transport processes. Within the body,
BAs undergo continuous enterohepatic circulation connecting

liver and gastrointestinal tract through the gut-liver axis. The
total BA pool comprises a broad variety of conjugated and
unconjugated BA species. BAs are synthesised de novo by
hepatocytes and conjugated with glycine and taurine before
leaving the liver as primary bile acids. Following its synthesis,
BAs are actively secreted by hepatocytes. In hepatocytes,
they can be transported either to bile canaliculi (apical)
or to the liver sinusoids (basolateral). BAs secreted into
bile canaliculi and bile ducts accumulate in the gallbladder.
From there, they are released into the luminal space of the
duodenum, and subsequently metabolised by the microbial gut
flora secondary bile acids. to Secondary BAs are absorbed
from the intestinal lumen by gut enterocytes. From there
they are secreted to either the gut lumen (apical) or to
the blood capillary vessels (basolateral). Those BAs secreted
basolaterally reach again the liver via portal vein (enterohepatic
circulation), and thereafter enter the vascular circulation and
eventually reach other tissues. Notably, these transporter-
mediated processes are key steps in enterohepatic circulation
which have a significant impact on dynamics and mass
distribution of the BA pool.

Due to an effective recycling, only around 5% of the BA
pool is lost over 24 h mainly via faeces (Houten et al., 2006).
Hence, the turnover of BAs is a systemic process that involves
different tissues and active enzymatic and transport processes.
An impairment of for example canalicular BA transporters, such
as Na+-taurocholate co-transporting polypeptide (NTCP),
multidrug resistance protein 1/3 (MDR1/3), multidrug
resistance-associated protein 2 (MDR2) and bile salt export pump
(BSEP), results in the accumulation of BAs in the liver or other
tissues, with potential toxic consequences (Jackson et al., 2016;
Wagner and Trauner, 2016; Castro and Pereira Rodrigues, 2017).

Such an accumulation of BAs in the liver or other tissues
leads to the clinical symptoms of cholestasis (pruritus and
jaundice, when bilirubin transport is also impaired). In the
beginning of DILI pathogenesis, plasma BA levels start to increase
before the cellular damage finally occurs. Hence, the rise of BA
concentration in blood, along with their composition pattern
would be an ideal early biomarker for cholestasis from a medical
perspective. Recent improvements in analytical methods facilitate
a fine-tuned analysis of different BA species for a differential
diagnosis of DILI (García-Cañaveras et al., 2012, 2014). In clinical
practice, these analytics are, however, still not applicable as a
routine standard methodology. In addition, BA composition is
influenced by the sampling site and plasma profiles might not
be representative for the concentrations of a species present
in tissues. Furthermore, it is difficult to assess the relevance
of bile acid profiles in the various types of cholestasis (Eggink
et al., 2018). This is even more relevant in the case of in vitro
experiments where bile acid circulation among different tissues
cannot be modelled appropriately. In vitro, such a scenario can
only partially be achieved in an organotypic microenvironments
as e.g., in sandwich or spheroidal microtissue cultures (Bell
et al., 2016), or in much more complex experimental settings
that incorporate microfluidics to reproduce the interplay with
other organs (Kimura et al., 2018; Sudo, 2019). Therefore,
even advanced assays can only focus on limited aspects
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of cholestasis, like the BA uptake and excretion by liver
parenchymal cells and potential interferences of drugs with BA
hepatic transporters.

Computational modelling stands as a tool that can contribute
to a mechanistic understanding of the interplay of the various
physiological processes underlying the BA metabolism. In
the case of cholestasis, such computational models, which
ideally should be knowledge-driven and physiology-based,
have to account for the enterohepatic circulation of BAs as
well as their accumulation in different tissues. Computational
models may be used specifically to simulate physiological
concentration profiles in sites that are experimentally not
accessible in vivo, such as for example the intracellular space
of different organs. In addition, computational models may
help to integrate the existing knowledge in a mathematical
representation to identify gaps in the current understanding
of a physiological or pathological phenomenon. Likewise, they
may be used to pinpoint targeted screening biomarkers for the
emergence of cholestasis.

In this study, we present a physiology-based model of bile
acid metabolism at the whole-body level based on physiology-
based pharmacokinetic (PBPK) modelling (Kuepfer et al., 2016).
Our model describes the systemic distribution and enterohepatic
circulation of glycochenodeoxycholic acid (GCDCA) as an
exemplary BA. Besides the passive diffusion and distribution
processes, the model includes the active processes of synthesis,
transport, distribution, and excretion of GCDCA. We validated
the computational physiology-based bile acid (PBBA) model
with time-concentration profiles from healthy individuals.
Subsequently, the PBBA model was used to analyse aberrant
states of bile acid metabolism as they occur in cholestasis. First,
the model was used to analyse shifts in BA levels due to a genetic
predisposition for cholestasis in BRIC2 patients (BRIC2: benign
recurrent intrahepatic cholestasis type 2). These patients are
mostly asymptomatic but may develop symptoms of cholestasis
following medical incidents as for example drug intake. Secondly,
we applied the model to examine cholestasis induced by
cyclosporine A (CsA) which is known to competitively inhibit
canalicular BA transporters, as a representative case of drug-
induced cholestasis. This overall workflow is depicted in Figure 1.

MATERIALS AND METHODS

PBPK Modelling
Physiology-based pharmacokinetic models mathematically
describe the physiological processes underlying absorption,
distribution, metabolism, and excretion (ADME) of compounds
such as xenobiotics or endogenous molecules within the body
of an organism at a large level of physiological detail (Kuepfer
et al., 2016). PBPK models include all major organs of the
organism, such as the liver, heart, or kidney. The organs
are further subdivided into different compartments such as
plasma, red blood cells, interstitial and intracellular space.
Since PBPK models are knowledge-based, most parameters
describing the anatomy or physiology of the body for example
organ volumes, surface areas, or blood perfusion rates are
taken from curated data collections, usually provided within
the PBPK software. The different organs are interconnected
through the vascular circulation. Such a high level of detail of
the organism physiology allows a mechanistic representation
of complex biological systems and phenomena as well as the
individualisation of patient models through the consideration
of specific phenotypes or other physiological characteristics.
Physiologically relevant and tissue-specific active ADME
processes like enzymatic metabolism and transport can also be
considered in PBPK models. Tissue-specific gene expression
data can be integrated as a surrogate for enzyme and transport
protein levels in active processes (Meyer et al., 2012). Besides
physiological and anthropometric information of the modelled
organism, substance-specific physicochemical parameters like
the molecular weight, solubility, or lipophilicity are used as input
parameters during PBPK model development. In particular,
these values are used to calculate passive diffusion processes
across membranes or organ-plasma partitioning coefficients
in the distribution models typically underlying PBPK models.
The Open Systems Pharmacology (OSP) platform (MoBi R© and
PK-Sim R©) was used for PBBA model development. The latest
versions of PK-Sim R© and MoBi R© are freely available under the
GPLv2 License1.

1https://github.com/Open-Systems-Pharmacology

FIGURE 1 | Study workflow. The five steps of model development are depicted: basic PBPK model, healthy reference model, population simulation, diseased model
for BRIC, and drug interaction with Cyclosporine A (CsA). The upper row of boxes depicts the inputs for the different model stages (middle row). The lower row
depicts the outputs of the model simulations.
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FIGURE 2 | Physiology-based bile acid model (PBBA). Building on a PBPK model of the bile acid GCDCA, biosynthesis via CYP7A1 in the liver, active transport
processes via BSEP, ASBT, OSTα/β, and NTCP, faecal and renal excretion were additionally included. GCDCA is stored in gallbladder and partially secreted directly
into the duodenum and is reabsorbed along the intestine (enterohepatic circulation). Emptying of gallbladder is triggered by food intake.

Model Building
The reference model of a healthy average individual includes
synthesis, circulation and excretion of an exemplary BA
(Figure 2). In our study, GCDCA was chosen since it is the
most abundant BA accounting for about 20% of the total human
BA pool (Bathena et al., 2013). This enabled us to reduce
model complexity to the key physiological processes and improve
identifiability of the free model parameters. In addition, the
consideration of a lumped pool by using a single exemplary
BA species allowed the integration of heterogeneous literature
data that analyse different BA species. Following best practice
guidelines for PBPK model building, physicochemical parameters
of GCDCA like molecular weight, solubility, lipophilicity (logP),
and plasma-protein binding (fraction unbound) (Table 1) were
used to parametrise the compound properties of the PBPK model
for small molecules. Thus, passive transport processes as well
as organ-plasma partitioning can be directly calculated using an
appropriate distribution model.

To compensate for the daily loss of BAs, a continuous
synthesis reaction was introduced to the model. This formation
of GDCDA is represented by a constant synthesis in the
intracellular space of the liver. In vivo, this synthesis rate
accounts for cytochrome P450-mediated oxidation of cholesterol
and subsequent conjugation with glycine within the liver
(Kullak-Ublick et al., 2004; Martinot et al., 2017). In total, four

TABLE 1 | Physico-chemical parameters of bile salt GCDCA.

Parameter Value References

logP 2.12 Roda et al., 1990

Fraction unbound 0.01 Roda et al., 1982

Solubility [mg/l] 100,000 Hofmann, 1999a

Molecular weight [g/mol] 449.62 Law et al., 2014

pKa 3.77 Law et al., 2014

active transport processes were included in the PBBA model: (1)
The bile salt excretion pump (BSEP) on the apical membrane
of hepatocytes, (2) the NTCP on the basolateral membrane of
hepatocytes, (3) the human ileal bile acid transporter (ASBT)
apically in the ileum mucosa, and (4) the organic solute and
steroid transporter (OSTα/β) basolaterally in the ileum mucosa
(Kullak-Ublick et al., 2004; Rao et al., 2008). A fraction of
65% of biliary excreted BAs was assumed to be stored in the
gallbladder while the remaining fraction is directly secreted to the
duodenum (Hofmann, 1999a). Gallbladder emptying is triggered
by meal ingestions. In all simulations, three meals over 24 h
representing breakfast, lunch and dinner were considered. Such
emptying processes can be modelled via inbuilt plug-ins of the
OSP Suite and their values were adapted to fit the experimental
data (Table 2). To close the overall mass balance, faecal and
renal excretion of GCDCA were implemented in the model by
passive transport and active clearance, respectively (Table 3).
Altogether, the initial PBPK model of GCDCA structurally
describes continuous BA synthesis as well as enterohepatic
circulation through the liver and the gastro-intestinal tract
including re-absorption from the ileum.

Next, uninformed model parameters were identified
in order to accurately describe the dynamics of the BA
metabolism in a healthy reference individual. Importantly,
only a limited set of modelling parameters had to be
considered since the model relies on large datasets of
physiological and physicochemical information as provided
by the underlying PBPK model. The basic PBBA model
mainly describes GCDCA with its passive distribution and the
transport molecules with their transport processes and was
established within PK-Sim R©. The additional endogenous
processes, i.e., BA synthesis and gallbladder emptying
events, were implemented in MoBi R©. The model along
with a technical building instruction are available from the
Supplementary Material.
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TABLE 2 | Values of standard PBPK model parameters.

Parameter Value Start value

Body weight [kg] 73 Fixed

Age [years] 30 Fixed

Height [m] 1.76 Fixed

Distribution model Rodgers & Rowland Rodgers & Rowland

GB Volume [l] 0.05 Fixed1

Refilling time [min] 147.8 419

Emptying half-life [min] 69.98 69.98

1van Erpecum et al., 1992.

TABLE 3 | Values of transport processes, synthesis, and inhibition for the PBBA
model parameters.

Parameter Value Start value

Km (BSEP) [µmol/l] 5 41

Km (ASBT) [µmol/l] 0.5 50

Km (NTCP) [µmol/l] 1 61

Km (OSTα/β) [µmol/l] 7.5 50

kcat (BSEP) [1/min] 300 100

kcat (ASBT) [1/min] 5 100

kcat (NTCP) [1/min] 125 100

kcat (OSTα/β) [1/min] 9000 1000

Synthesis rate [µmol/min] 0.78 Fixed1

Renal excretion [µmol/l/min] 981.30 1002

Ki (CsA) [µmol/l] 2 23

1Kullak-Ublick et al., 2004; 2Bathena et al., 2015; 3Böhme et al., 1993.

For the population simulations a virtual population of
1,000 healthy individuals with varied anthropometric properties
(Age: 20–60 years, females: 50%, BMI: 19–25 kg/m2) and
reference concentrations for all transporters was constructed
in PK-Sim R©. Up to 10% variation was allowed for the
transporters’ abundance. Population simulations and model
analyses were performed in Matlab with standard boxplot
function (Version 8.5.1.281278; The MathWorks Inc., Natick,
MA, United States). The population parameters are available
from the Supplementary Material.

Competitive Inhibition of BSEP Transport
by Cyclosporine A
A PBPK model of CsA was previously developed with PK-
Sim R© (Thiel et al., 2017b) and was integrated in the PBBA
model to simulate the effects of CsA on BA levels. Additionally,
a term describing the competitive inhibition by the drug on
BSEP transport kinetics was introduced to the integrated model
as follows:

vBSEP = vmax ×
[S]

Km,app + [S]
with Km,app = Km × (1+

[I]
Ki

),

Where [S] is the concentration of BSEP substrate GCDCA,
Km,app is the apparent Km as defined as above, [I] is the
concentration of the inhibitor CsA, Ki is the inhibitor’s

dissociation constant, and Km is the Michaelis Menten constant
(Berg et al., 2018).

Experimental Data
Consolidated experimental data from literature, describing BA
levels in the blood plasma of healthy individuals, were used for
parameter estimation and model validation. BA plasma levels
under fasting conditions were used to identify the basal level of
systemic BAs (Bathena et al., 2013).

In addition, results from various studies measuring
postprandial plasma BA profiles after three subsequent meals in
healthy male individuals (Hepner and Demers, 1977), healthy
woman (Angelin and Björkhem, 1977), pregnant woman, and
diseased volunteers (Schalm et al., 1978) were used to identify
the system dynamics of circulating BA levels in the human body.
Furthermore, we used another set of published experimental
data, not used for parameter identification, to validate our model
predictions and to additionally assess the variability of individual
BA blood plasma levels (LaRusso et al., 1978; Ponz de Leon
et al., 1978; Galeazzi et al., 1980; Gälman et al., 2005; Salemans
et al., 2009). If necessary, experimental plasma BA data were
extracted from the original publications with the web-based
WebPlotDigitizer tool (version 3.9; Ankit Rohatgi, Austin, TX,
United States, freely available under the GPLv3 License)2.

Data Normalisation
Notably, the various studies measured different BA conjugates,
thus we normalised the data. In the study of Hepner and Demers
(1977) glycine conjugates of cholic acid (CA), chenodeoxycholic
acid (CDCA), deoxycholic acid (CDA) and sulpholithocholic
acid (LCA) were identified, as such representing only a subset
of the complete BA pool. Another study (Schalm et al., 1978),
investigated postprandial plasma BA profiles in five healthy
as well as in pregnant and diseased volunteers and measured
chenyl- and cholyl- conjugates. Whereas yet others (Angelin
and Björkhem, 1977) measured postprandial plasma BA profiles
in five healthy women and quantified CA, CDCA, and DCA
without amidation and sulphation. The measured BA species vary
considerably among the different studies, and we normalised the
postprandial BA profiles to allow a comparison of the different
data sources. Therefore, a percentage scaling factor was calculated
from literature for scaling all datasets to the fraction of summed
conjugated cholic, chenodeoxycholic, and deoxycholic acid as far
as the study description allowed (Supplementary Table S1 and
Supplementary Figure S1; Bathena et al., 2013) by the following
formula yn = yold × scaling factor.

Goodness of Fit
To quantify how well the model describes the data, four different
measures were used:

(1) k-fold deviation with k ∈ {2, 3, 4}, to quantify the
percentage of observed data lying within a given deviation.

2https://github.com/ankitrohatgi/WebPlotDigitizer
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(2) Root-mean-square deviation (RMSD) according to the
following formula:

RMSD =
∑n

i=0
(
obsi − predi

)2

n

(3) Normalised root-mean-square deviation (NRMSD)
according to the following formula:

NRMSD =
RMSD

max
(
obs
)
−min(obs)

(4) R2 according to the following formula:

R2
=

∑n
i=0
(
obsi − predi

)2∑n
i=0

(
obsi − obs

)2

where n is the number of data points and obs describes the mean
of the observed datapoints.

RESULTS

Physiology-Based Model of Bile Acid
Metabolism
A computational physiology-based model describing the
distribution and enterohepatic circulation of an exemplary bile
acid at the whole-body scale in an average healthy individual
has been developed. The overall workflow of the study in terms
of model development and subsequent analyses is presented
in Figure 1. The reference model of BA metabolism in healthy
individuals was developed based on physicochemical properties
of GCDCA as an exemplary BA and the known physiological
processes that take place during enterohepatic circulation.
BA synthesis, renal and faeces excretion, passive diffusion,
gallbladder emptying, and four active transporters (BSEP, NTCP,
ASBT, and OSTα) were implemented (Figure 2). Subsequently,
a virtual population of 1,000 individuals was created to assess
the variability in post-prandial BA levels. Also, the impact of
the BRIC2 and progressive familiar intrahepatic cholestasis type
2 (PFIC2) mutations as cause of DILI predisposition and CsA
administration on BA levels were analysed. A detailed description
of the model is given in the Methods section. Measurements of
basal and postprandial BA concentration levels from literature
were used to evaluate the agreement of the computational
simulations with the scaled experimental data (Hepner and
Demers, 1977; Ponz de Leon et al., 1978; Schalm et al., 1978).
The comparison between the simulated kinetics of BA levels
over 24 h with reported data is shown in Figure 3. Experimental
data of post-prandial BA profiles from two studies are shown,
in which healthy individuals were fasted overnight and given
three meals at 8:00, 12:00, and 16:00 h. Following parameter
identification, the model could describe the plasma BA dynamics
well despite a significant level of variability in the experimental
data. The peak concentrations as well as the corresponding
postprandial levels and the dynamics of gallbladder emptying
are met with sufficient accuracy (Figure 3 and Table 4).We next

FIGURE 3 | Simulation of venous blood plasma BA levels in a human
reference individual. The PBBA model was simulated with three meals per day
given at 8, 12, and 16 o’clock and simulated BA concentrations in venous
plasma (red solid curve) are compared with reported values from Hepner and
Demers (1977) (exp. data 1, dark blue points connected by dashed line) and
Ponz de Leon et al. (1978) (exp. data 2, green points connected by dashed
lines).

TABLE 4 | Goodness of fit of the PBBA model.

Parameter 2-fold
deviation

3-fold
deviation

4-fold
deviation

RMSD NRMSD Rˆ2

Value 0.64 0.88 0.97 6.21 0.85 −0.41

verified whether several physiological reference measurements
of the BA metabolism such as total BA pool size, cycling
times and concentrations in various compartments could be
described by the model. Hence, a series of clinical parameters
were retrieved from the scientific literature and used for fitting
and comparing to corresponding values calculated from the
simulation results (Table 5). Even though the model is an open
system with a complex dynamic behaviour, a good agreement
between literature values and simulation outcomes was achieved.
The accordance of physiological reference values represents a
strong indication for a good overall model quality in terms of
both, mass balance and dynamics (Figure 3, Tables 4, 5 and
Supplementary Figure S2).

Population Simulation of the PBBA
Model
The developed PBBA model describes BA profiles in an
average adult individual. This is a far-reaching assumption
given the significant inter-individual variability in the clinical
data (Figure 3). To test the robustness of the PBBA model, a
population simulation was additionally performed. For this, a
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TABLE 5 | Physiological reference measurements.

Parameter Literature Model References

BA conc. in venous blood [µmol/l] [0.9, 8.4] [1.68, 8.91] Var. Sources (see M&M)

BA conc. in portal vein blood [µmol/l] [2.8, 33.2] [3.95, 34.5] Angelin et al., 1982

Faecal excretion rate [µmol/min] 0.72∗ 0.72 Dancygier, 2003

BA pool size [µmol] [4250, 6672]∗ 5697.69 Beuers et al., 1992; Bisschop et al., 2004

Avg. secretion rate per meal [mmol/h] 5 ∼1.2 Hofmann, 1999a

BA conc in gallbladder [µmol/l] [3000; 100,000] [25;2800;5000] Hofmann, 1999a; Jansen et al., 2017

BA conc. in intestinal lumen [µmol/l] [2000, 10,000] [75, 5175.02] Hofmann, 1999a; Hamilton et al., 2016

BA conc. in liver cells [µmol/l] 1-2;<3 [0.23, 1.07] Hofmann, 1999a,b

Values with (∗) were converted to model units.

FIGURE 4 | Simulation of venous blood plasma BA levels in a virtual healthy
population of 1,000 individuals. BA levels were assigned to the meal after
which they were measured or simulated. Symbols represent BA plasma
measurements from experimental studies [o= (Angelin and Björkhem, 1977),
+ = (Galeazzi et al., 1980), ∗ = (Gälman et al., 2005), x = (Salemans et al.,
2009), ♦ = (Ponz de Leon et al., 1978)]. Bars (compact boxes) represent the
interquartile range of the experimental data (orange) and the simulation (black)
with the median marked as dot on the box.

virtual population of 1,000 individuals was created within PK-
Sim with the parameters given in the see section “Materials
and Methods”. To account for variability in the transporter
expression, which are not part of the PK-Sim database for
populations, a 10% variability was assumed. The simulations
were run to steady state and Figure 4 shows the BA levels per
meal from the population simulation and experimental data (see
section “Materials and Methods”). Data, both from literature
and the simulations were assigned to a first, second, and, third
meal whenever possible. Single BA measurement in plasma (one
symbol per study) as well as boxes condensed to bars indicating
the 25th and 75th percentiles (IQR) for the experimental data
and the simulations are shown. The median BA concentration

per each meal decreases over daytime in both, the experimental
data and the simulations. The predicted population variability
was in a to-be-expected physiological range and matched the
experimentally measured BA values (80 and 100% of observed
data within the IQR and the 95th and 5th percentiles of observed
data, respectively).

The comparison of the PBBA model with various
physiological reference measurements (Table 5) as well as
clinical data sets (Figure 4) is a strong indication for the overall
correctness of the model for healthy reference individuals. This
positive validation of our computer model gives confidence for
further predictions and investigations.

Diseased Model of Benign Recurrent
Intrahepatic Cholestasis Type 2 (BRIC2)
A variety of clinical cases of cholestasis result from inborn
mutations in humans (Pauli-Magnus et al., 2005). Depending
on the affected protein and the locus of mutation, different
types and severity of cholestasis may emerge. It is known that
carriers of PFIC2 or BRIC2 have a higher risk of encountering
cholestasis as a consequence of other diseases or drug therapies
(Srivastava, 2014). Both the severe PFIC2 and the milder BRIC2
are caused by polymorphisms of the BSEP-coding gene which
lead to an impaired function of the encoded protein. As a result,
PFIC2 patients usually experience an early onset of cholestasis
in their lifetime and often need early liver transplantations.
The BRIC2 mutations are usually less severe such that a basal
functionality of BSEP remains. However, affected patients have
clinical episodes of cholestasis during their lifetime and slightly
elevated basal BA plasma levels (Ermis et al., 2010; Zellos et al.,
2012; Hayashi et al., 2016).

Based on the PBBA model developed for healthy individuals,
we simulated the effect of PFIC2 and BRIC2 on systemic BA
levels by decreasing the transporter activity in this genotype
subgroup. For BRIC2 patients, we reduced the BSEP kcat from
100% to 20–13% of the original BSEP transporter activity to
account for the remaining functionality. For the PFIC2 genotype,
the transporter activity of BSEP was further reduced to 5%
(Noe et al., 2005). The simulation results show the relative
differences of BA amount in various enterohepatic compartments
after simulating the gradual loss of BSEP function (Figure 5).
While the downstream compartments of the liver including the
gallbladder, intestinal tract (not shown), and faeces contain less
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FIGURE 5 | Simulation of BA levels in various compartments with decreasing
BSEP function. The mean difference (in% of reference) of BA content in
various compartments as well as the total BA pool are plotted over decreasing
BSEP function. The reported ranges of BSEP functionality in BRIC2 patients
with 20–13% and in PFIC2 patients with <13% are marked in blue and red,
respectively. BA content in faeces, gallbladder, and the total pool decrease
with decreasing BSEP function, while BA in liver cells, venous blood, portal
vein blood, and urine increase.

BAs, the upstream compartments portal vein, venous blood, and
urine contain higher amounts of BAs compared to simulation
results with 100% BSEP function. The range of BSEP function
in BRIC2 individuals is indicated in blue and simulations show
that individuals have up to doubled BA levels in blood and up to
six-fold increase in the liver cells (Figure 5).

Drug Interaction With Cyclosporine A
As another clinical scenario we modelled the influence that
CsA administration could exert on BA levels. CsA is known
to induce cholestatic DILI with different degrees of severity by
influencing gene expression of liver enzymes and transporters,
but also inhibiting transport processes of BSEP competitively.
We incorporated in the PBBA model a previously published
PBPK model of CsA (Thiel et al., 2017b) to investigate the
potential impact of the drug on BA levels. Drug-drug interaction
models are a frequent application in PBPK modelling (Thiel et al.,
2017a), however, it should be noted that in the present case,
the coupled model simultaneously describes the disposition of
endogenous BA species as well as the pharmacokinetics (PK) of
an exogenous drug. The PBPK model for CsA has been carefully
validated before with different PK data for intravenous and oral
administration (Thiel et al., 2017b; Figure 6). The inhibition of
CsA on BSEP was integrated by the introduction of a competitive
inhibition term for the BSEP kinetics (see section “Materials and
Methods”). Simulations were performed for healthy individuals
as well as BRIC2 patients. Figure 6A shows the CsA levels after a
bi-daily intravenous dose of 2 mg/kg CsA in venous blood and
liver cells. The simulations show mildly elevated BA levels in

venous and portal vein blood in healthy individuals (Figure 6B).
A more pronounced effect is observed in the liver, where BA levels
increase about 22% compared to the untreated case. After CsA
administration in BRIC2 patients, the model anticipates BA levels
increase up to eight-fold, relative to healthy reference individual
(Figure 6B). These results suggest that even routine medical
treatments may increase BA plasma concentrations in BRIC2
patients to levels clearly above normality indicating a potentially
cholestatic effect.

DISCUSSION AND CONCLUSION

Distribution and accumulation of BAs in blood plasma
and tissues is a direct clinical biomarker for cholestasis.
However, assessment of BAs accumulation within different
tissues is infeasible due to technical and ethical limitations.
Therefore, a truly comprehensive picture of BA distribution
and metabolism cannot be achieved from clinical measurements
alone. Enterohepatic circulation of BAs, a systemic process which
involves multiple consecutive and fine-tuned steps in different
organs, adds even more complexity and variability. Altogether,
the causes of altered BA metabolism and accumulation in tissues
are difficult to precisely monitor in individual patients, what
significantly limits the usage of BAs measurement for diagnostic
profiling. A computational model capable of quantitatively
describing BA concentration in body fluids and tissues could be a
valuable tool to better understand and interpret the alterations of
the systemic BA distribution and metabolism. Such a mechanism-
based computer model could be helpful to identify novel (early)
markers for cholestasis in clinical practice. Moreover, it could be
useful to understand the underlying mechanisms of cholestasis,
anticipate toxic effects and envisage clinical strategies to improve
patient’s recovery once the first cholestasis DILI symptoms have
been recognised.

The computational whole-body PBBA model described allows
the simulation of BA exposure in blood plasma and different
tissues. The main processes of BA metabolism such as synthesis,
excretion, and enterohepatic circulation are mechanistically
included in the model at a large level of physiological detail
based on the underlying PBPK model structure. Likewise, as
the model builds on the well-established PBPK framework,
organ-plasma partitioning is explicitly represented for different
tissues throughout the body. It should be noted that as such
the model is similar to a typical PBPK model for xenobiotic
drugs even though distribution and excretion of an endogenous
compound are considered here. This similarity is a particular
advantage of our approach since the basic PBPK model already
includes a detailed physiological representation of the gastro-
intestinal tract involving several segments to quantitatively
describe dissolution of tablets (Thelen et al., 2011). This is of
outmost importance to physiologically describe re-absorption
of BAs from the gut lumen during enterohepatic circulation.
With this model intracellular concentrations, e.g., in the liver, are
directly available. Additionally, concentrations in other off-target
tissues such as skin or brain may also be simulated to evaluate the
risk of complications like pruritus.
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FIGURE 6 | (A) Time-concentration profile of CsA in venous blood after oral intake of 4 mg/kg. Observed (Aweeka et al., 1994; Thiel et al., 2017b) versus simulated
concentrations of CsA levels in venous blood plasma after intravenous and oral administration of 4 mg/kg and 10 mg/kg. (B) 7 Simulation of the coupled CsA PBPK
and the PBBA model. Simulated mean BA (in% of healthy reference) of the reference model, the BRIC2 and the CsA-coupled models in the intracellular space of the
liver, venous blood plasma, and portal vein plasma are shown.

We initially parametrised the presented PBBA model based
on a comprehensive set of plasma BA data. Subsequent model
validations were conducted with independent data sets not
used during model establishment. We showed that the PBBA
model is capable of reproducing the dynamic postprandial BA
levels in healthy individuals, as well as to simulate BA levels
for different clinical disease cases of inborn errors and for
inhibitory interactions after drug-administration. However, a
perfect correlation of the model with the observed data cannot
be expected due to multiple factors. On one hand, the BA
lumping introduces some bias since the kinetics of different
BA species vary considerably (Hepner and Demers, 1977). But
modelling of different BA species with their kinetics is hampered
by the limited and sometimes conflicting data what is displayed
in Figure 3. On the other hand, the general variability in BA
blood levels is high even under healthy conditions. Therefore,
we decided to further validate the model to additional available
observed concentrations and rates (Table 5). Since intrinsically,
the simulation of one average individual cannot cover such inter-
individual variability a population simulation was performed to
confirm the model’s performance (80% of observed data within
IQR, Figure 4).

The genotype-specific functionality of BSEP transporter was
simulated and confirmed the predisposition of the BRIC2
subgroup toward drug-induced cholestasis by elevated BA levels
in blood and in liver. The lack of clinical data renders it
hard to validate the simulations, but the physiology-based
mechanistic background integrates as much knowledge as we
have. Therefore, our predictions are the closest quantitative guess
for inaccessible but critical compartments like the liver cells.
Additionally, the overall model behaved in a consistent and

physiologically expected manner, indicating the appropriateness
of the assumptions, equations and the restrictions self-imposed
in the course of its mathematical development. The simulation
of CsA administration to this patient group anticipated a large
increase of the BA levels in these patients, which should warn
the clinician about increasing the risk of cholestasis. Here,
computational modelling allowed the quantitative estimation of
tissue-specific BA exposure which is not accessible clinically. The
computational PBBA model allowed a systematic consideration
of different degrees of BSEP activity in BRIC2 and PFIC2
patients, which could otherwise not have been analysed. In
addition, the developed PBBA model is not data-driven but rather
knowledge-based, since a lot of prior physiological information
is included in the underlying PBPK model. For this reason, it
is also possible to extrapolate the model to consider specific
questions or hypotheses like functional changes or alterations
in environmental conditions, which have not been explicitly
considered during model establishment itself. This has been
done with PBPK models in other contexts like paediatric scaling.
Willmann et al. (2014) Hence, the PBBA model presented here
seems particularly well suited to simulate scenarios that can
take place in patients with impaired BA transport based on the
reference PBBA model of healthy reference individuals.

The first attempts to mathematically model the BA
metabolism were published in the early 1980s (Hofmann
et al., 1983; Cravetto et al., 1988). These models were detailed
in the description of the BA species and the enterohepatic
circulation but lacked mechanistic knowledge regarding the
whole-body physiology and relevant transporters. Recent models
make use of a simplified representation of the body physiology
and do not include organs or their sub-compartments such as
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intracellular or interstitial space (Woodhead et al., 2014; Sips
et al., 2018), as such potentially limiting the quantification of
specific tissue concentration profiles. Moreover, such models are
mostly data-driven limiting their translation to new indications,
patient subgroups or clinical scenarios such as BRIC2 and
PFIC2 patients, which were explicitly considered in this study.
Since our focus lies on the basic physiological mechanisms of
cholestasis development, none of the general yet secondary
clinical biomarkers like ALP have been considered in our model
(Woodhead et al., 2014; Longo et al., 2016). Instead, we aimed
toward a description of the actual defect and not the indirect
consequences of the tissue damage induced by accumulated BA.
In contrast to data-driven approaches (Sips et al., 2018), the
presented PBBA model is knowledge-based and relies largely on
prior curated information explicitly included in the originating
PBPK model. This increases the reliability of both the identified
parameters and the model-based analyses.

The PBBA model might also help to explain the causalities
in idiosyncratic cases of DILI such as genetic or physiological
predisposition of individual patients in the future. Functional
consequences of kinetic alterations such as different genotypes
or diseases can be mechanistically represented in physiology-
based modelling (Lippert et al., 2012; Cordes et al., 2016)
allowing, for example, to describe cases of DILI beyond intrinsic,
i.e., predictable dose-relations. Since PBPK models allow the
inclusion of patient specific physiological information, the
PBBA model might be used to analyse cases of idiosyncratic
drug-induced cholestasis. In particular, the model allows the
simulation of individual drug exposure in off-target tissues as a
consequence of a patient’s anatomy, physiology, lifestyle, gender
or age. In addition, the used PBPK framework can be used to
translate model predictions from the current human PBBA model
to other species like mice to support model-based experimental
design (Thiel et al., 2015).

The current mathematical formulation of this model has,
however, a certain number of shortcomings. The population
simulation showed that the simulated variability is higher than
the recorded one. This deviation is likely to be overcome by
adjusting the BAs synthesis rate to the liver sizes instead of
assuming a fixed liver volume. Basolateral transport processes
for BA excretion from the hepatocytes were neglected since
it is difficult to catch because only a net transport rate into
the hepatocytes can be reliably identified. For this reason,
counteracting processes which could potentially reduce the effect
of BSEP functional impairment in BRIC and PFIC2 patients
have not been considered so far (Figure 5). In this version
of the PBBA, we only considered GCDCA as a surrogate BA.
However, it is known that different BA species do not have the
same kinetics (Setchell et al., 1997). Therefore, this approach may
introduce a systemic error leading to a reduced agreement of the
model with the experimental data. It can also be argued that, the
smaller peaks secondary to the main meal peaks (Figure 3) are
not reflected by the model. This is probably due to not having
included the different BA species which may show different
dynamics. Despite these drawbacks, it should be recognised that
the model is still capable of describing the global behaviour of BA
dynamics at whole body level, with sufficient accuracy.

Future improvements of the model will include differentiation
in various BAs (primary and secondary) and their metabolites.
This extension of the current PBBA model is important since BAs
are continuously transformed and may accumulate differentially
in various tissues all over the body. The prediction of such shifts
in BA composition in specific tissues like the liver based on
simpler blood samples could also be a fine-tuned biomarker for
the assessment of the different diseases as well as cholestasis.
For such a differentiated BA pool the necessary metabolisation
steps which are catalysed by the intestinal microbiome need to
be integrated. The tools for the vertical integration of metabolic
network models into PBPK models already exist and can directly
be added to the current PBBA model (Krauss et al., 2012;
Cordes et al., 2018).

There is also growing interest in the role of BAs as mediators
and signalling molecules within systemic circulation at the whole-
body level. For example, it has been shown that BAs play an
essential role in the activation of cellular receptors like GPBAR1
(G protein-coupled bile acid receptor 1) or FXR- α (farnesoid X
receptor) (Hylemon et al., 2009). Likewise, BAs have been shown
to regulate intracellular pathways such as insulin signalling in
the liver or the intestinal tract as well as energy metabolism in
brown adipose tissue (Watanabe et al., 2006). Consequently, a
therapeutic administration of BAs may help to treat metabolic
diseases through fine-tuning of metabolic control (Broeders et al.,
2015). There are also indications that BAs influence energy
metabolism beyond enterohepatic circulation in the central
nervous system through direct or indirect pathways (Mertens
et al., 2017). Metabolomics studies have identified bile acids as
biomarkers for various pathologies such as hepatic impairment in
polycystic kidney disease (Brock et al., 2018), gestational diabetes
(Gao et al., 2016), hepatitis B-induced cirrhosis (Wang et al.,
2016), Alzheimer’s disease (Marksteiner et al., 2018). Also in this
regard could an extended PBBA model be of use in the future to
mechanistically describe and explain BA disposition in specific
tissues as well as the underlying multi-tissue interplay.

Further modifications of the presented PBBA model
could include circadian BA synthesis or gallbladder emptying
overnight, which have been neglected in the present version
of the model. Therefore, the simulated nightly BA profiles
are not as reliable as of now. Additionally, different meal
compositions could be considered to specifically trigger different
responses. This could also include the effect of change in
lifestyle on the composition of the intestinal microbiome and
subsequent changes in BA composition (Wahlström et al.,
2016). Furthermore, specific preclinical in vitro data can be
integrated and used for in vitro-in vivo translation of omics
data (Kuepfer et al., 2017). This will ideally involve time series
of omics data which could be contextualised in the model to
describe the adaption of bile acid metabolism toward repeated
drug administration or to track specific pathogeneses. The
clinical cases shown in this work, however, illustrate that the
current model can already be applied to analyses of clinical
relevance. Another extension of the current PBBA model could
be its translation to preclinical animal species to mechanistically
support the analysis of targeted experimental measurements such
as two-photon imaging data (Reif et al., 2017) or to investigate
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physiological phenomena at systems level such as bile infarct
formation (Ghallab et al., 2019). We therefore strongly believe
that the presented model provides an important platform for
model-based analyses of BA metabolism in the future.
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