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Abstract

Nutritional manipulations early in life have been shown to influence growth rate and elicit

long lasting effects which in turn has been found to impact lifespan. Therefore, we studied

the long-term effects of pre-weaning dietary restriction implemented by litter expansion (4,

6, 8, 10, and 12 pups per dam: LS4, LS6, LS8, LS10, LS12) on male and female C57BL/6J

mice. After weaning, these mice were fed ad libitum a commercial lab chow for the 15-

month duration of the study. The male mice from large litter size (LS12) were significantly

leaner and had reduced total fat mass compared to the normal size litters (LS 6) starting

from weaning through to 15 months of age. Male LS10 & 12 mice also showed significant

reduction in their fat depot masses at 15 months of age: gonadal, subcutaneous, and brown

fat whereas the females did not mimic these findings. At 9 months of age, only male LS12

mice showed improved glucose tolerance and male LS12 mice also showed improved insu-

lin tolerance starting at 5 months of age. In addition, we found that the male LS8, 10 & 12

mice at 15 months of age showed significantly reduced IGF-1 levels in the serum and vari-

ous other organs (liver, gastrocnemius and brain cortex). Interestingly, the female LS8, 10,

12 mice showed a different pattern with reduced IGF-1 levels in serum, liver and gastrocne-

mius but not in the brain cortex. Similarly, the litter expanded mice showed sex specific

response to levels of FGF21 and adiponectin with only the male mice showing increased

FGF21 and adiponectin levels at 15 months of age. In summary, our data show that, litter

expansion results in long-lasting metabolic changes that are age and sex dependent with

the male mice showing an early and robust response compared to female mice.

Introduction

Nutrition has a major environmental influence during pre-natal and post-natal development

that can lead to major long-term effects both physically and mentally later in life. Barker

hypothesized that intrauterine growth retardation increases the risk to many chronic diseases
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such as diabetes, metabolic syndrome and cardiovascular disease in middle to later life [1–3].

Maternal under-nutrition during pregnancy permanently alters the fetal organ structure lead-

ing to developmental programming wherein the fetal metabolism changes to ensure survival

and results in intrauterine growth restriction and low-birth weight [4]. Offspring born with

low-birth weights have been shown to develop obesity, insulin resistance, type 2 diabetes and

coronary artery disease during adulthood in both humans and animal models [5–8]. Ozanne

and Hanes [9] showed that poor maternal nutrition during pregnancy (reduced protein to 8%)

in mice results in low-birth weight pups and when these low-birth weight pups were cross fos-

tered to dams fed a normal diet (20% protein) they showed reduced longevity (~25%), and

when these pups were fed western diet after weaning, it further shortened their lifespan. In the

opposite scenario, when mothers are over-nourished during their pregnancy phase (leading to

maternal obesity and gestational diabetes), the offspring are at increased risk to develop obe-

sity, metabolic syndrome and cardio vascular disease later in life [4, 10–13].

In contrast to the above studies, Ozanne and Hales [9] showed that pups born to mothers on

normal diet (20% protein) when cross fostered to lactating mothers on low-protein (8%) diet

(exposure to restricted diet only during lactation) and then fed a normal chow ad libitum after

weaning, show slow post-natal growth and have increased longevity (6%). Furthermore, when

these pups were exposed to western diet after weaning, they were resistant to reductions in life-

span when compared to pups born to mothers with low protein diet [9]. Additionally, Lopez-Sol-

dadao et al. [14] reported that litter expansion during lactation phase (without any nutritional

manipulation to the dams) created dietary restriction in the pups by showing that rat pups from

large litters consumed less milk than the controls and that the pups from large litters showed

reduced adiposity and improved insulin sensitivity during adult life. More recently, Sun et al. [15]

studied the effect of dietary restriction during the pre-weaning period (3 weeks of lactation) on

lifespan. The authors implemented dietary restriction during lactation in two ways: (i) lactating

mothers were fed low protein diet similar to what Ozanne and Hales [9] had done previously and

(ii) by litter expansion, i.e., increasing the litter size by 50% (8 vs 12 pups/litter) on lactating dams

on normal, high protein (20%) diet. They found that maternal protein restriction had no effect on

the lifespan of the offspring; however, the litter expansion by 50% resulted in a significant (~18%)

increase in lifespan of the pups subjected to litter expansion. Subsequently, Sadagurski et al. [16]

showed that litter expansion in mice had long-lasting beneficial effects such as improved energy

homeostasis and insulin and leptin sensitivity throughout the lifespan of the mice. Cumulatively,

these studies clearly show that under or over-nutrition during intrauterine growth results in

reduced lifespan and increased risk to various chronic diseases whereas reduced nutrition only

during the post-natal phase leads to slow post-natal growth and increased lifespan.

The purpose of this study was to comprehensively evaluate the long-term effects of litter

expansion. We evaluated the long-term (15 months) effects of a variety of litter sizes (LS4, LS6,

LS8, LS10 and LS12) on metabolic parameters in both male and female C57BL/6J mice. Along

with many metabolic indices including body composition, adiposity and insulin sensitivity we

also assessed the levels of growth factors (IGF-1 & FGF21) and adiponectin. Interestingly, all

long-lasting beneficial effects observed with litter expansion were found to be sex specific.

Male mice displayed robust response starting early in life, whereas female mice demonstrated

a delayed but significant response later in life.

Materials and methods

Animals

Litter expansion of male and female C57BL/6J mice was performed by Jackson laboratory (Bar

Harbor, ME) and 5 litter sizes (LS) were generated: 4, 6, 8, 10, and 12 pups per litter (LS4, LS6,

PLOS ONE Litter expansion alters metabolic homeostasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0237199 September 29, 2021 2 / 19

Institute of Health, R00AG051661 awarded to (M.

B.S.). The Oklahoma Center for Adult Stem Cell

Research funded to (A.U.) and (A.R.). The funders

had no role in study design, data collection, and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0237199


LS8, LS10, and LS12). In brief, 6 pups/litter was used as control as that is the average litter size

of C57BL/6J mice at Jackson Laboratory. To generate the other litter sizes, pups were added to

lactating dams to generate litter sizes 8, 10, and 12 pups/litter and reduced to generate 4 pups/

litter. No rejection of pups by the dams were noticed in the larger litter sizes. All lactating

mothers were fed the standard breeding chow rich in protein (~18%) and fat (10–12%). At 3

weeks of age, all the male and female mice were shipped to the University of Oklahoma Health

Sciences Center and maintained under SPF conditions in a HEPA barrier environment. The

animals were maintained (5 mice/cage) under temperature and light controlled conditions

(12-12h light-dark cycle) and fed ad-libitum irradiated NIH-31 mouse/rat diet from Teklad

(Envigo, Madison, WI). Each litter size contained 16–24 animals of mixed sexes as shown in

S1 Table. Body weight at 1- and 15 months of age and fat depot measurements at 15 months of

age were made on all mice received. Insulin sensitivity and body composition were followed

on 4–5 mice per group and sex and subsequently all molecular analysis was done on the same

set of mice. For the molecular analysis mice were taken at 15 months of age, fasted overnight,

sacrificed and tissues harvested, snap frozen in liquid nitrogen, and stored at -80˚C until used.

All procedures were approved by the Institutional Animal Care and Use Committee at the

University of Oklahoma Health Sciences Center.

Sexual maturity

Female sexual maturity was determined by following the onset of vaginal patency [17]. The

mice were observed for the visual appearance of an opening starting at postnatal day 21 to

postnatal day 32. The appearance of opening was defined as the onset of vaginal opening.

Body composition

Body composition of mice in all groups were measured using nuclear magnetic resonance

spectroscopy (NMR-Bruker minispec) at 15 months of age. Total Fat mass and lean body mass

were measured.

Liver triglyceride content

Liver samples (*100 mg) were homogenized on ice for 60 seconds (20 second increments) in

10X (v/w) Lysis Buffer (Cell Signaling, Danvers, MA) with protease and phosphatase inhibitors

(Boston BioProducts, Boston, MA). Total lipid was extracted using the Folch method [18] and

final triglyceride concentrations were determined using a spectrophotometric assay as previ-

ously described [19].

Glucose Tolerance Test (GTT)

Glucose tolerance was determined after an overnight fast of mice at 5 and 9 months of age

with 4–5 per group. Mice were weighed and injected intraperitoneal with 20% glucose (2g/kg)

and blood glucose levels, collected from tail, were measured over a 120-minute period using a

glucometer (Contour NEXT EZ, Bayer, Whippany, Germany). The area under curve (AUC)

for each curve was determined and represented as AUC glucose (mmol X 120 min).

Insulin Tolerance Test (ITT)

Insulin Tolerance was determined after an overnight fast of mice at 5 and 9 months of age

with 4–5 per group. Mice were weighed and injected intraperitoneally with 0.75 Units/kg body

weight and blood glucose levels, collected from tail, were measured over a 120-minute period
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using a glucometer (Contour NEXT EZ, Bayer, Whippany, Germany). The area under curve

(AUC) for each curve was determined and represented as AUC glucose (mmol X 120 min).

IGF-1 levels

IGF-1 protein levels in the serum and tissues (liver, gastrocnemius, and brain cortex) were

determined using Quantikine mouse IGF-1 immunoassay from R&D systems (MN, USA).

Serum samples were diluted in calibrator diluent provided in the kit at 500-fold dilution and

assayed according to the manufacturer’s instructions. Values are represented as pg of IGF-1

per ml of serum. For the tissue levels, IGF-1 was first isolated from its binding components by

acid extraction using sodium acetate buffers (pH 3.6) before proceeding with the ELISA as

described by Adams et al. [20]. Values are represented as pg of IGF-1 per 50 mg of tissue.

FGF21 levels

FGF-21 protein levels in the serum and liver were determined using Quantikine mouse/rat

FGF-21 ELISA kit from R&D systems (MN, USA). Serum and liver homogenates were mea-

sured by a solid-phase ELISA technique according to the manufacturer’s instructions. Value

are represented as pg/mg of tissue or pg/ml of serum of FGF-21.

Adiponectin levels

Adiponectin protein levels in the gonadal white adipose tissue was determined using Quanti-

kine mouse adiponectin/Acrp 30 ELISA kit from R&D systems (MN, USA). Liver homoge-

nates were measured by a solid-phase ELISA technique according to the manufacturer’s

instructions. Value are represented as pg/mg of tissue of Adiponectin.

Real-time PCR

The levels of specific mRNA transcripts of genes involved in hunger/satiety, inflammation and

fatty acid metabolism were measured by real-time PCR in the hypothalamus and gonadal

white adipose tissues of litter expansion mice (n of 4-5/group). Briefly, RNA was isolated using

the RNeasy kit from Qiagen (Germantown MD, USA). The first strand cDNA was synthesized

from 1μg RNA using random primers (Promega, Madison, WI, USA) and purified using the

QIAquick PCR purification kit (Qiagen, Germantown, MD, USA). Expression of some of the

candidate genes (IL-6, TNF-α, MCP-1, FAS, ACC, MCAD, LCAD, β-Actin) were quantified

using real-time PCR with SYBR green (PowerTrack SYBR Greem Master mix, ThermoFisher,

Scientific, Houston, Tx, USA) and the primer sequences are given in Table 1. The gene

transcripts were normalized to β-actin. Expression of Pomc (Mm00435874_m1), Npy

(Mm01410146_m1), AgRP (Mm00475829_g1), CRH (Mm01293920_s1) and β-Actin

Table 1. Primer sequence.

Gene name Forward Primer Reverse Primer

IL-6 5’-TGGTACTCCAGAAGACCAGAGG -3’ 5’AACGATGATGCACTTGCAGA-3’

TNF-α 5’-CACAGAAAGCATGATCCGCGACGT-3’ 5’-CGGCAGAGAGGAGGTTGACTTTCT-3’

MCP-1 5’- CCACTCACCTGCTGCTACTCAT-3’ 5’-GGTGATCCTCTTGTAGCTCTCC-3’

FAS 5’-GGAGGTGGTGATAGCCGGTAT-3’ 5’-TGGGTAATCCATAGAGCCCAG-3’

ACC 5’-GATGAACCATCTCCGTTGGC-3’ 5’-GACCCAATTATGAATCGGGAGTG-3’

MCAD 5’-CTAACCCAGATCCTAAAGTACCCG-3’ 5’-GGTGTCGGCTTCCAAATGA-3’

LCAD 5’- CTTGCTTGGCATCAACATCGCAGA-3’ 5’-ATTGTAGTACGCTTGCTCTTCCCA-3’

β-Actin 5’- GATGACCCAGATCATGTTTGAGACC-3’ 5’- AGATGGGCACAGTGTGGGTGA-3’

https://doi.org/10.1371/journal.pone.0237199.t001
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(Mm02619580_g1) in the hypothalamus was done using specific Taqman probe sets and nor-

malized to β-actin. The expression of IGF-1 (Mn00439560_m1) in the liver was also done

using Taqman probe sets and normalized to β-Actin (Mm02619580_g1). Relative gene expres-

sion was quantified as comparative ct analysis using the 2-ΔΔct analysis method with β-actin as

endogenous control.

Statistics

Statistical significance was determined using one-way ANOVA with Tukey’s and FDR with

Benjamini & Hochberg multiple correction test. LS6 was used as the control group and all

other group means were compared to LS6. P-values less than 0.05 were considered statistically

significant.

Results

Effect of litter expansion on body weight and body composition

The average litter size for C57BL/6J mice is 6; therefore, we studied the effect of litter size

expansion from 6 pups/litter (LS6) to litter sizes of 8 (LS8), 10 (LS10) and 12 (LS12), i.e., we

expanded the litter size by 33%, 66% and 100%, respectively. We also reduced the litter size by

~30% to 4 pups/litter (LS4) to study the effect of reduced litter size on various parameters. We

first determined the effect of litter expansion on the development of sexual maturity in the

female mice as measured by age of vaginal patency. We found that all female mice studied

from litter sizes ranging from 4 to 10 showed vaginal patency at a similar age, e.g., ~32 days of

age. However, only 44% of the female mice from 12 pups/litter showed vaginal opening by 32

days of age. This suggests a delay in sexual maturity in LS12 female mice which has been corre-

lated to an increase in lifespan [17].

Because Sun et al. [15] showed that pre-weaning food restriction reduced the size and body

weight of the mice at weaning and maintained reduced body weight throughout their lifespan,

we followed the changes in body weight and composition through 15 months of age. Fig 1

shows the body weight of both male and female litter expanded animals at 1, 5, 9, 11 and 15

months of age. LS12 male and female mice showed a significantly reduced body weight at one

month of age compared to control, LS6 mice, but only the male mice continued to maintain

significantly reduced body weight through 15 months of age. In males, LS10, and LS12 mice

showed significant body weight reduction at 15 months of age (Fig 1). The effect of litter

Fig 1. Effect of litter expansion on body weight. The body weight of female and male mice from different litter sizes

(LS4, LS6, LS8, LS10, LS12) were measured at 1, 5, 9, 11, and 15 months of age. Data represented are the mean ± SEM

from 4–12 mice per group. All groups were compared to control LS6 and were statistically analyzed by one-way

ANOVA with Tukey’s and FDR with Benjamini & Hochberg multiple correction test (�p<0.05). Statistics was done

separately for each month.

https://doi.org/10.1371/journal.pone.0237199.g001
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expansion on body weight was more pronounced in male mice especially at later ages such

that at 15 months of age, e.g., the LS12 males showed ~ 18% decline in body weight compared

to LS6 males while females LS12 did not show a significant difference in body weight com-

pared to LS6 females (Fig 1). It should be noted that we observed no significant difference in

the body weight of LS4 and LS6 mice at any age or sex.

Body composition of the litter expanded mice was measured at 15 months of age. Fig 2A

and 2B show the lean body mass (LBM) and fat mass measured by NMR along with the

weights of liver and gastrocnemius muscle. Only male mice showed statistically significant dif-

ference between groups in their total fat mass but showed no difference in their LBM and

weights of liver and gastrocnemius. The male and female litter expanded mice showed a major

Fig 2. Effect of litter expansion on body composition and fat depots in 15-month-old mice. The lean body mass

(LBM), total fat, mass of liver, and gastrocnemius in (A) female and (B) male mice and mass of different fat depots:

gonadal, subcutaneous and brown fat in (C) female and (D) male mice. Body composition data represented are the

mean ± SEM from 4–5 mice per group. The fat depots data represented are the mean ± SEM from 4–12 mice per

group. All groups were compared to control LS6 and were statistically analyzed by one-way ANOVA with Tukey’s and

FDR with Benjamini & Hochberg multiple correction test (�p<0.05).

https://doi.org/10.1371/journal.pone.0237199.g002
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sex difference in their level of reduction in total fat content. Female LS8, LS10, and LS12 mice

showed ~12–17% reduced (but not statistically significant) total fat mass compared to LS6

mice, whereas the male LS10 and LS12 mice showed a much more robust (38 and 54% respec-

tively) reduction. Again, we observed no significant difference in body composition of the L4

and LS6 mice. From the body composition data, it is evident that the reduced body weight

observed in the male litter expanded mice at 15 months of age is due primarily to a reduction

in total fat mass.

Because the different fat depots have different phenotypic effects, we measured the weights

of several fat depots in the mice at 15 months of age: gonadal fat, posterior subcutaneous fat

(which includes dorsolumbar, inguinal and gluteal fat), and interscapular brown fat (Fig 2C

and 2D). Visceral fat, which includes gonadal fat, is associated with metabolic dysfunction and

insulin resistance, whereas subcutaneous fat is considered to be protective against the develop-

ment of insulin resistance [21]. Litter expansion did not have any significant effect on the

gonadal and subcutaneous fat depots of female mice, although the gonadal fat showed a trend

in reduction in the LS10 and LS12 mice (Fig 2C). Whereas the brown fat depot was signifi-

cantly increased in the female LS10 and LS12 groups compared to LS6 (Fig 2C). On the other

hand as shown in Fig 2D, LS10 and LS12 male mice showed a significant decline in all three fat

depots with the LS12 mice showing a greater decline than the LS10 mice compared to LS6

male mice, e.g., a 70% vs 37% decrease in gonadal fat; a 62% vs 46% decrease in subcutaneous

fat, and a 38% vs 25% decrease in brown fat. We also measured the ratio of gonadal fat to sub-

cutaneous fat (Fig 2C and 2D) because the adipose tissue in the subcutaneous area differs from

the visceral fat in cell size, metabolic activity, and potential role in insulin resistance [22]. The

visceral fat is considered to be a “bad fat” and more pathogenic towards obesity induced insu-

lin resistance whereas the subcutaneous fat is the “good fat” and is considered beneficial [22].

Male LS12 mice showed a significantly lower ratio of gonadal to subcutaneous fat (~23%), indi-

cating that they have proportionally more subcutaneous fat (good fat) than gonadal fat (bad fat)

(Fig 2D). Female LS10 and LS12 mice also show a trend to a lower (~20%) ratio of gonadal to

subcutaneous fat; however, this decrease was not statistically significant (Fig 2C). It should be

noted that the LS4 and LS6 mice showed difference only in the brown fat in females (Fig 2C),

and the LS4 group showed a significant increase in the fat levels. From these data, it is evident

that litter expansion exhibits a sex specific effect in adiposity at 15 months of age in response to

a manipulation that occurred just during the lactation period. Because litter expansion induced

significant changes in the fat depots in male mice, we also measured the triglyceride content of

liver in these mice because fatty liver can lead to negative outcomes. There was no difference in

the triglyceride content of LS12 and LS6 male or female mice as shown in S1 Fig.

Because the neural circuits (POMC, NPY and AgRP) in the arcuate nucleus (ARC) of the

hypothalamus are involved in appetite regulation (e.g., POMC is anorexigenic and NPY and

AgRP is orexigenic) and develop primarily during the first 3 weeks of postnatal life in rodents

[23], we were interested in determining if the changes in adiposity induced by litter expansion

arose from alterations in these neural circuits. Therefore, we measured the transcript levels of

Pomc, AgRP, NPY and CRH in the hypothalami of 15-month-old male and female mice. As

shown in the S2 Fig, we did not observe any significant difference in the levels of the tran-

scripts for any of the hypothalamic genes (except pomc in male LS10) suggesting there were

no changes in the markers for appetite control and stress at least in the transcript level.

Effect of litter expansion on fat metabolism, cytokines and adipokines

To gain an insight into the effect of litter expansion on the fatty acid metabolism, we measured

the expression of genes involved in fatty acid synthesis and oxidation. Dietary restriction has
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been shown to increase the mRNA levels of key genes involved in fatty acid synthesis [e.g., Fatty

Acid Synthase (FAS) and Acetyl CoA Carboxylase (ACC)] and fatty acid oxidation [e.g.,

Medium Chain Acyl-CoA dehydrogenase (MCAD) and Long Chain Acyl-CoA dehydrogenase

(LCAD)] in white adipose tissue [24]. Changes in these key genes regulates fatty acid metabo-

lism such that increases in FAS and ACC increase fatty acid synthesis and increases in MACD

and LCAD increase β-oxidation of middle and long chain fatty acids. Fig 3A shows the mRNA

levels of all the four genes in the gonadal fat tissue of the male and female mice. Female LS10

and LS12 mice showed significant decrease in MCAD (59 & 46%) and female LS8, LS10 and

LS12 showed significant decrease in FAS (68, 78 & 75%) gene expression (Fig 3A) indicating a

potential decline in both fatty acid oxidation and synthesis. In contrast, male LS10 and LS12

mice showed a 100% increase in LCAD and a significant decrease (37 & 77%) in FAS gene

expression (Fig 3B). In addition, male LS12 mice also showed significant decline (56%) in ACC

expression indicating a potential increase in fatty acid oxidation and reduction in fatty acid syn-

thesis which in turn could explain the decrease in gonadal adipose tissue weight (Fig 2D).

White adipose tissue is a major endocrine and secretory organ capable of releasing a variety

of pro- inflammatory factors (e.g., IL-6, TNF-α and MCP-1) and changes in fat mass has been

shown to affect the production of pro-inflammatory cytokines [24]. Therefore, we measured

the effect of litter expansion on the expression of IL-6, TNF-α and MCP-1 in gonadal fat from

the male and female mice. As shown in Fig 4A, litter expansion had no significant effect on the

expression of IL-6, TNF-α or MCP-1 in female mice. However, in male mice, litter expansion

had a significant effect in the LS12 male mice. Compared to the other groups of mice, LS12

mice showed a significant increase (~2.5-fold) in the levels of IL-6 and MCP-1 mRNA (Fig

4B), and the transcript levels of TNF-α tended to be higher (2-fold) than the control, LS 6 male

mice; however, this increase was not statistically significant.

Fig 3. Effect of litter expansion on expression of genes involved in fatty acid metabolism. The mRNA levels of

Medium Chain Acyl-CoA dehydrogenase (MCAD) and Long Chain Acyl-CoA dehydrogenase (LCAD), genes

involved in fatty acid break down, and Acetyl CoA Carboxylase (ACC) and Fatty Acid Synthase (FAS) genes involved

in biosynthesis were measured in the gonadal fat of female (A) and male (B) mice from various litter sizes at 15 months

of age. Data represented are the mean ± SEM from 3–5 mice per group. All groups were compared to control LS6 and

were statistically analyzed by one-way ANOVA with Tukey’s and FDR with Benjamini & Hochberg multiple

correction test (�p<0.05).

https://doi.org/10.1371/journal.pone.0237199.g003
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White adipose tissue also secretes adiponectin which is important in adipocyte differentia-

tion and can also function as an anti-inflammatory factor [25, 26], and dietary restriction has

been shown to increase circulating adiponectin levels and increase adiponectin transcript lev-

els in white adipose tissue [24, 27]. We measured the effect of litter expansion on levels of adi-

ponectin protein in the gonadal fat of the male and female mice. As shown in Fig 4C, female

mice show no difference in the levels of adiponectin in gonadal fat in any of the groups. In

male mice, the LS12 group showed a significant (94%) increase in adiponectin levels compared

to the control group. Interestingly, the levels of adiponectin in gonadal fat of the LS6, LS8, and

LS10 male mice were significantly (50%) lower than the female mice except for male LS12

mice, which was in a similar range as observed in the females mice (Fig 4C). Our data are

Fig 4. Effect of litter expansion on expression of genes involved in inflammation and adiponectin levels. Levels of

mRNA of genes involved in inflammation (IL-6, TNF-α, MCP-1) were measured in the gonadal fat of (A) female and

(B) male mice from various litter sizes (LS6, LS8, LS10 and LS12 pups/litter) at 15 months of age. Protein levels of

adiponectin (C) in the gonadal fat of female and male mice from various litter sizes (LS6, LS8, LS10 and LS12 pups/

litter) were measured at 15 months of age. Data represented are the mean ± SEM from 3–5 mice per group. All groups

were compared to control LS6 and were statistically analyzed by one-way ANOVA with Tukey’s and FDR with

Benjamini & Hochberg multiple correction test (�p<0.05).

https://doi.org/10.1371/journal.pone.0237199.g004
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comparable to other studies showing that female mice have increased adiponectin levels com-

pared to male mice [28].

Effect of litter expansion on insulin sensitivity

Changes in adiposity have been shown to effect glucose metabolism and insulin sensitivity,

e.g., visceral adipose tissue accumulation is associated with the development of insulin resis-

tance [29, 30]. Aging is also associated with an increase in bodyweight, fat mass and insulin

resistance [31], and anti-aging interventions such as dietary restriction and dwarfism increase

insulin sensitivity in mice [32, 33]. Therefore, we were interested in studying the effect of litter

expansion on insulin sensitivity by measuring glucose and insulin tolerance at 5 and 9 months

of age in male and female mice (Fig 5). The curves for GTT and ITT for females and males are

shown in S3 and S4 Figs respectively. Litter expansion had no effect on glucose tolerance in

both male and female mice at 5 months of age. However, we observed a major sex difference

in glucose tolerance as shown in Fig 5. At 9 months of age, glucose tolerance was improved

(~18–29%) for the LS12 mice compared to the other four groups only in male mice. In female

mice, litter expansion had no effect on insulin tolerance. In contrast, insulin tolerance in male

mice was significantly improved at both 5 and 9 months of age in the LS12 mice compared to

the control group. For example, insulin tolerance was improved by ~13% at 5 months of age

and ~25% at 9 months of age in the male LS12 mice. It should be noted that we observed no

difference in either glucose or insulin tolerance in either male or female mice for the LS4 and

LS6 mice.

Effect of litter expansion on IGF-1 and FGF-21 expression

IGF-1 is a growth factor that is primarily produced in the liver and secreted into the plasma.

Reduced circulating IGF-1 levels have been shown to be associated with increased lifespan in

dwarf mice [34] and dietary restricted mice [20, 35]. We first measured the circulating levels of

IGF-1 in the serum of 15-month-old male and female mice. As shown in Fig 6A, IGF-1 levels

were significantly reduced (~25–30%) in the serum of both female and male LS8, LS10, and

LS12 mice compared to LS6, control mice. As would be predicted, the decrease in circulating

IGF-1 was directly correlated with reduced levels of IGF-1 protein in the liver of the LS8, LS10,

and LS12 mice (Fig 6B). Because IGF-1 is produced by other tissues, we also measured the lev-

els of IGF-1 protein in the gastrocnemius and brain cortex of 15-months old mice. The levels

of IGF-1 protein in the gastrocnemius was reduced in the LS8, LS10, and LS12 mice compared

to LS6 mice for both male and female mice (Fig 6C). However, the effect of litter expansion on

IGF-1 protein levels in the brain cortex was sex specific. IGF-1 levels were the same in all four

groups of female mice; however, IGF-1 levels in the brain cortex of male LS8, LS10, and LS12

mice were significantly lower (~70–95%) than the LS6 mice (Fig 6D). To determine if litter

expansion reduced IGF-1expression at the level of transcription, we measured the levels of

IGF-1 mRNA in liver, gastrocnemius, and brain cortex of all four groups of male and female

mice. As shown in S5 Fig, we observed no significant change in IGF-1 mRNA levels in any of

the groups of either male or female mice. In other words, the reduction in IGF-1 levels was not

due to reduced transcription.

Fibroblast growth factor-21 (FGF21) is a metabolic hormone produced predominantly in

the liver and secreted into the circulation similar to IGF-1. FGF-21 has been shown to have a

pronounced effect on glucose and lipid metabolism. We first measured the effect of litter

expansion on the levels of FGF21 in liver of litter expanded male and female mice. Female

mice did not show any significant change in the liver FGF21 levels (Fig 7A). In contrast, male

LS8, LS10, and LS12 mice showed a 100% Increase in the level of FGF21 compared to LS6
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mice (Fig 7A). We then determined if the changes in FGF21expression in liver of male mice

resulted in changes in circulating FGF21. As shown in Fig 7B, serum FGF21 levels were also

significantly increased (100–150%) in the LS8, LS10, and LS12 mice compared to the LS6

mice.

Discussion

The classical study by McCay et al. [36] reported that a dramatic reduction in food consump-

tion initiated at weaning in rats resulted in a 50% increase in lifespan. Multiple studies over the

following 5 decades clearly demonstrated that reducing food intake by 30 to 40% (dietary

restriction) increased the lifespan of rats and mice by 20 to 30%, in addition to improving

Fig 5. Effect of litter expansion on glucose homeostasis. Glucose tolerance (GTT) and insulin tolerance (ITT) were

measured in female (A) and male (B) mice as described in the methods. The data are expressed as the area under the

curve (AUC) for mice at 5 and 9 months of age. Data represented are the mean ± SEM from 4–5 mice per group. All

groups were compared to control LS6 and were statistically analyzed by one-way ANOVA with Tukey’s and FDR with

Benjamini & Hochberg multiple correction test (�p<0.05).

https://doi.org/10.1371/journal.pone.0237199.g005
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health and reducing pathological lesions [37]. McCay et al. [36] initially proposed that prevent-

ing growth was key to the effect of restricting the food intake on longevity. This view was held

until the 1980s when it was shown that dietary restriction started after growth, e.g., at

6-months of age in rats [38] or 12-months of age in mice [39] increased lifespan significantly.

These findings led investigators to primarily study the effect of dietary restriction after mice or

rats had reached sexual maturity, e.g., 2 to 6 months of age. However, Yu et al. [38] showed

that dietary restriction initiated in rats shortly after weaning for only 18 weeks resulted in a sig-

nificant increase in lifespan, suggesting that dietary restriction for a limited time early in life

could have a long-term effect on the rate of aging. This concept was reinforced when Sun et al.

[15] showed that food restriction during the lactation period implemented by litter expansion

increased the mean and maximal lifespan of mice.

The purpose of this study was to comprehensively characterize the long-term effects of litter

expansion in mice. Our study differed in several ways from the previous reports with

UM-HET3 mice where the litters of the mice were culled to 8 pups/litter and then either 4 or 7

additional pups were added to the litters giving litter sizes 12, and 15 compared to the control

of 8 pups/litter [15, 16]. It should be noted that the average litter size of UM-HET3 mice is ~10

pups. We used C57BL/6J mice, which have an average litter size of ~6 pups, and generated lit-

ter sizes of 6, 8, 10 and 12, i.e., we studied the effect of increasing the litter size from 33 to

100% over the normal litter size of 6 pups. We also studied the effect of reducing the litter size

to 4 pups per litter as a potential model of over-nutrition. We found no short or long-term

effects of reducing the litter size from 6 to 4 mice; however, we did observe significant short-

and long-term effects of litter expansion, which were found to elicit sex specific responses.

Fig 6. Effect of litter expansion on IGF-1 levels. The protein levels of IGF-1 protein were measured in serum (A),

liver (B), gastrocnemius (C), and cortex (D) of 15-month-old male and female mice as described in the Methods. Data

represented are the mean ± SEM from 3–5 mice per group. All groups were compared to control LS6 and were

statistically analyzed by one-way ANOVA with Tukey’s and FDR with Benjamini & Hochberg multiple correction test

(�p<0.05).

https://doi.org/10.1371/journal.pone.0237199.g006
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As previously reported [15], we observed a significant decrease in the body weight of the

LS12 mice that was detected at one month of age and was maintained until 15 months of age

in male mice. The effect of litter expansion on body weight was much greater in male mice

such that the reduction in body weight became more pronounced with age. At 15 months of

age, LS10, and LS12 male mice showed a significant reduction in body weight compared to the

control (LS6) with the LS12 male mice showing a ~20% reduction in body weight. Sadagurski

et al. [16] reported that the decrease in body weight at 2 months of age due to litter expansion

in UM-HET3 mice arose from a decrease in body fat with no change in lean body weight in

both male and female UM-HET3 mice. We also found that the reduction in body weight with

litter expansion was accompanied by a reduction in body fat in males at 15 months of age with

no change in lean body weight. The decrease in total fat was robust in LS12 male mice with a

50% decrease whereas the female LS12 mice showed a modest (15%) but not significant

decrease compared to its respective controls (LS6). Our study is the first to determine how lit-

ter expansion affects specific fat depots (gonadal, subcutaneous and brown fat). We found that

sex differences in fat depot masses become more pronounced at 15 months of age. In female

mice, a decreasing trend was only observed in gonadal fat, but was not statistically significant.

In contrast, a significant reduction in gonadal, subcutaneous and brown fat was observed in

male LS10 and LS12 mice compared to LS6 mice. Gonadal fat showed the greatest decrease

(over 65% for LS12 vs LS6) and brown fat showed the smallest decrease (40% for LS12 vs LS6).

Fig 7. Effect of litter expansion on FGF21 levels. The protein levels of FGF21 in the liver (A) of female and male mice

and serum (B) of male mice were measured at 15 months of age. Data represented are the mean ± SEM from 3–5 mice

per group. All groups were compared to control LS6 and were statistically analyzed by one-way ANOVA with Tukey’s

and FDR with Benjamini & Hochberg multiple correction test (�p<0.05).

https://doi.org/10.1371/journal.pone.0237199.g007
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Based on our data from the transcript levels of genes involved in fatty acid metabolism, it

appears that litter expansion resulted in an increase in fatty acid oxidation gene, Long Chain

Acyl-CoA dehydrogenase (LCAD) and a reduction in Fatty Acid Synthase (FAS) and Acetyl

CoA Carboxylase (ACC) in male mice.

Dietary Restriction has been shown to reduce adiposity and the reduction by dietary restric-

tion has been correlated to reduced expression of pro-inflammatory cytokines and increased

expression of adiponectin, which has anti-inflammatory effects [25, 26]. Litter expansion had

no effect on the transcript levels of IL-6, TNF-α, or MCP-1 or the levels of adiponectin protein

in gonadal fat of female mice. In contrast, the LS12 male mice showed a significant increase in

the transcript levels of IL-6 and MCP-1 and adiponectin protein levels in gonadal fat. We were

surprised to observe an increase in IL-6 and MCP-1 because they are considered to have detri-

mental effects and are correlated with reduced glucose and insulin tolerance, both of which

were increased in the LS12 male mice. However, there are data suggesting that elevation in

these markers can have beneficial metabolic effects [40, 41]. For example, increased levels of

IL-6 has been shown to be correlated to improved glucose homeostasis [40, 42].

One of the hallmark characteristics of dietary restriction is improved glucose homeostasis,

e.g., improved glucose tolerance and insulin sensitivity. Matyi et al. [24], showed that

improved glucose tolerance could be observed in male C57BL/6J mice within 10 days of reduc-

ing (40% restriction) food consumption of 4- month-old mice and the improved glucose toler-

ance was maintained when DR was discontinued. Sadagurski et al. [16] reported that litter

expansion improved glucose tolerance and insulin sensitivity at 6 months of age in UM-HET3

male mice but not female mice. However, at 22 months of age, litter expansion improved glu-

cose tolerance (insulin sensitivity was not measured) in the female mice. We observed a similar

effect in C57BL/6J mice. Litter expanded female mice showed no significant difference in

either glucose or insulin tolerance at both 5 and 9 months of age compared to LS6 mice. In

male mice, we also observed that litter expansion had no significant difference on glucose tol-

erance at 5 months of age. However, the LS12 male mice showed significant increase in insulin

tolerance compared to the LS6 male mice. At 9 months of age, LS12 male mice showed signifi-

cant improvement in both glucose tolerance and insulin tolerance. Collectively, these observa-

tions indicate that litter expansion promotes a longer window of metabolic plasticity with

advancing age.

We were interested in studying the long-term effects of litter expansion on IGF-1 because

changes in IGF-1 expression have been associated with longevity. For example, early studies

showed that dietary restriction reduced circulating IGF-1 levels in rats [43] and this has been

observed in mice [44]. Dwarf mice, which have increased lifespan, also have lower levels of

IGF-1. In addition, mice heterozygous for IGF-1 receptor have been reported to have a ~30%

increase in lifespan [45]; however, more recent studies show only a modest increase in lifespan

of ~6% in Igf1r+/- mice [46, 47]. Furthermore, Ashpole et al. [48], showed that IGF-1 levels

during the developmental phase plays an important role in late-life healthspan and lifespan,

and Sun et al. [15] reported that litter expansion reduced serum IGF-1 levels in weanling mice

but did not observe a sex effect on the levels at this age. We found that serum levels of IGF-1

were significantly reduced (~25–30%) by litter expansion in both male and female mice at 15

months of age. Interestingly the reduction in serum IGF-1 levels was similar in LS8, LS10, and

LS12 mice, i.e., the reduction in IGF-1 levels did not increase when the litter size was increased

over 8 pups/litter. As would be expected, reduction in circulating IGF-1 levels was correlated

to a dramatic reduction (over 50%) in IGF-1 protein levels in the liver. We also studied the

effect of litter expansion on the endogenous expression of IGF-1 in skeletal muscle and brain.

A decrease in IGF-1 protein levels were observed in the gastrocnemius from both male and

female LS8, LS10, and LS12 mice. However, when we measured the levels of IGF-1 protein in
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brain cortex we found a dramatic sex effect. Litter expansion had no effect on IGF-1 protein

levels in the brain cortex of female mice. However, male mice showed a very dramatic decrease

(>70%) in IGF-1 protein levels in the brain cortex of LS8, LS10, and LS12 male mice compared

to LS6 male mice. Interestingly, litter expansion had no effect on IGF-1 mRNA levels in any of

the tissues studied; therefore, it appears that the effect of litter expansion on IGF-1 occurs

post-transcriptionally. Interestingly, IGF-1 levels have been shown to be influenced by various

microRNA [49, 50], e.g., miR-1 and miR-206 have been shown to target the 3’-untranslated

region of the IGF-1 mRNA molecule and reduce its expression [49]. Hence, more work is war-

ranted to determine if the levels of IGF-1 are regulated by the microRNA’s in the litter expan-

sion model.

Fibroblast growth factor-21 (FGF21) is considered to be a starvation hormone that stimu-

lates gluconeogenesis, fatty acid oxidation, and ketogenesis as an adaptive response to fasting

and starvation [51]. Overexpression of FGF21 has been shown to improve insulin sensitivity,

blood glucose, lipid profile and body weight in obese and diabetic animal models [51] and

increase the lifespan of normal mice [52]. Kuhla et al. [53] reported that dietary restriction

increased plasma levels of FGF-21. In contrast, Miller et al. [54] reported that DR resulted in a

decrease in plasma FGF-21 levels. We found that litter expansion resulted in an increase

(~100%) in the levels of FGF-21 protein in the livers of male mice but not female mice. The

increased levels of FGF-21 in liver was associated with an increase in serum FGF-21 levels in

male LS8, LS10, and LS12 mice. The litter expansion had no effect on the mRNA levels of

FGF-21 in the livers of male or female mice. Thus, the increase in FGF-21 protein levels

observed with litter expansion in male mice occur post-transcriptionally.

In summary, our study confirms data from the previous reports, showing that litter expan-

sion can have long-term effects on body weight, adiposity, and glucose homeostasis in C57BL/

6J mice in addition to other previously used strains of mice. However, we show for the first

time that major sex differences occur in the long-term effects of litter expansion in mice with

greater effects in males than females, e.g., adiposity, glucose homeostasis. In addition, we

showed that litter expansion has a long-term effect on circulating levels of IGF1 and FGF-21,

and there are major sex differences in brain levels of IGF1 and liver levels of FGF-21. Interest-

ingly, dietary restriction, which is implemented in rodents between 2 to 6 months of age when

mice are sexually mature, has similar effects in male and female C57BL/6J mice, e.g., changes

in growth are similar in males and females and the increase in lifespan is ~20% in both male

and female mice [55]. Thus, the sex specific effect of dietary restriction implemented during

the first weeks after birth by litter expansion is likely due to the dramatic changes in sexual

maturation which occur in the first three weeks of life in mice [56] compared to when dietary

restriction is implemented after the mice are sexually mature and are adults.

Supporting information

S1 Fig. Effect of litter expansion on liver triglyceride content. The triglyceride content of the

liver obtained from LS6 and LS12 were measured in female and male mice at 15 months of

age. The liver triglyceride content data represented are the mean ± SEM from 4–5 mice per

group. All groups were compared to control LS6 and were statistically analyzed by one-way

ANOVA with Tukey’s and FDR with Benjamini & Hochberg multiple correction test

(�p<0.05).

(TIF)

S2 Fig. Effect of litter expansion on expression of genes in hypothalamus. Levels of mRNA

of Pomc, Npy, AgRP and CRH genes were measured in the hypothalamus of female and male

mice from various litter sizes (LS6, LS8, LS10 and LS12 pups/litter) at 15 months of age. Data
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represented are the mean ± SEM from 4–5 mice per group. All groups were compared to con-

trol LS6 and were statistically analyzed by one-way ANOVA with Tukey’s and FDR with Ben-

jamini & Hochberg multiple correction test (�p<0.05).

(TIF)

S3 Fig. Effect of litter expansion on glucose tolerance (GTT) and insulin tolerance (ITT) of

females. Glucose tolerance and insulin tolerance was determined after an overnight fast of

mice at 5 and 9 months of age. Data represented are the mean ± SEM from 4–5 mice per

group. All groups were compared to control LS6 and were statistically analyzed by one-way

ANOVA with Tukey’s and FDR with Benjamini & Hochberg multiple correction test

(�p<0.05).

(TIF)

S4 Fig. Effect of litter expansion on glucose tolerance (GTT) and insulin tolerance (ITT) of

males. Glucose tolerance and insulin tolerance was determined after an overnight fast of mice

at 5 and 9 months of age. Data represented are the mean ± SEM from 4–5 mice per group. All

groups were compared to control LS6 and were statistically analyzed by one-way ANOVA

with Tukey’s and FDR with Benjamini & Hochberg multiple correction test (�p<0.05).

(TIF)

S5 Fig. Effect of litter expansion on gene expression of IGF-1 levels in liver, gastrocnemius

and brain cortex. mRNA levels of IGF-1 in the liver (A), gastrocnemius (B) and brain cortex

(C) of female and male mice from various litter sizes (LS6, LS8, LS10 and LS12 pups/litter)

were measured at 15 months of age. Data represented are the mean ± SEM from 4–5 mice per

group. All groups were compared to control LS6 and were statistically analyzed by one-way

ANOVA with Tukey’s and FDR with Benjamini & Hochberg multiple correction test

(�p<0.05).

(TIF)

S1 Table. Number of lactating dams. �One mouse dead during shipment from Jackson labo-

ratories, ��One mouse found dead or euthanized due to dermal injuries during the study,
���Three mice found dead or euthanized due to dermal injuries at various times during the

study.
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