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Abstract

Background: Individual human carcinomas have distinct biological and clinical properties: gene-
expression profiling is expected to unveil the underlying molecular features. Particular interest
has been focused on potential diagnostic and therapeutic applications. Solid tumors, such as
colorectal carcinoma, present additional obstacles for experimental and data analysis. 

Results: We analyzed the expression levels of 1,536 genes in 100 colorectal cancer and 11 normal
tissues using adaptor-tagged competitive PCR, a high-throughput reverse transcription-PCR
technique. A parametric clustering method using the Gaussian mixture model and the Bayes
inference revealed three groups of expressed genes. Two contained large numbers of genes. One
of these groups correlated well with both the differences between tumor and normal tissues and
the presence or absence of distant metastasis, whereas the other correlated only with the
tumor/normal difference. The third group comprised a small number of genes. Approximately half
showed an identical expression pattern, and cancer tissues were classified into two groups by their
expression levels. The high-expression group had strong correlation with distant metastasis, and a
poorer survival rate than the low-expression group, indicating possible clinical applications of these
genes. In addition to c-yes, a homolog of a viral oncogene, prognostic indicators included genes
specific to glial cells, which gives a new link between malignancy and ectopic gene expression. 

Conclusions: The malignancy of human colorectal carcinoma is correlated with a unique
expression pattern of a specific group of genes, allowing the classification of tumor tissues into
two clinically distinct groups.
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Background
Gene-expression profiling is a powerful tool with which to

elucidate the molecular features underlying variations in

individual cancer tissues. Diagnostic and therapeutic appli-

cations are the most obvious goals, and have been the main

focus of analytical efforts. For example, gene-expression
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analysis was used successfully to discover a new classifica-

tion of diffuse B-cell lymphoma, dividing this disease into

groups with different prognoses [1]. 

In spite of its increasing popularity, many technical and ana-

lytical aspects of gene-expression profiling are still unre-

solved. Solid tumors such as gastrointestinal or breast

cancers are actually mixtures of cancerous and non-cancer-

ous tissues. Changes in gene expression in the cancer cells

have to be detected through RNAs mixed with those from

normal tissues, requiring more accurate measurements. To

get round this problem, some studies have restricted their

analysis to samples that contain a minimum of non-cancer-

ous cells [2,3]. However, this type of analysis ignores a large

population of tumors, and thus requires additional evalua-

tion to confirm its diagnostic applications.

The vast complexity of some gene-expression data also makes

data analysis quite difficult. Currently, the most popular

method for unveiling underlying features of gene-expression

profiles is hierarchical cluster analysis [4]. Because of a lack

of valid statistical evaluation methods, however, clusters are

often subject to interpretation by the investigator. 

In this report, we applied unique approaches to characterize

colorectal cancer gene expression. Colorectal carcinoma is

one of the most prevalent and well characterized human

cancers, and, in spite of recent advances in diagnosis and

therapeutics, is still a leading cause of death [5-8]. We report

here the measurement of gene-expression levels using a

high-throughput quantitative PCR system [9,10] based on

adaptor-tagged competitive PCR (ATAC-PCR) [11]. ATAC-

PCR utilizes unique adaptors for different cDNAs. As reverse

transcription-PCR (RT-PCR) can detect alterations in gene

expression with sensitivity unattainable with hybridization-

based techniques [12], ATAC-PCR should allow the discov-

ery of new molecular features of human colorectal cancers.

In addition, we applied a parametric clustering method to

identify clusters of expressed genes, and by this method we

have identified genes linked to malignancy. 

Results 
Survey of expressed genes in colorectal cancer and
ATAC-PCR assay 
We first surveyed the genes expressed in colorectal cancer

tissues using expressed sequence tag (EST) sequencing [13].

A 3� end-directed cDNA library was produced from RNAs

purified from six colorectal cancers and 5,465 EST clones

were sequenced; from these, we selected 1,344 genes for

analysis, which were also deposited in the RefSeq database.

We then designed PCR primers for 1,536 genes, including

192 other genes either known to be involved in colorectal

cancer or identified as tumor-specific in previous microarray

experiments [14]. Thus, this set includes only those genes

that are expressed in colorectal cancers, an advantage over

more universal sets, such as UniGene, which include many

nonspecific genes. The expression levels of these genes in

sample RNAs derived from 100 cancer and 11 normal tissues

were then assayed by ATAC-PCR. In this assay, using seven

adaptors, five RNA samples and two controls with different

inoculated amounts are processed in a single reaction. A

typical electropherogram from the DNA analyzer is shown in

Figure 1. The data matrix resulting from this analysis con-

sists of 1,536 genes x 111 tissue samples. All expression data

are available as additional files with the online version of

this paper (see Additional data files). 

Parametric clustering of gene-expression data 
To classify genes expressed in human colorectal cancers

into statistically significant groups, we applied a parametric

cluster analysis based on the Gaussian mixture model

[15-17] and Bayes inference. This analysis enables a rigor-

ous clustering approach, making possible the detection of

global structures hidden within data matrices. The main

problem faced during clustering was that of missing and

saturated values included in the data matrix. Quantitative

assays, such as RT-PCR and DNA microarrays, have limited

dynamic ranges: values outside these ranges are not accu-

rate. The replacement of these values with saturation values

and the presence of missing values did not allow fitting of

expression data to the Gaussian mixture model. Therefore,

we selected 341 genes which displayed less than six satu-

rated and less than five missing values, assuming that the

data outside the measurable range in these samples would

not significantly affect the statistical outcome. We assumed

that the gene-expression data did not carry information

requiring analysis of full dimension, and multivariate char-

acters of the gene-expression vectors were extracted by

principal component analysis. 

The distribution of the first factor scores differed from

normal distributions, and seemingly possessing spatial
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Figure 1
An example of an ATAC-PCR electropherogram. The height of each
peak represents fluorescence intensity. Blue, PCR product signals; red,
size marker signals. Starting from the left, the marker sizes are 35, 50, 75
and 100 bases. The seven blue peaks on the right correspond to ATAC-
PCR products. From the left, the first peak corresponds to 10 equivalents
of control cDNA, the second corresponds to two equivalents of control
cDNA, and the last five peaks correspond to five equivalents of sample
cDNA.



characteristics, while those of the fourth and later factor

scores showed high similarity to normal distributions with

little or no spatial character (Figure 2). We estimated that

the multivariate nature of the gene-expression vectors

could be represented by the first, second and third factor

scores. In addition, for revealing a group structure, the

between-cluster variation should not be dominated by

within-cluster variation. Inclusion of fourth and later

factor scores would blur the group structure because of

dominant within-cluster variation. Parametric clustering

using the variational Bayes method [18] was therefore

carried out using the first three components. The analysis

revealed a clear categorization of three groups, with two

groups containing a large number of genes (GM-A and

GM-B) and a third group containing only a small number

(GM-C) (Figure 3).

We also carried out hierarchical cluster analysis (Figure 4)

and compared the results with those of the parametric clus-

tering. Clustering was truncated at the 88-cluster level.

Groups GM-A and GM-B corresponded to two major

branches of the hierarchical clustering, showing that both

techniques detected a similar overarching organization. The

genes from group GM-C were found to reside mainly in

cluster 43. Regions lacking bottom dots were not character-

ized using parametric clustering. Although additional clus-

ters in these regions correlated with differences between

tumor and normal samples, these differences were not sta-

tistically evaluated, as they required further verification with

additional samples. 

Characteristics of groups GM-A and -B 
Genes selected by supervised methods, such as selection

based on correlation with a clinical parameter, include those

universally correlated with the parameter and those correlat-

ing only within the analyzed sample set. To avoid the uncer-

tainty inherent in supervised methods, we examined the

correlations between clinical phenotypes and gene groups

instead of individual genes. We devised a correlation ratio

(CR) to serve as an indicator for correlation with clinical

parameters. Genes were first sorted by CR value order, and

then the CRs of the original total dataset were compared

with those of permuted data (Figure 5). In group GM-A, the

CRs were significantly higher than those of the total dataset

for both the differences between tumor and normal tissues

and the presence or absence of distant metastases

(Figure 5a,c). In contrast, the GM-B group possessed a high

CR only for the difference between tumor and normal tissues

(Figure 5b,d). For these parameters, the CR values of the

total dataset were consistently higher throughout the full

range of CRs, suggesting the correlation was not restricted to

a small number of genes, but was a global character of each

group (Figure 5a-c). We could not identify significant corre-

lations for other parameters, including lymph-node metas-

tases (Figure 5e,f) and histological type (data not shown). 

The GM-C group contains genes linked to malignancy 
With the GM-C group, which contained only a small number

of genes, the correlations were analyzed differently. Approxi-

mately half of these members, named TCL (tumor-classifier)

genes, had identical expression patterns. The average
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Figure 2
Distributions of the first to tenth factor scores obtained by principal component analysis. Vertical axis, number of genes; horizontal axis, factor scores.
The interval of each column is 0.3, and the range of the central column is between -0.15 and 0.15. Red curves are normal distributions fitted to the
columns. Percent variance explained by each component is as follows, from the first to the tenth: 12.33, 4.96, 4.76, 4.22, 3.28, 3.08, 2.57, 2.51, 2.27, 2.17.
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expression levels of 12 representative genes (listed in

Table 1) were used as a guideline for the separation of the

samples into two subpopulations, with group 1 displaying

high expression and group 2 low expression. 

We then examined these gene-expression patterns for possi-

ble correlations with distant metastases. Group 1 consisted

of 21 metastatic cases and 27 non-metastatic cases, whereas

group 2 consisted of 7 metastatic cases and 44 non-metastatic

cases (Figure 6a). Thus, distant metastasis was significantly

correlated with elevated expression of the TCL genes (Fisher

exact test, p < 0.01). Normal tissues, like the group 2

samples, displayed low levels of TCL gene expression. 

Kaplan-Meier plotting revealed significant differences in

survival rates between group 1 and group 2, with a 5-year

survival rate of 57.6% for group 1 and 85.7% for group 2

(p < 0.01) (Figure 6b). Currently, cancer stage classification

is the most diagnostically informative practice in clinical

medicine. Patients classified as Dukes’ A have good progno-

sis, whereas those ranked as Dukes’ D have poor prognosis.

Dukes’ B and C are intermediate stages for which risk assess-

ment is more difficult [19]. The Kaplan-Meier analysis was

carried out on the Dukes’ B and C patients, revealing a sig-

nificant difference in the 5-year survival rates between

patients in groups 1 and 2, which were 69.9 and 93.5%,

respectively (p < 0.05) (Figure 6c).

Additional TCL genes were recovered from cluster number 43

from the hierarchical cluster analysis, including some absent

from the GM-C group. These genes are listed in Table 1. 

Discussion 
A recent study indicated that RT-PCR could detect changes

in gene expression that were missed by microarrays [12].

The difficulty of constructing calibration curves, however,

has prevented the implementation of quantitative PCR for

high-throughput analysis. ATAC-PCR solves this problem by

including control samples within a single reaction tube [20].

In addition, because we used native RNA as a control, quan-

titation is most accurate around physiological concentra-

tions. Thus, the technique is ideal for detecting small

differences between samples, as is necessary for the analysis

of solid tumors. In addition, ATAC-PCR requires much
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Figure 4
Hierarchical cluster analysis of the genes on the basis of expression patterns. A total of 1,536 genes are aligned horizontally. One hundred cancer and 11
normal tissue samples are vertically aligned in the same order as in Figure 6a. The bottom dots indicate genes grouped by parametric clustering. Green,
group GM-A; blue, group GM-B; red, group GM-C. The black bar corresponds to cluster 43. 

Figure 3
Parametric clustering of genes using the Gaussian mixture model. The
dots represent a two-dimensional matrix of genes generated by principal
component analysis of the gene-expression data. Horizontal axis, factor
score of the first component extracted from the expression patterns of
each gene; vertical axis, factor score of the second component. Green,
group GM-A; blue, group GM-B; red, group GM-C. 
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smaller amounts of RNA than microarray analysis, a crucial

advantage when dealing with clinical samples.

The main focus of this study was to discover genes whose

expression in colon cancer samples correlated with clinical

parameters. There are two major approaches to this problem

- supervised [21-23] and unsupervised [1,24] - and both have

weaknesses. In the supervised approach, genes are collected

that might display correlations between their expression and

various clinical parameters. Diagnostic methods are then

constructed using the collected genes to confirm or deny

these hypothetical correlations, and answers are only

obtained after validation with an external dataset. In addi-

tion, such diagnostic systems are usually too complicated to

be easily accessible to clinicians. 

By unsupervised methods, clusters are first found that

contain groups of genes or samples which share common

gene-expression patterns in a given gene-expression data

matrix. Then, correlations with clinical parameters are

explored for each cluster. This approach is similar to that of

pathology, where the aim is to determine morphological
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Figure 5
Correlation of gene expression with cancer phenotype. The vertical axis represents the correlation ratio (CR) of the differences between tumor and
normal tissues in (a) group GM-A and (b) GM-B; or the presence or absence of distant metastasis in (c) GM-A and (d) GM-B; or lymph node metastasis
in (e) GM-A and (f) GM-B. The horizontal axis represents the genes sorted by CR. Red, original data; blue, trials of permuted data. 
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classifications and then determine how those classifications

correlate with clinical data. The main difficulty of the unsu-

pervised approach to gene-expression analysis lies in the

identification of statistically valid clusters.

For example, hierarchical cluster analysis allows the

branches of a dendrogram to be swapped at any level of

stratification. Consequently, 2n-1 alignments can describe a

clustering of n cases. As there are no established methods to

determine either the optimal alignment or the optimal

cluster number, statistical evaluation of proposed cluster

models can be very difficult. This is a problem common to

other methods, such as k-means clustering and self-organiz-

ing mapping (SOM). Models are therefore usually subject to

the interpretation of individual scientists. 

Parametric cluster analysis based on probability models offers

a solution to the above problem. With the underlying proba-

bility model, determining the number of clusters and their

structures becomes a statistical problem, and we have solved

this problem by a method based on the Gaussian mixture

model and Bayes inference, using the variational Bayes

method [18]. The main features of our method are as follows.

First, conventional clustering methods, including hierarchi-

cal, k-means, SOM and probabilistic mixture models trained

by the EM algorithm [14] often produce unstable results

depending on initial parameters and conditions. The varia-

tional Bayes method produces stable clustering, partly

because the algorithm does not have a strong dependence on

initial parameters.

Second, the free energy (see Materials and methods) approx-

imates the log marginal likelihood, which represents the

fitness (likelihood) of the model structure to the given data.

On this basis we can reliably produce a model with an appro-

priate number of clusters.

Third, clusters with non-hyperspherical shapes can be repre-

sented. Conventional methods assume spherical shapes for
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Table 1

List of TCL (tumor-classifier) genes 

GS number Accession number Symbol Annotation

GS2892 NM_004368 CNN2* Homo sapiens calponin 2 (CNN2), mRNA

GS3019 NM_003348 UBE2N* Homo sapiens ubiquitin-conjugating enzyme E2N (homologous to yeast UBC13) (UBE2N)

GS3386 NM_003337 UBE2B* Homo sapiens ubiquitin-conjugating enzyme E2B (RAD6 homolog) (UBE2B), mRNA

GS3387 NM_013317 hT1a-1* Homo sapiens hT1a-1 (hT1a-1), mRNA

GS3588 AF131848 * Homo sapiens clone 24922 mRNA sequence, complete coding sequence

GS4015 NM_005433 YES1* Homo sapiens v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES1), mRNA

GS4022 NM_002433 MOG* Homo sapiens myelin oligodendrocyte glycoprotein (MOG), mRNA

GS4163 AC007565 * Homo sapiens chromosome 19, cosmid R27656, complete sequence

GS4780 AD001530 * Homo sapiens XAP-5 mRNA, complete coding sequence

GS4941 NM_016380 * Homo sapiens differentiation-related protein dif13 (LOC51212), mRNA

GS4945 NM_016343 CENPF* Homo sapiens centromere protein F (350/400 kD, mitosin) (CENPF), mRNA

GS4946 NM_002439 MSH3* Homo sapiens mutS (E. coli) homolog 3 (MSH3), mRNA

GS3170 L35240 † Human enigma gene, complete coding sequence

GS715 AL096800 † Human DNA sequence from clone RP1-303A1 on chromosome 6

GS3002 AL023806 STM2† Human DNA sequence from clone 466P17 on chromosome 6q24

GS1102 Y18000 NF2† Homo sapiens NF2 gene

GS5239 AL139229 † Human DNA sequence from clone RP4-540A13 on chromosomeXq22.1-22.3

GS4947 NM_018520 Homo sapiens hypothetical protein PRO2268 (PRO2268), mRNA

GS1341 AC006165 Homo sapiens clone UWGC:y54c125 from 6p21, complete sequence

GS4512 NM_005768 C3F Homo sapiens putative protein similar to nessy (Drosophila) (C3F), mRNA

GS4501 AF261689 Homo sapiens DNA polymerase epsilon p17 subunit gene, complete coding sequence

GS6969 AL022316 Human DNA sequence from clone CTA-126B4 on chromosome 22q13.2-13.31

GS6493 AF113695 Homo sapiens clone FLB5224 PRO1365 mRNA, complete coding sequence

M15990 M15990 yes yes

*Group GM-C genes used in the experiment detailed in Figure 3. †Additional genes in group C. 



clusters, but this assumption may not be appropriate. As we

define a mixture of full-covariance Gaussian distributions,

our method can accommodate clusters with hyperelliptical

shapes and oblique axes (for example, GM-C in Figure 3). 

By this method, we have successfully identified groups of

genes whose expression is correlated with clinical parameters,

an important step towards the molecular classification of

cancer. Heuristic methods may be suited for biological prob-

lems, because the identification of a large number of possible

clusters is advantageous for hypothesis generation. In con-

trast, identification of statistically valid clusters is of the

highest priority for cancer classification, because the intention

is to apply these classifications to future clinical samples. In

particular, Bayes inference may have an advantage, because

the generalization ability of Bayesian predictive distributions

tends to exceed that of the maximum likelihood [25]. 

Because parametric cluster analysis is based on the assump-

tion that the data are distributed according to a mixture of

Gaussian distributions, we excluded genes which possibly

violate this assumption. The excluded genes would contain

additional members of the three groups identified by the

parametric clustering, and some of the genes may constitute

small clusters of possible biological and clinical interest.

Expanding the dynamic range of the ATAC-PCR assay may

help to settle this problem. The dynamic range depends on

the number and inoculated amounts of the control cDNAs,

and additional assays with different amounts of control

cDNA should serve to expand the dynamic range. 

We prioritized clustering of genes, not tissues, because bio-

logical interpretation of gene clusters is easier than that of

tissue clusters. The TCL genes include several genes possess-

ing clear relationships with malignancy. c-yes [26], the

human homolog of v-yes, a Yamaguchi sarcoma virus onco-

gene, is one such example. Although c-yes, a member of the

tyrosine kinase oncogene family, exhibits elevated expres-

sion in a subpopulation of colorectal carcinomas, its rela-

tionship with prognosis has not been well characterized [27].

Overexpression of c-yes may be associated with active prolif-

eration of cancer cells. In addition, two ubiquitin-conjugat-

ing enzymes discovered during this analysis may be involved

in protein degradation during anoxia-induced cancer-cell

death stemming from rapid growth of peripheral cells.

Ectopic gene expression in cancer tissues, such as the

frequently observed expression of adrenocorticotropic

hormone (ACTH) in lung cancer cells [28], can occasionally

evoke serious symptoms in cancer patients. In the absence of

symptoms, however, ectopic gene expression is rarely identi-

fied. Genes for myelin oligodendrocyte glycoprotein [29] and

NF2 [30], which are specific to oligodendroglia and

Schwann cells, were identified as TCL genes in our screen.

This observation suggests that there may be a unique link
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Figure 6
Expression of TCL (tumor-classifier) genes was correlated with the malignant potential of colorectal cancer. Results used the 100 cancer and 11 normal
tissues. (a) Correlation with distant metastasis. We aligned the 12 genes listed at the top of Table 1 from left to right horizontally. All samples were then
sorted vertically by the average of the gene-expression levels of the 12 genes. The border of groups 1 and 2 is set at 0. The right bar indicates remote
metastasis status, with red, green and blue representing remote metastasis positive, remote metastasis negative, and normal tissues, respectively.
(b) Kaplan-Meier plot analysis of groups 1 and 2. Vertical axis, fraction of survival; horizontal axis, survival time in years. The groups of patients analyzed
consisted of either all stages (left) or Dukes’ B and C stages only (right). All the expression data and relevant clinical information are available as
additional data files.
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between malignancy and ectopic gene expression. Further

studies, however, will be required to clarify whether addi-

tional genes with the TCL expression pattern or the ectopi-

cally expressed genes themselves are responsible for the

malignant phenotype.

Unlike other diagnosis-oriented studies using supervised

approaches [2,22,23], TCL genes were not selected for

metastatic or prognostic properties. The diagnostic conclu-

sions obtained by such studies using such properties were

optimized for the cancer populations selected for the analy-

sis, and thus may not be as effective with future samples

[31]. In addition, gene-expression profiles reveal only the

intrinsic properties of cancer tissues; treatment decisions in

clinical practice are made using many factors surrounding

individual patients. Stage classification, an integration of

clinical parameters, has the most important role in thera-

peutic decisions. New methods that improve the current

diagnostic schemes based on stage classifications should

continually be evaluated. Thus, this novel molecular classifi-

cation might serve as a potential candidate for advancing

diagnostic determinations. 

Although it is not common to describe ‘diseases of gene

expression’, it is not inappropriate to define diseases by gene-

expression patterns, as these reflect the intrinsic properties of

tissues better than other parameters. It may be too early to

discuss whether the molecular grouping should be treated as

either one of the clinical parameters or a crucial factor defin-

ing disease entities. It is crucial to identify additional TCL

genes and clarify their functional relationships with tumor

characteristics. It is also important to explore correlation

with chromosomal abnormalities. We expect, however, that

TCL genes will eventually define a new categorization scheme

for colorectal cancer, facilitating better understanding of

disease etiology and development of therapies. 

Materials and methods 
Samples 
A total of 100 Japanese primary colorectal cancer specimens

and corresponding normal colonic epithelial specimens were

obtained from surgical resections during a period from April

1994 to September 2000. All tumor patients were diagnosed

at advanced stages. All normal tissues were histopathologi-

cally confirmed to be free of cancer cells. None of the

patients was treated pre-operatively with either chemother-

apy or radiotherapy. Patient prognosis was followed for a

median of 41.2 months. Additional specimens were snap

frozen in liquid nitrogen and stored at -80°C until use. These

resected samples were used appropriately according to the

guidelines of the ethics committee of Osaka University.

ATAC-PCR assay 
Total RNA was purified from clinical samples using Trizol

reagent (Invitrogen). A 3�-end cDNA library was constructed

using a mixture of RNA from six malignant samples. Utiliz-

ing software developed in our laboratory, we designed PCR

primers for ATAC-PCR. Reactions were carried out as

described previously [20]. Briefly, seven adaptors were used,

two of which were assigned to a mixture of 10 malignant

tissues, including those used to create the library. Each reac-

tion mixture contained 10 equivalents of control cDNA with

the smallest adaptor, two equivalents of control cDNA with

the second smallest adaptor, and five equivalents of each

sample, where one equivalent is the amount of cDNA tem-

plate corresponding to 1.2 ng total RNA. Amplified products

were separated using an ABI 3700 DNA analyzer. We then

calculated the relative expression levels as compared to the

control. The accuracy of this technique, comparable to other

RT-PCR methods such as real-time PCR, has been estab-

lished through studies at the Nara Institute of Science and

Technology, often with confirmation by real-time PCR [10].

Data preprocessing 
The data matrix was first normalized by the median of the

cases. Values greater than 20 and less than 0.05 were trun-

cated to 20 and 0.05 respectively, because reliable quantita-

tion is only obtained within this range. All data were then

converted to logarithmic scale, base 10. After selection of

genes for parametric clustering, the missing values were esti-

mated by the k-nearest neighbor method [32], where k = 15.

This k-value was empirically determined by trials to obtain

optimum estimation of missing values artificially introduced

into the dataset of the 785 genes having no missing values.

Parametric cluster analysis 
A probabilistic generative model for an L-dimensional gene

factor vector y is defined as a Gaussian mixture model: 

P (y | m, ��) = (2�)
-L–2 | �i |

1–2 exp(-
1
–2 (y - ��m) �

-1

m (y - ��m)T)

P(m | ��) = gm

P(y | m,��) is the probability distribution of the mth compo-

nent, and is an L-dimensional Gaussian distribution with a

mean ��m and a covariance matrix ��m. gm is the mixing rate

parameter, satisfying gm � 0 and �
I

m=1 gm = 1. �� is a parameter

of the Gaussian mixture model, and is defined as �� � {(gm,

��m, ��m) | m = 1, …, I}. The index of the components, m, is a

hidden variable. I is the number of clusters. 

Our parametric clustering method is based on determination

of the posterior distribution of parameters and hidden vari-

ables by the Bayes inference. With a certain value of I, the

posterior distribution P(H, �� | Y) may be estimated accord-

ing to the Bayes theorem:

P(Y,H | ��) P0(��)
P(H, �� | Y) = ————————————

P(Y)

where P0(��), Y and H are the prior distribution of parame-

ters, a set of gene-factor vectors defined as Y = {y1, …, yN},
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and a set of hidden variables, respectively. The normaliza-

tion term, P(Y), is the marginal likelihood. 

Because of the need to integrate over the parameters, com-

putations of the Bayes inference can seldom be performed

exactly, and approximation is necessary. We applied the

variational Bayes method [18]. To approximate the posterior

distribution, a trial posterior distribution, Q(H, ��), is pre-

pared, and a free energy is defined as follows: 

P(Y,H | ��)P0(��)
F [Q(H, ��)] � �

{H}
� d��Q(H, ��)log �————————————————�Q(H, ��)

= log P(Y) - KL(Q(H, ��) || P(H, �� | Y))

where KL(·||·) is the Kullback-Leibler (KL) divergence

between two probability distributions. In the variational

Bayes method, iterative modulation of the trial posterior dis-

tribution to yield the true posterior distribution is achieved

by maximizing the free energy, F[Q(H, ��)]. It should be

noted that maximizing the free energy is equivalent to mini-

mizing the KL divergence, because log P(Y) does not depend

on Q(H, ��). 

We assumed independence in the trial posterior distribu-

tion: Q(H, ��) = Q(H)Q(��), and used a conjugate prior distri-

bution P0(��). Using various values of I, the maximum free

energy was obtained by an efficient iteration algorithm

similar to the expectation-maximization (EM) algorithm

used in the maximum likelihood inference. The I value with

the largest maximum free energy was then selected. After

obtaining the posterior distributions, Q(H) and Q(��), clus-

tering was performed to classify the ith gene by 

m* � arg max
m

�d��Q(��)P(m | yi,��).

In our case, L =3 and I =3.

Correlation analysis 
The correlation ratio of gene i is defined by the following

equation. 

�C

c=1
nc ���j�Jc 

xi,j�/nc - x–i�
2

(CRi)
2 � ———————————————

�
M

j=1 (xi,j - x–i)
2

where nc is the number of genes in a particular class Jc; xi,j is

the expression level of gene i in sample j; and –xi is the

average expression level of gene i. A more detailed descrip-

tion of the parametric cluster and correlation analyses may

be obtained from S.I. upon request. 

Other statistical analysis 
For hierachical cluster analysis and survival analysis, the

data matrix was normalized to the median of the cases and

then to the median of the individual genes. Subsequently,

data preprocessing was conducted in the same way as for the

parametric cluster analysis. Hierarchical cluster analysis was

performed using Ward’s method with ClustanGraphics soft-

ware [33]. The significant cluster level was determined by

bootstrap validation. Survival analysis was performed using

STATISTICA 6.1J software (StatSoft). No clinical parameter

biases, other than distant metastasis status, were detected

for molecular groups 1 and 2.

Additional data files 
All the gene-expression data (1536 genes x 111 samples) and

the annotation of the assayed genes are available as an Excel

file and an accompanying Word file with the online version

of this paper. An Excel data file for Figure 6 lists the gene-

expression data of the 12 GM-C genes. Gene-expression data

are those normalized for hierarchical cluster analysis as

described in the Materials and methods section. 
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