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THE BIGGERPICTURE Over the past years, technological advances have enabled the generation of large
amounts of data at multiple scales. The integration of high-dimensional data is particularly important in
biomedical sciences, as they can be used to identify biological mechanisms and predict clinical out-
comes well in advance of their occurrence. Because of the lack of powerful analytical tools that can
be used by the average biomedical researcher, translation of such knowledge has been extremely
slow. We have developed an open-source software, SIMON, to facilitate the application of machine
learning to high-dimensional biomedical data. In SIMON, analysis is performed using an intuitive graphical
user interface and standardized, automated machine learning approach allowing non-technical re-
searchers to identify patterns and extract knowledge from high-dimensional data and build high-quality
predictive models.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problem
SUMMARY
Data analysis and knowledge discovery has become more and more important in biology and medicine with
the increasing complexity of biological datasets, but the necessarily sophisticated programming skills and in-
depth understanding of algorithms needed pose barriers to most biologists and clinicians to perform such
research. We have developed a modular open-source software, SIMON, to facilitate the application of
180+ state-of-the-art machine-learning algorithms to high-dimensional biomedical data. With an easy-to-
use graphical user interface, standardized pipelines, and automated approach for machine learning and
other statistical analysis methods, SIMON helps to identify optimal algorithms and provides a resource
that empowers non-technical and technical researchers to identify crucial patterns in biomedical data.
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INTRODUCTION

Over the past several years, due to the technological break-

throughs in genome sequencing,1 high-dimensional flow

cytometry,2–4 mass cytometry,5,6 and multiparameter micro-

scopy,7,8 the amount and complexity of biological data have

become increasingly intractable and it is no longer feasible to

extract knowledge without using sophisticated computer

algorithms. Therefore, researchers are in need of novel compu-

tational approaches that can cope with the complexity and

heterogeneity of data in an objective and unbiasedway.Machine

learning (ML), a subset of artificial intelligence, is a computational

approach developed to identify patterns from the data in order

to make predictions on new data.9 ML has had a profound

impact on biological research,10–12 including genomics,13 prote-

omics,14–16 cell image analysis,17 drug discovery and develop-

ment,18 and cell phenotyping,6,19,20 which revolutionized our

understanding of biological complexity. Recently, using sys-

tems-level analysis of genetic, transcriptional, and proteomic

signatures to predict patients’ response to vaccines,21,22 thera-

pies, and disease progression,23–27 ML has become the primary

computational approach used in ‘‘precision medicine.’’28

The biggest challenge is the proper application of MLmethods

and the translation of the results into meaningful insights. The

analysis of massive datasets and extraction of knowledge using

ML require knowledge of many different computational libraries

for data pre-processing and cleaning, data partitioning, model

building and tuning, evaluation of the performance of the model,

and minimizing overfitting.11 Tools to achieve these tasks

have been mainly developed in either R (https://www.r-project.

org/)29,30 or Python (www.python.org/),31 which have today

become leading statistical programming languages in data sci-

ence. Because R and Python are free and open source, they

have been quickly adopted by a large community of program-

mers who are building new libraries and improving existing

ones. As of May 2020, there are 15,658 R packages available

in the CRAN package repository (https://cran.r-project.org/).

Many of the packages offer different modeling functions and

have different syntaxes for model training, predictions, and

determination of variable importance. Due to the lack of a unified

method for proper application of ML processes, even experi-

enced bioinformaticians struggle with these time-consuming

ML tasks. To provide a uniform interface and standardize the

process of building predictive models, ML libraries were devel-

oped, for example, mlr332 (https://mlr3.mlr-org.com), classifica-

tion and regression training (caret)30,33 (https://rdrr.io/cran/

caret), scikit-learn34 (https://scikit-learn.org), mlPy35 (https://

mlpy.fbk.eu), and SciPy (https://www.scipy.org/), including

also ones for deep learning, such as TensorFlow (https://www.

tensorflow.org/), PyTorch (https://pytorch.org/), and Keras

(https://keras.io/). Since those libraries do not have a graphical

user interface, usage requires extensive programming experi-

ence and general knowledge of R or Python, making them inac-

cessible for many life science researchers. Therefore, there is an

increased effort to harmonize those libraries and develop a soft-

ware that will facilitate application of ML in life sciences.

The software should provide a standardized ML method for

data pre-processing, data partitioning, building predictive

models, evaluation of model performance, and selection of fea-
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tures. Moreover, such software should be adapted for biological

datasets that have a high percentage of missing values,36 have

unbalanced participant distributions (i.e., a high number of in-

fected subjects, but only a relatively small number of healthy

controls),37 or suffer from a ‘‘curse of dimensionality,’’ i.e., poor

predictive power, as can be observed when the number of fea-

tures is much greater than the number of samples.38 In addition,

beyond the ML process, the software should support explor-

atory analysis and visualization of the results using a user-

friendly graphical interface. The fast-paced technological

development has dramatically increased the size of biological

datasets and the computational power needed for analysis.

Therefore, open-source web-based software supporting cloud

processing architecture is essential.

RESULTS

To address these challenges, we developed SIMON (Sequential

Iterative Modeling ‘‘Over Night’’), a free and open-source soft-

ware for application of ML in life sciences that facilitates produc-

tion of high-performing ML models and allows researchers to

focus on the knowledge discovery process. SIMON provides a

user-friendly, uniform interface for building and evaluating pre-

dictive models using a variety of ML algorithms. Currently, there

are 182 different ML algorithms available (Table S1). The entire

ML process, which is based on the caret33 library, from model

building and evaluation to feature selection, is fully automated,

as described.39 This allows advancedML users to focus on other

important aspects necessary to build highly accurate models,

such as data pre-processing, feature engineering, and model

deployment. It also makes the entire ML process more acces-

sible to domain-knowledge experts who formulate the research

hypothesis and collect the data, but lack programming ML skills.

In addition, to prevent optimistic accuracy estimates and to

optimize the model for generalization to unseen data, SIMON in-

troduces a unified process for model training, hyperparameter

tuning, and model evaluation by generation of training, valida-

tion, and test sets. A training set is used for building models,

which are evaluated using 10-fold cross-validation; a validation

set is used for hyperparameter tuning, and finally, models are

evaluated in an unbiased way using a test set, also known as a

holdout set, that has never been used for training. Models can

be downloaded as Rdata formats, which is crucial for usability

and reproducibility. In addition to the standardized ML process,

the initial install version offers a set of core components specif-

ically suited to the analysis of biomedical data, such as amultiset

intersection function for integration of data with many missing

values (https://cran.r-project.org/web/packages/mulset/index.

html), a method for identifying differentially expressed genes

using significance analysis in microarrays,40 a graphical repre-

sentation of the clustering analysis important for detection of

batch effects, a graphical display of the correlation analysis,

and graphical visualizations of the ML results that can be down-

loaded as publication-ready figures in scalable vector graphics

format. Finally, SIMON is available in two versions as a single

mode and a server version. The single mode is developed as a

SIMON Docker container (https://www.docker.com/), ensuring

code reproducibility and solving installation compatibility issues

across major operating systems (Windows, MacOS, and Linux).

https://www.r-project.org/
https://www.r-project.org/
http://www.python.org/
https://cran.r-project.org/
https://mlr3.mlr-org.com
https://rdrr.io/cran/caret
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https://www.tensorflow.org/
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https://cran.r-project.org/web/packages/mulset/index.html
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In both versions parallel computing is supported, which is essen-

tial for more efficient ML analysis by distributing the workload

across several processors. To promote collaboration and data

sharing and support distributed cloud processing, SIMON is

also available as a server version. The server version can be

installed on a private or public Linux cloud service. Distributed

cloud processing (multiNode) is implemented utilizing Open-

Stack, a free and open-source cloud computing platform

(https://www.openstack.org/). The advantage of the server

version is that it has multiNode capability, which allows users

to distribute workload on multiple computers simultaneously to

optimize SIMON performance. The multiNode process can be

used to horizontally scale analysis to large infrastructures,

such as high-performance computing clusters to meet the

computational needs and accommodate parallel processing of

large amounts of data. In addition, in the server version, users

can configure data storage either on a local server or in a

cloud-using service that is interoperable with the Amazon Web

Services S3 application programming interface.41 SIMON has

also been translated into multiple languages by a collaborative

open-source effort. SIMON source code is regularly updated,

and both source code and compiled software are available

from the project’s website at http://www.genular.org/.

We demonstrate the accuracy, ease of use, and power of

SIMON on five different biomedical datasets and build predictive

models for arboviral infection severity (SISA),42 the identification

of the cellular immune signature associated with a high-level of

physical activity (Cyclists),43 the determination of the humoral

responses that mediate protection against Salmonella Typhi

infection (VAST),44 early stage detection of colorectal cancer

from microbiome data (Zeller),45,46 and the detection of liver

hepatocellular carcinoma cells (LIHC)47 (Figure 1B–1E; Supple-

mental Information, Videos S1 and S6). To build models using

the SISA dataset containing clinical parameters (described in

the Experimental Procedures and available as Table S2), 11

ML algorithms were used, 5 from the original publication42 (tree-

bag, k nearest neighbors, random forest, stochastic generalized

boosting model, and neural network) and, in addition, ‘‘sda,’’

shrinkage discriminant analysis; ‘‘hdda,’’ high-dimensional

discriminant analysis; ‘‘svmLinear2,’’ support vector machine

with linear kernel; ‘‘pcaNNet,’’ neural networks with feature

extraction; ‘‘LogitBoost,’’ boosted logistic regression, and naive

Bayes. Due to the unified ML process for training, tuning, and

evaluating predictivemodels, users can test a variety of ML algo-

rithms in SIMON. Since the same training and test sets are used

by different algorithms, resulting models can be compared and

the best-performing models can be selected. After manually
Figure 1. SIMON Machine Learning Workflow

Step 1. Building predictive models. (A) Screenshot of the SIMON graphical user

predictors and response (outcome) variables, additional exploration classes, tra

rithms.

Step 2.Model evaluation and selection. Comparison of (B) box plots of performanc

characteristic (ROC) curves built on the SISA dataset. Each boxplot shows the d

third quartile (Q3), and maximum (Q3+1.53IQR). Data outside of minimum an

Comparison of ROC curves calculated from the training (average value calcula

datasets with missing values (Cyclists and VAST) and (E) high-dimensional datas

Step 3. Feature selection. (F) The variable importance score table for each feature

Step 4. Exploratory analysis. (G) Correlation analysis on the Cyclists dataset. (H)
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setting initial parameters for data partitioning, predictor and

outcome variables, exploratory classes, pre-processing, and se-

lecting ML algorithms (Figure 1A), SIMON automatically per-

forms all necessary ML analysis steps to build, tune, and

evaluate predictive models. The process of building all 11

models on the SISA dataset in SIMON finished in 59 s on a

standard laptop (Intel Core i7 Processor 7700HQ and 16 GB

of RAM). In SIMON, users can evaluate model performance

using standard performance measurements such as accuracy,

sensitivity, specificity, precision, recall, area under the receiver

operating characteristic curve (AUROC), precision-recall area

under curve (prAUC), and logarithmic loss (LogLoss) on training

and holdout test sets (Figure 1B; Videos S2 and S3). The

shrinkage discriminant analysis model (sda) had the highest

AUROC of 0.97 on the training set and also performed well on

the holdout test set (test AUROC 0.96) (Figure 1C, Table S3,

the model is available as the Data S1).

To demonstrate SIMON’s capabilities for analyzing biomed-

ical datasets with missing data, we applied SIMON to (1) the

Cyclists dataset studying the impact of physical activity on the

immune system in adulthood based on immunophenotyping

using flow cytometry43 (Table S4) and (2) the VAST dataset

containing serological analysis of the antibody responses

collected from a clinical trial that was undertaken to evaluate

typhoid vaccine efficacy48 (Table S5). Description of both data-

sets is available in the Experimental Procedures. The percentage

of missing values was 8% in the Cyclists dataset and 21% in the

VAST dataset, due to either the exclusion of samples not passing

quality control criteria or the lack of sample volume to repeat ex-

periments and obtain reportable data. To build models using the

datasets with missing values, we used the multiset intersection

(‘‘mulset’’) function39 to identify shared features between donors

and generate resamples (Supplemental Information). Because

the mulset function generates multiple resamples from the initial

dataset based on shared features, it is useful for removal of

missing values and can be used for integration of data collected

from different assays and across clinical studies.39 For the Cy-

clists dataset, the mulset function generated 146 resamples.

The models were built for each of the 146 resamples using five

ML algorithms (naive Bayes, svmLinear2, pcaNNet, logistic

regression, and hdda) to identify immune cell subsets enriched

in the cohort of master cyclists. The analysis finished in 41 min

and 24 s. The model with the highest performance measures

was built with naive Bayes on the resample with 96 donors that

shared 31 features (train AUROC 0.99 and test AUROC 1) (Fig-

ure 1D, Table S6, and Data S2). The mulset function generated

206 resamples from the initial VAST dataset with varying number
interface demonstrating input selection for machine learning analysis, such as

ining/test split, pre-processing functions, and desired machine learning algo-

emeasurements calculated for 11 predictivemodels and (C) receiver operating

istribution of data as minimum (Q1�1.53IQR), first quartile (Q1), median (Q2),

d maximum values (outliers) are shown as circles. IQR, interquartile range.-

ted using 10-fold cross-validation repeated three times) and test sets on (D)

ets (Zeller and LIHC).

and graphical visualization of the selected features from the Cyclists dataset.

Clustering analysis on the VAST dataset.

https://www.openstack.org/
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of donors and features. Resamples with fewer than 10 donors in

the test set were removed prior to the ML process to prevent too

optimistic predictive estimates using the holdout set. Therefore,

the ML analysis was performed on 58 resamples using the same

fiveML algorithms as for the Cyclists dataset. The entire analysis

finished in 31min and 1 s. The top performing model was built on

the resample with 47 donors that shared 13 features with the

naive Bayes algorithm (train AUROC 0.73 and test AUROC

0.71) (Figure 1D, Table S7, and Data S3).

We also applied SIMON to (1) a dataset with a large number

of features measured using whole-metagenome shotgun

sequencing of fecal samples (Zeller dataset, Table S8) and (2)

the liver hepatocellular carcinoma dataset containing RNA-

sequencing data from The Cancer Genome Atlas (TCGA) with

an unbalanced sample distribution of tumor and adjacent normal

tissue samples (LIHC dataset, Table S9). Both datasets are

described in the Experimental Procedures. For the Zeller data-

set, models were built using ML algorithms known to perform

well in situations where more features were measured than

individuals, such as shrinkage discriminant analysis,49 high-

dimensional discriminant analysis,50 and neural network with

feature extraction.51 Two additional algorithms were included,

svmLinear2 and LogitBoost. The complete analysis was per-

formed in less than 1 min (0:38 min). The sda algorithm built

the model with the highest performance (train AUROC 0.86

and test AUROC 0.81), having a higher performance measure

than the published LASSO linear regression model45 (train

AUROC 0.84 and test AUROC 0.85) (Figure 1E, Table S10, and

Data S4). For the LIHC dataset we used the same five ML algo-

rithms as for the Zeller dataset, and analysis finished in 11 min

and 30 s. For such a highly unbalanced dataset the precision-

recall AUC (prAUC)52 is a much better performance measure-

ment than AUROC that reported near-perfect performance

(Figure 1E). The prAUC provides information on how well the

model correctly detects cancer cells, while it is less stringent

on the evaluation of healthy cells. To avoid obtaining overly

optimistic prediction results (often observed on unbalanced

datasets), we ranked models based on the prAUC of the training

set (Table S11). The model that had the best performance was

built using the svmLinear2 algorithm (train prAUC 0.83) and it

also performed well on the holdout test set (prAUC 0.73)

(Data S5).

‘‘Drowsiness’’ contributed the most to the top-performing

SISA model, confirming the findings from the original study42

(Table S12). To standardize the process for evaluation of the

features and their contribution to the models, we implemented

the variable importance score evaluation functions from the

caret library.33 This allows users to compare features selected

across models. In the case of the SISA dataset, drowsiness

contributed the most in all of the models built (Table S13), indi-

cating the importance of this symptom and its correlation with

hospitalization. The features that contributed the most to the Cy-

clists model were total memory, unswitched memory, and naive

B cells; recent thymic emigrants; CD8+ T cells with TEMRA

phenotype; and regulatory T cells (CD25+ Foxp3+ CD4+ T cells)

(Table S14; Video S4). In comparison to age-matched physically

inactive individuals (non-cyclists), the master cyclists had

increased frequencies of recent thymic emigrants, naive B cells,

and CD3 cells, and decreased frequencies of memory B cells
and CD8 T cells with TEMRA phenotype, confirming that aging

of the immune system, i.e., immunosenescence, can be reduced

by high levels of physical activity43 (Figures 1F and S1). To further

explore the relationship between selected features, users can

perform correlation analysis to reveal highly correlated features

(Figure 1G; Supplemental Information, Video S5). Naive and

memory B cells were identified as being highly correlated (Fig-

ure 1G), as expected, since these subsets were determined

from the same flow cytometry plots and their relationship is

inversely correlated. Removal of those highly correlated features

can help to buildmore accuratemodels. Removal of naive B cells

resulted in building a predictive model with the same perfor-

mance measurements as the model built on the entire dataset

(train AUROC 0.99 and test AUROC 1) (Table S15), while removal

of total memory B cells lowered the accuracy estimates (train

AUROC 0.98 and test AUROC 1) (Table S16), indicating the

importance of memory B cells to discriminate between master

cyclists and non-cyclists. In the VAST dataset, individuals with

higher IgA, IgA1, IgA2, and IgG2 titers against native Vi polysac-

charide (nViPS) antigen and higher IgA and IgG3 titers against

biotinylated Vi polysaccharide (ViBiot) on the day of the chal-

lenge were protected against the typhoid challenge, supporting

the data from univariate analysis44 (Table S17 and Figure S2).

Moreover, using the clustering function of SIMON’s exploratory

analysis module, we quickly found that the IgA2 signature dom-

inates the responses after vaccination with a purified Vi polysac-

charide (Vi-PS), while the IgG2 signature was dominant for the Vi

tetanus toxoid conjugate (Vi-TT) vaccine44 (Figure 1H, Supple-

mental Information). For the Zeller dataset, the same features

as originally reported45 contributed the most to the model,

including Fusobacterium nucleatum and Peptostreptococcus

stomatis (Table S18). The features that contributed the most to

the LIHC model were well-known genes identified to be upregu-

lated in LIHC, such asGABRD andPLVAP,53 and genes enriched

in adjacent normal tissue samples, ANGPTL6,54 VIPR1,55 and

OIT3,56 as a typical signature for healthy liver tissue (Table

S19, Figure S3).

DISCUSSION

We have developed SIMON, a powerful software platform for

data mining that facilitates pattern recognition and knowledge

extraction from high-quality, heterogeneous biological and clin-

ical data, especially where there are missing data, an unbal-

anced distribution, and/or high dimensionality. It can be used

for the identification of genetic, microbial, and immunological

correlates of protection and it can help in guiding the further anal-

ysis of the biomedical data.

Over the past years, technological advances have enabled the

generation of large amounts of data at multiple scales. Moni-

toring and analyzing these complex datasets is particularly

important in the biomedical sciences, as they serve to advance

knowledge about health and disease, as well as predicting

clinical outcomes in advance of their occurrence. Despite major

clinical and economic consequences of these approaches, due

to the lack of powerful analytical tools that can be used by the

average biomedical researcher, the translation of such knowl-

edge can be extremely slow. Although several commercial soft-

wares are available, for instance, Google’s cloud-based AutoML
Patterns 2, 100178, January 8, 2021 5
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(https://cloud.google.com/automl), DataRobot (https://www.

datarobot.com/), BigML (https://bigml.com/), MLjar (https://

mljar.com), and RapidMiner (https://rapidminer.com/), they

come at a high price and have hidden ML methods and algo-

rithms, and thus have not been adopted by the biomedical com-

munity. In academia, open-source ML software is being devel-

oped, for example, Waikato Environment for Knowledge

Analysis (WEKA)57 (https://www.cs.waikato.ac.nz/�ml/weka/),

Orange58 (https://orange.biolab.si/), the Konstanz Information

Miner (KNIME)59 (https://www.knime.com/), and ELKI60

(https://elki-project.github.io/). For the development of SIMON,

our aim was to integrate the capabilities of commercial software

openly and freely for everyone. The currently available open-

source software offers only a limited number of the most

commonly used ML algorithms using a user-friendly graphical

interface, while focusing on the manual configuration to achieve

optimal model predictive performance. Therefore, usage of

these softwares requires extensive knowledge of the ML pro-

cess, so the primary users are data scientists, statisticians,

and ML experts. In contrast, commercial software versions are

implementing an automated ML (autoML) process that rapidly

builds high-performance models by identifying the optimal ML

method, including the selection of an appropriate algorithm,

optimization of model hyperparameters, and evaluation of the

best-performing models.61 AutoML improves the efficiency of

the ML process, and the resulting models often outperform

hand-designed ones.61,62 By implementing this simplified appli-

cation of ML in SIMON, non-experts can build high-performing

models. In addition to auto-Weka, which provides a graphical

user interface for an open-source version of the autoML63 con-

strained to the most commonly used ML algorithms, there are

also frameworks, such as auto-sklearn,64 TPOT,65 and Auto-

Prognosis,66 highlighting the importance of the application of

autoML to biomedical data. Although the process of selection

of algorithms and optimization of hyperparameters is automated

in SIMON, the data pre-processing steps and exploratory anal-

ysis of the resulting models require background knowledge

about the data distribution and correlation, transformations,

and processing steps before running the analysis and evaluation

of predictive models built by SIMON.

Another advantage of commercial over open-source software,

which we implemented in SIMON, is the architecture of commer-

cial software supports running ML processes in the cloud or in

the server mode. The SIMON server edition provides an option

for web-based collaborative efforts that reflect the necessity to

accommodate the increased size of datasets, the complexity

of models, and data privacy concerns, for instance, for sharing

human genomic data. Because the integration of biomedical

data across clinical studies and research groups around the

globe can enable training of more detailed models and lead to

higher-quality insights, the SIMON server mode offered as an

open-source version of ML software is a valuable tool.

SIMON is developed as a modular open-source software,

which allows us to extend our work by integrating novel features

in the future versions. Although this version of the software can

analyze multiple datasets, ranging from clinical and cytometry

data to transcriptome, microbiome, and proteome with missing

data, high dimensionality, and unbalanced distributions, future

multi-omics datasets integrating different modalities or time-
6 Patterns 2, 100178, January 8, 2021
series datasets will require new methods, such as ensemble

methods, automated feature selection,67 and forecasting algo-

rithms. Moreover, as the number of predictive models built using

biomedical data increases, SIMON will be able to identify which

algorithms work the best for a particular dataset.

Overall, SIMON is designed to provide a uniform knowledge

discovery interface adaptable to the increasing size of biomed-

ical datasets that can allow even non-expert biomedical re-

searchers to solve important problemswhen facedwith complex

and heterogeneous datasets.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

The lead contact for this article is Adriana Tomic (info@adrianatomic.com).

Materials Availability

Datasets used in Figure 1 were either obtained directly from authors (VAST44

and Cyclists43 datasets) or downloaded from publications42 (SISA dataset)

and R packages (Zeller dataset from the MetagenomicData46 and LIHC from

the GSEABenchmarkeR47) with help from the authors. The SISA dataset con-

tains data from 543 individuals hospitalized due to arboviral infection with

dengue, chikungunya, or Zika virus from a surveillance study in Ecuador

collected from 2013 to 2017. In the SISA dataset we excluded columns with

high level of missing values (pregnancy, ‘‘WomPreg,’’ and complete blood

count test, which was not performed for all donors and includes the columns

‘‘PLT_count,’’ ‘‘Lymphocytes,’’ ‘‘CBC_N%,’’ ‘‘WBC_calc,’’ and ‘‘CBC_HCT’’).

In addition, nine donors with missing values were removed. The final SISA da-

taset after removal of columns and rows with missing values is available as

Table S2. The Cyclists dataset contains data from the immune responses of

120 elderly individuals with a high-level of physical activity, i.e., master

cyclists, and 75 age-matched controls with a low level of physical activity

(non-cyclists) analyzed using flow cytometry (Table S4). The VAST dataset

contains data from 72 individuals enrolled in the clinical study to evaluate

humoral responses in a typhoid vaccine efficacy trial in a controlled human

infection model. Only day 0 (day of the challenge) log-transformed data were

used and are available for download as Table S5. Individuals were vaccinated

with either a purified Vi-PS vaccine (35 individuals) or the Vi-TT vaccine

(37 individuals) 1 month prior to oral challenge with live Salmonella Typhi. Of

72 individuals, 26 developed an acute typhoid infection following challenge.

The Zeller dataset contains information on themicrobiome species abundance

in healthy individuals and colorectal cancer patients (Table S8). The data were

accessed through the MetagenomicData package. In total 184 individuals

were included, of which 93 were healthy controls and 91 colorectal cancer pa-

tients. The LIHC dataset obtained from the GSEABenchmarkeR package con-

tains RNA expression data from 374 LIHC cells and 50 adjacent normal cells

(Table S9).

Data and Code Availability

The source code of SIMON is available at https://github.com/genular/simon-

frontend. All data used in SIMON analysis are available as Supplemental ta-

bles, while MLmodels are available as Supplemental data in the RData format.

Datasets are available for the download from the Zenodo data repository:

VAST (Zenodo Data: http://doi.org/10.5281/zenodo.4121322),68 SISA Zenodo

Data: http://doi.org/10.5281/zenodo.4121831),69 Cyclists (Zenodo Data:

http://doi.org/10.5281/zenodo.4115626),70 Zeller (Zenodo Data: http://doi.

org/10.5281/zenodo.4121516),71 and LIHC (Zenodo Data: http://doi.org/10.

5281/zenodo.4121594).72

Installing SIMON

SIMON can be installed directly from the GitHub (https://github.com/genular/

simon-frontend) or a pre-built version can be installed from DockerHub

(https://www.docker.com/). Users need to install Docker (version 17.05 or later

required) following instructions available on the Docker website (https://docs.

docker.com/). Installation instructions for Windows (https://docs.docker.com/

docker-for-windows/install/), MacOS (https://docs.docker.com/docker-for-

mac/install/), and Linux (https://docs.docker.com/install/linux/docker-ce/
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ubuntu/) are provided. After Docker installation, users must download and run

a SIMON image from DockerHub. To do that users must run Terminal on Linux

and MacOS or Windows Power Shell if using Windows OS and type following

command:

docker run –rm –detach –name genular –tty –interactive –env IS_DOCK-

ER=’true’ –env TZ=Europe/London –volume genular_data:/mnt/usrdata –pub-

lish 3010:3010 –publish 3011:3011 –publish 3012:3012 –publish 3013:3013

genular/simon:latest

Variable ‘TZ=’ stands for time zone and can be replaced with appropriate

time zone. Once the command is executed, SIMON will be downloaded and

started. To access SIMON, open a web browser (Firefox recommended, avail-

able at https://www.mozilla.org/firefox/) and type http://localhost:3010.

Create an administrator account. SIMON will run until you shut down/restart

your computer or stop it manually using the following command: docker

stop genular. Advance instructions for installing a server version are provided

on our GitHub page.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100178.
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