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CCAAT/enhancer-binding protein 3 promotes
receptor activator of nuclear factor-kappa-B ligand
(RANKL) expression and osteoclast formation in
the synovium in rheumatoid arthritis

Hidetoshi Tsushima, Ken Okazaki', Kohei Ishihara, Takahiro Ushijima and Yukihide lwamoto

Abstract

Introduction: CCAAT/enhancer-binding protein (3 (C/EBPP) is a transcription factor that is activated in the synovium
in rheumatoid arthritis (RA) and promotes expression of various matrix metalloproteinases. In this study, we
examined whether C/EBP(3 mediates the expression of receptor activator of nuclear factor-kappa-B ligand (RANKL)
and drives osteoclast formation in primary fibroblast-like synoviocytes (FLS) from RA patients. The cooperation of
C/EBPB and activation transcription factor-4 (ATF4) in the regulation of the RANKL promoter was also investigated.

Methods: Immunofluorescence staining was performed for C/EBP{3, RANKL, and ATF4 in synovium from RA
patients. Adenovirus expression vectors for two major isoforms, C/EBPR-liver-enriched activator protein (LAP)

and - liver-enriched inhibitory protein (LIP), or small interfering RNA for C/EBP(3, were used to manipulate C/EBP(
expression in RA-FLS. RA-FLS over-expressing C/EBP{3 were co-cultured with peripheral blood mononuclear cells
(PBMCs) to test osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. A promoter assay for
RANKL, a chromatin immunoprecipitation (ChIP) assay and an immunoprecipitation (IP) assay were also performed.

Results: Immunofluorescence staining showed colocalization of C/EBP@, ATF4 and RANKL in RA synovium. Western
blotting revealed the expression of C/EBPB-LAP and -LIP in RA-FLS. Over-expression of either C/EBP3-LAP or -LIP
significantly increased the expression of RANKL mRNA, while C/EBPR-LIP down-regulated osteoprotegerin (OPG)
mRNA. The RANKL/OPG mRNA ratio was significantly increased by C/EBPB-LIP over-expression. Knockdown of
C/EBPRB with siRNA decreased the expression of RANKL mRNA. The number of TRAP-positive multinucleated cells
was increased in co-cultures of PBMCs and FLS over-expressing either C/EBPB-LAP or -LIP, but was more significant
with LIP. C/EBPB-LIP does not have a transactivation domain. However, promoter assays showed that C/EBP(3-LIP
and ATF4 synergistically transactivate the RANKL promoter. ChIP and IP assays revealed the cooperative binding

of C/EBPB and ATF4 on the RANKL promoter.

Conclusions: We demonstrated that C/EBP(, especially C/EBPB-LIP in cooperation with ATF4, is involved in
osteoclast formation by regulating RANKL expression in RA-FLS. These findings suggest that C/EBP{ plays a crucial
role in bone destruction in RA joints.
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Introduction

Cartilage degeneration and bone destruction are the main
features of rheumatoid arthritis (RA) [1]. Inflammation
pathways are involved in the catabolic processes of articu-
lar cartilage and bone degeneration in RA. Inflammatory
cytokines such as IL-1p, TNF-q, IL-6, and IL-17 play sig-
nificant roles in mediating inflammation and joint de-
struction. These cytokines are expressed in arthritic joints
in RA and induce expression of receptor activator of nu-
clear factor kappa B ligand (RANKL) in the synovium [2].
RANKL is an essential factor for osteoclast differentiation
[3/4]. Osteoprotegerin (OPG) is a decoy receptor that
inhibits RANKL activation of osteoclastogenesis and re-
duces bone resorption [5]. RA synovium-induced RANKL
stimulates osteoclast differentiation at sites where bone
and RA synovial membranes contact each other.

Inflammatory cytokines in RA joints activate numerous
transcription factors including nuclear factor-kappa-B
(NF-kB), activator protein-1 (AP-1), janus kinase-signal
transducer and activator of transcription (JAK-STAT) and
the CCAAT/enhancer-binding protein (C/EBP) family.
The C/EBP family consists of six members: C/EBPa, B,
0, & v, and { [6]. C/EBPp is an intron-less gene and has
three major isoforms: 38 kD (liver-enriched activator
protein Star (LAP*)), 36 kD (LAP) and 20 kD (liver-
enriched inhibitory protein (LIP)) [7]. The isoforms, LAP*
and LAP, each contain an N-terminal transactivation do-
main (TAD) and a chromatin remodeling domain. The
LIP isoform lacks the TAD, although it retains DNA bind-
ing capability, and is generally recognized to be a domin-
ant negative isoform.

Recent studies indicated that C/EBP is involved in dif-
ferentiation of osteoblasts and osteoclasts both physiolo-
gically and pathologically. C/EBPP activates osteocalcin
gene transcription and promotes osteoblast differentiation
[8-10]. For osteoclast differentiation, the C/EBPp isoform
ratio in mononuclear cells regulates osteoclastogenesis
through V-maf musculoaponeurotic fibrosarcoma onco-
gene homolog B (MafB) [11]. C/EBPB and RANKL are
upregulated in GCT. C/EBPp induces RANKL promoter
activity in GCT stromal cells, which causes osteolysis
[12]. In inflammatory chronic diseases such as RA, C/EBP
is strongly induced in response to inflammatory stimula-
tion. C/EBPp is expressed in synovial tissues and chon-
drocytes of RA [13,14]. C/EBPP plays a crucial role in
cartilage degradation along with proteolytic enzymes such
as matrix metalloproteinase-1 (MMP-1), MMP-3, MMP-
13, and aggrecanase-2 (a disintegrin and metalloproteinase
with thrombospondin motifs-5: ADAMTS-5) in inflamma-
tory arthritis. Hence, we hypothesized that an imbalance of
C/EBPp isoforms may upset skeletal integrity in RA by be-
ing involved in both cartilage and bone destruction.

In this paper, we investigated whether C/EBPB medi-
ates the expression of RANKL in RA synovium and
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consequently, whether it induces osteoclast formation.
In addition, we analyzed the mechanism of RANKL and
OPG expression by the C/EBPJ isoforms, C/EBPB-LAP
and —LIP, and by cooperation with activation transcrip-
tion factor-4 (ATF4). Determining the mechanisms re-
lated to the regulation of RANKL expression and bone
resorption by C/EBPB may provide new insights into
the development of potential therapies for RA patients.

Methods

Clinical samples

Tissue samples of synovium were obtained from patients
with RA at the time of total knee arthroplasty (TKA) or
synovectomy. Patients signed informed consent for pro-
viding tissue samples for this study. Subjects included
seven RA patients (mean age, 60.3 + 11.3 years), who ful-
filled the 2010 American College of Rheumatology (ACR)
and the European League Against Rheumatism (EULAR)
diagnostic criteria for RA [15]. All studies were performed
under the approval of the Institutional Ethics Board of
Kyushu University (approval number: 22-99) and in ac-
cordance with the tenets of the Declaration of Helsinki.

Isolation of human fibroblast-like synoviocytes

Human fibroblast-like synoviocytes were isolated from the
synovium of RA patients (RA-FLS). Synovial tissues were
minced into small pieces and digested with 2 mg/ml colla-
genase L (Wako, Osaka, Japan) for 90 minutes at 37°C.
The collected cells were resuspended in DMEM supple-
mented with 10% FBS (Gibco, Gaithersburg, MD, USA).
Adherent cells were used after three to five passages.

As a control for RA-FLS, human fibroblast-like syno-
viocytes (HFLS, Cell Applications, San Diego, California,
USA), which is a cell line derived from normal synovial
tissue, were also cultured in DMEM supplemented with
10% EBS.

Immunofluorescence staining

Specimens were incubated overnight at 4°C with primary
rabbit polyclonal anti-C/EBPf antibodies (C-19; Santa
Cruz Biotechnology, Santa Cruz, CA, USA) diluted 1:100,
mouse monoclonal anti-RANKL antibodies (ab45039;
Abcam, Cambridge, England) diluted 1:50, gout polyclonal
anti-OPG antibodies (sc-8468; Santa Cruz Biotechnology)
diluted 1:100, rabbit polyclonal anti-ATF4 antibodies (sc-
200; Santa Cruz Biotechnology) or normal rabbit IgG
(sc-2027; Santa Cruz Biotechnology) diluted 1:100, re-
spectively. RA-FLS plated on glass coverslips were
transfected with adenovirus expression vectors for C/
EBPB-LAP, —LIP or LacZ control [16] for 24 hours and
then replaced with fresh medium. After 48 hours, im-
munofluorescence staining was performed.
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Treatment of cells with cytokines

Confluent cultures of RA-FLS were subjected to serum-
free medium for 24 hours. This medium was replaced
with fresh medium containing cytokines as follows: IL-1p
(R&D Systems, Minneapolis, MN, USA) at a concentra-
tion of 2 ng/ml, TNF-a (Sigma-Aldrich, St Louis, MO,
USA) at 10 ng/ml, IL-6 (R&D Systems) at 10 ng/ml, and
IL-17 (R&D Systems) at 100 ng/ml. Cells were cultured
for a further 48 hours. Concentrations of cytokines were
determined based on previous literature [17-19].

Western blotting

Nuclear proteins were isolated using Nuclear and Cyto-
plasmic Extraction Reagent (NE-PER; Pierce, Rockford,
IL, USA). Protein samples were transferred onto nitro-
cellulose membranes and were treated overnight at 4°C
with primary antibodies.

RNA extraction and real-time reverse transcription (RT)-PCR
Quantitative RT-PCR was performed with the LightCycler
2.0 system (Roche, Basel, Switzerland) using SYBR Premix
Ex Taq (Takara Bio, Ohtsu, Japan). The primers were as
follows: for C/EBP, 5'-AGTACAAGATCCGGCGCGAG-
3" (sense) and 5 -TGCTTGAACAAGTTCCGCAG-3’
(antisense); for RANKL, 5'-ATGAACTCCTTCTCCAC
AAGCG-3" (sense) and 5 -CTCCTTTCTCAGGGCTG
AG-3’ (antisense; purchased from Takara Bio; oligo name
HA137381F and R); for OPG, 5'-GCTTGAAACATA
GGAGCTG-3" (sense) and 5'-GTTTACTTT GGT
GCCAGG-3’ (antisense); for ATF4, 5'-TCAAACCTCAT
GGGTTCTCC-3" (sense) and 5'-GTGTCATCCAACGT
GGTCAG-3’ (antisense); and for GAPDH, 5'-GGTGAA
GGTCGGAGTCAACGGA-3’ (sense) and 5'-GAGGGAT
CTCGCTCCTGGAAGA-3’ (antisense). Data were nor-
malized to the expression of GAPDH.

Osteoclast formation in a peripheral blood mononuclear
cell (PBMC) and RA-FLS co-culture system

Peripheral blood was obtained from healthy donors. Iso-
lated PBMCs (2 x 10° cells/well) were resuspended in a-
minimum essential medium (a-MEM) containing 10% FBS
and 50 ng/ml macrophage colony-stimulating factor (M-
CSF; R&D Systems) and then seeded in 96-well tissue cul-
ture plates. Three days later, adherent cells were used for
the co-culture system.

Isolated FLS were transfected with adenovirus expres-
sion vectors for 24 hours and then fresh medium contain-
ing 10% FBS was added. After 48 hours, FLS were added
into the 96-well plate with cultured PBMCs in a-MEM
containing 10% FBS and 50 ng/ml M-CSEF. After 72 hours
of co-culture, wells were stained for tartrate-resistant acid
phosphatase (TRAP) (Primary Cell Co, Hokkaido, Japan).
Osteoclasts were identified as TRAP-positive multinucle-
ated cells that contained more than three nuclei.
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Gene knockdown in RA-FLS

Predesigned small interference RNA (siRNA) for C/EBP
(C/EBPP siRNA-1 target sequence, 5'-CCCACGUGUAA
CUGUCAGCtt-3" (sense) and 5'-GCUGACAGUUACAC
GUGGGtt-3" (antisense)) or negative-control siRNA was
purchased (Ambion, Austin, TX, USA). Transfection mixes
were prepared using Lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA). RA-FLS cells were cultured for 24
hours after transfection and then treated with 10 ng/ml IL-
1P for 72 hours.

Human RANKL promoter reporter constructs

Promoter constructs for human RANKL were sub-cloned
into the pGL-4.10 (luc2) vector (Promega, Madison, W1,
USA). The 5 -upstream region (-1591 bp) of the human
RANKL gene was prepared using human genomic DNA
as a template (p-full). There are four putative binding sites
for C/EBPP between —1591 bp and +12 bp. A 2-bp muta-
tion (AA to CC) was made at one site on the p-full con-
struct using the QuickChange site-directed mutagenesis
kit (Stratagene, La Jolla, CA, USA).

Plasmid transfection and luciferase assay

HelLa cells seeded in 12-well plates were co-transfected with
0.5 pg/well RANKL promoter constructs and various con-
centrations of pCMV-LAP, an expression vector of rat C/
EBPB-LAP directed by a cytomegalovirus promoter [20], or
pCl-neo-LIP, an expression vector of rat C/EBPB-LIP [21],
or pCMV6-AC-GFP-tagged ATF4 (OriGene, Rockville, MD,
USA), an expression vector of human ATF4, using Lipofec-
tamine LTX (Invitrogen). pRL-SV40 (Promega) was used as
an internal control. Luciferase activity was then assayed
using the Dual-luciferase Reporter Assay System (Promega).

Chromatin immunoprecipitation (ChIP) assay

RA-FLS cells were transfected with the adenovirus vector C/
EBPB-LIP and incubated for 72 hours. A ChIP assay was per-
formed with a ChIP Assay kit (Upstate Biotechnology, Lake
Placid, NY, USA). The primers used in the PCR for RANKL
promoter sequences were as follows: 5'-GAGGGCGAAAG
GAAGGAAGGGGAG-3’" (sense) and 5'-GGCGTTGGA
GAGCCCTGGCCTCGG -3’ (antisense), which amplified
between -125 bp and +26 bp. For a negative control,
sequence between —-1727 bp and -1487 bp was used. The
PCR products were amplified for 33 cycles.

Immunoprecipitation (IP)

Nuclear proteins were isolated from RA-FLS transfected
with adenovirus vector C/EBPB-LIP for 72 hours. The IP
protocol used Dynabeads Protein A (Invitrogen). Anti-C/
EBPpB antibodies, anti-ATF4 antibodies or normal rabbit
IgG and Dynabeads-complex, respectively, were added to
antigen-containing lysates. Proteins were separated by
SDS-PAGE and immunoblotted using specific antibodies.
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Statistical analyses

For in vitro investigations, nonparametric comparisons
were performed using the Mann-Whitney U-test. P-values
less than 0.05 were considered significant.

Results

Co-localization of C/EBPf and RANKL in the synovium
from RA patients

We initially examined C/EBPP and RANKL expression
by immunofluorescence staining in erosive areas of syn-
ovial tissue from RA patients. C/EBPJ and RANKL were
expressed in RA synovial tissue (Figure 1A). The distri-
bution patterns of C/EBPP and RANKL were similar and
both were strongly expressed in the synovial lining layer
rather than in the sub-lining layer. The co-localization of
C/EBPB and RANKL in RA synovium suggests that C/
EBP is involved in the regulation of RANKL expression.

Expression of C/EBP in RA-FLS after treatment with
pro-inflammatory cytokines

Primary cultures of FLS were established and C/EBP ex-
pression was examined by western blotting. C/EBPB-LAP*
(38 kDa), ~-LAP (36 kDa) and -LIP (20 kDa) were detected
with LIP showing dominant expression. There was a vary-
ing degree of C/EBPJ expression (Figure 1B). The differ-
ence in expression levels of C/EBPJ may depend on the
history of the patients such as degree of inflammation at
the time of sample collection, disease duration, or therap-
ies. Human FLS from normal articular joints lacks C/
EBPp protein expression.

Next, we set out to determine whether pro-inflammatory
cytokines could promote C/EBP protein in FLS. Western
blots revealed that stimulation with IL-1f (2 ng/ml),
TNF-« (10 ng/ml), IL-6 (5 ng/ml), or IL-17 (100 ng/ml)
increased the expression of both LAP and LIP isoforms
in nuclear extracts, whereas the samples without any
treatment did not show expression of C/EBPJ protein
(Figure 1C). Interestingly, the expression of LIP was
higher than that of LAP as shown in experiments of pri-
mary cultured RA-FLS.

Overexpression of C/EBP regulates expression of RANKL
and OPG in RA-FLS

RA-FLS cells were transfected with adenovirus expression
vectors expressing C/EBPB-LAP, —-LIP or LacZ control.
Western blots confirmed the exogenous overexpression of
LAP or LIP in whole protein extracts isolated from trans-
fected cells (Figure 2A). RANKL mRNA expression was
examined by quantitative RT-PCR. The overexpression of
LAP induced RANKL mRNA expression up to 80-fold
compared to the LacZ control in a time-dependent man-
ner. In RA-FLS transfected with the LIP vector, RANKL
mRNA expression was increased approximately 6-fold
(Figure 2A). We also investigated the expression of OPG.

Page 4 of 11

Expression of OPG mRNA was upregulated by LAP in
RA-FLS, whereas LIP significantly reduced OPG mRNA.
Consequently, the RANKL-OPG ratio was highly upregu-
lated in RA-FLS transfected with LIP (Figure 2B).

In addition, we examined whether C/EBPP induced
RANKL expression at the protein level by cell fluorescent
immunostaining in a time-course experiment. The stimu-
lated expression of C/EBPP was observed in the nucleus
of RA-FLS at 24 hours (Figure 2C). RANKL protein was
localized in the cell cytoplasm of FLS over-expressing
LAP or LIP at 72 hours. Similarly, the expression of OPG
was also examined in a different series of experiments.
The expression of OPG was stimulated by C/EBPB-LAP,
but not by C/EBPB-LIP in RA-FLS at 72 hours.

C/EBPB knockdown by siRNA reduced RANKL expression
in RA-FLS

We assessed the effect of C/EBP knockdown on RANKL
mRNA expression using siRNAs targeting C/EBPp mRNA.
Transfected cells were cultured with IL-1p. C/EBPp knock-
down significantly reduced RANKL mRNA expression by
50% after IL-1p treatment in RA-FLS (Figure 2D).

C/EBP induced osteoclast formation through RANKL
expression in RA-FLS

To investigate whether C/EBPB-induced RANKL expres-
sion stimulated osteoclast formation, we co-cultured RA-
FLS, which were transfected with adenovirus vectors
expressing C/EBPB-LAP, -LIP or LacZ control, and
PBMCs, which were isolated and stimulated with M-CSF.
After three days of co-culture, formation of TRAP-positive
multinucleated cells was observed in co-cultures of RA-
FLS over-expressing LAP or LIP, but not in control cells.
Interestingly, more multinucleated cells were induced in
the co-cultures of RA-FLS over-expressing LIP than with
LAP transfected cells (Figure 3A). As a negative control,
we performed monotype cell cultures of RA-FLS over-
expressing C/EBPB, or PBMC over-expressing C/EBPp.
These cells did not form osteoclasts (Figure 3B).

C/EBP functions as an activator of the human RANKL
promoter

We further analyzed the in vitro promoter activity of hu-
man RANKL using HeLa cells. A luciferase reporter gene
construct containing —-1591 bp of the RANKL promoter
was co-transfected with the expression vectors for C/
EBPB-LAP (pCMV-LAP) or C/EBPB-LIP (pCI-neo-LIP)
into HeLa cells. RANKL promoter activity was upregu-
lated in a dose-dependent manner with either LAP or LIP
(Figure 4A). To identify the C/EBPp responsive element in
the RANKL promoter, mutation analysis was performed
using site-directed mutagenesis. We created four single
mutation constructs in the RANKL promoter: single mu-
tation 1 (mut-1), mutation 2 (mut-2), mutation 3 (mut-3),
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Figure 1 Expression of C/EBPB in rheumatoid arthritis (RA) synovium. (A) Expression and distribution of C/EBP and RANKL in RA synovium
by immunofluorescence staining. RANKL: anti-RANKL antibodies; C/EBPB: anti-C/EBPB antibodies; IgG: normal IgG antibodies. The appropriate
species Alexa Fluor 488 and 568-conjugated antibodies were used as secondary antibodies and 4',6-diamidino-2-phenylindole dihydrochloride
(DAPI) was applied as a nuclear stain. Original magnification, 200x. Magnified views (600x) at the synovial lining layer are also shown. (B, C) Western
blotting for C/EBP protein consisting of 38 kD liver-enriched activator protein (LAP*), 36 kD LAP and 20 kD liver-enriched inhibitory protein
(LIP) (B) Experiments with whole extracts of primary cultured passage-1 RA fibroblast-like synoviocytes (RA-FLS) from three patients (RA1, RA2
and RA3) and normal human fibroblast-like synoviocytes (HFLS). A band on 30 kD in RA2 might be a non-specific band. (C) RA-FLS were treated
for 48 hours with IL-1(3 (2 ng/ml), TNF-a (10 ng/ml), IL-6 (5 ng/ml), or IL-17 (100 ng/ml), respectively. Nuclear extracts and cytoplasmic protein
from RA-FLS treated with cytokines were analyzed. Representative data from three independent experiments are shown.

and mutation 4 (mut-4). Luciferase activities of mut-1, did not show difference of activity from full reporter

mut-2, and mut-3 reporter constructs were equally in-
creased with pCMV-LAP, while mut-4 reporter construct
decreased luciferase activity by 30% (Figure 4B). Similarly,
using the C/EBPB-LIP expression vector, mut-2 and mut-3

construct, while mut-4 decreased to 25%. These results
showed that the putative C/EBPB binding site is located
between —59 bp and —52 bp in the RANKL promoter. The
rationale for the increased activity of mut-1 with C/EBPp-
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Figure 2 Gain and loss of function for C/EBP in fibroblast-like synoviocytes from the synovium of rheumatoid arthritis patients
(RA-FLS). (A, B) Effect of C/EBPB overexpression on RANKL and OPG expression in RA-FLS. RA-FLS were transfected with adenovirus expression
vector for C/EBPB-LAP, —LIP or LacZ (negative control) and cultured for 24 hours. Whole cell extracts were assayed by western blotting for
C/EBPB. RANKL and OPG mRNA expression were analyzed by quantitative RT-PCR from three samples. The RANKL-OPG mRNA ratio with the
over-expression of C/EBPB-LAP or -LIP was calculated: *P <0.05 versus control using the Mann-Whitney U-test. (C) Immunofluorescence staining
for RANKL or C/EBP protein in RA-FLS with overexpression of C/EBPB-LAP, —LIP or LacZ control at 24 hours and 72 hours. Immunofluorescense
staining for OPG was also performed in a different series of experiments with the same method at 72 hours. Original magnification, 400x.

(D) Effect of C/EBPB knockdown on RANKL mRNA expression in RA-FLS. RA-FLS transfected with siRNAs were cultured with 10 ng/ml IL-1(3 for 48
hours and the expression of C/EBPB and RANKL mRNA were analyzed by quantitative RT-PCR. The C/EBP@ expression was effectively reduced by
SIRNA C/EBPB transfection as confirmed by western blotting for nuclear extracts. RANKL expression was significantly decreased to less than 50%:

*P <0.05 versus control using the Mann-Whitney U-test.

LIP expression vector has not been discovered yet as we
failed to show the direct binding of C/EBPp on this site.

C/EBPB-LIP and ATF4 synergistically stimulate RANKL
expression

C/EBPB-LIP does not have an activation domain and is
considered to be a dominant negative isoform. However,
our results suggest that LIP is involved in RANKL ex-
pression in RA-FLS and plays a role in induction of
osteoclast formation. We hypothesized that some tran-
scriptional co-factors may cooperate with C/EBPB-LIP
to activate transcription of the RANKL promoter. ATF4
is known to stimulate RANKL expression in osteoblasts
[22]. Additionally, ATF4 has been shown previously to
interact with C/EBPp, which activates various downstream
factors such as osteocalcin and discoidin domain receptor
tyrosine kinase (DDR2) [23]. Thus, we considered that a
similar mechanism might exist for the regulation of
RANKL gene expression. A luciferase assay showed that
ATF4 slightly activated the RANKL promoter (Figure 4C).
RANKL promoter activity was significantly enhanced fol-
lowing co-transfection of LIP and ATF4. Mut-4 abrogated
the responsiveness of the RANKL promoter to the
combination of LIP and ATF4. A ChIP assay was per-
formed using RA-FLS over-expressing LIP and primers

constructed from the human RANKL promoter sequence,
which amplify sites including the C/EBPJ consensus site-
4. This analysis indicated that LIP binds to the RANKL
promoter region containing CS-4 and that ATF4 also
binds in the same region (Figure 4D). IP and immunoblot-
ting demonstrated that ATF4 bound to over-expressed
LIP in RA-FLS (Figure 4E). Collectively, these results sug-
gest that C/EBPB-LIP cooperates with ATF4 in activating
RANKL gene expression.

ATF4 constitutively exists in RA synovium

We then examined the localization of ATF4 in RA syno-
vium. ATF4 was observed in erosive areas of RA synovium
by immunofluorescence staining (Figure 5A). Western blot-
ting showed that ATF4 was expressed in whole cell extracts
of RA-FLS (Figure 5B). Next, we examined whether ATF4
expression was affected by C/EBPP in RA-FLS transfected
with adenovirus expression vectors in time-course experi-
ments. ATF4 mRNA expression was not significantly chan-
ged by C/EBPB (Figure 5C). In addition, we performed
organ cultures using RA synovium tissue. In RA synovium
transfected with adenovirus LacZ control, ATF4 mainly
localized in the cytoplasm of cells. Interestingly, in RA
synovium over-expressing LIP, ATF4 was mainly located
in the nucleus (Figure 5D). The results suggest that ATF4
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Figure 3 Osteoclast formation from peripheral blood mononuclear cells (PBMC) is promoted by the enhanced expression of C/EBPf in
fibroblast-like synoviocytes from the synovium of rheumatoid arthritis patients (RA-FLS). (A) Co-cultures of PBMCs and RA-FLS transfected
with adenovirus vectors expressing C/EBPR-LAP, —LIP or LacZ control for 72 hours. Number of TRAP-positive multinucleated cells recognized in
the co-culture system. Osteoclasts were identified as TRAP-positive multinucleated cells that contained more than three nuclei. Original magnification,
100x. *P <0.05 versus control using the Mann-Whitney U-test. (B) Negative control for the co-culture experiments. PBMC or RA-FLS over-expressing
C/EBPB-LAP, —LIP or LacZ control, respectively, were cultured for 72 hours. No TRAP-positive multinucleated cells were observed.

is translocated from the cytoplasm into the nucleus in the
RA synovium overexpressing C/EBPB-LIP although the
mechanisms are not clear.

Discussion

In this study, we have shown that the transcription fac-
tor C/EBPPB promotes the expression of RANKL in RA
synovium. C/EBPB-induced RANKL in synovium could
induce the formation of osteoclasts. This paper demon-
strates that RA-FLS expressed the C/EBPB-LIP isoform
more dominantly than the C/EBP-LAP isoform in re-
sponse to pro-inflammatory cytokines. C/EBPB-LIP stimu-
lated RANKL expression even though C/EBPB-LIP lacks
the transactivating domain. Recruitment of ATF4, which
is constitutively expressed in the cytoplasm of RA-FLS, to
the RANKL promoter might be the mechanism by which

C/EBPB-LIP activates the promoter. More interestingly,
the effect of C/EBPB-LIP in osteoclast formation is stron-
ger than that of C/EBPB-LAP. The lower expression of
OPG might be involved in this mechanism. These results
suggest that C/EBPB-LIP is one of the key regulators of
inflammation-induced osteoclast formation. As C/EBPp is
also involved in cartilage degradation [19], C/EBPP may
play a crucial role in joint destruction in RA.
Understanding the mechanisms that mediate RANKL
gene expression may aid development of new therapies
for reducing bone resorption in RA. We showed that
LAP and LIP directly bind a site located between —59 bp
and -52 bp of the RANKL promoter. LIP is increased in
the RA synovium and forms a complex with constitu-
tively expressed ATF4. This complex may activate tran-
scription of RANKL by binding to the C/EBPJ binding
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Figure 4 Transactivation of the human RANKL promoter by C/EBPB and ATF4. Schematic of the constructs of the 1603 bp (=1591 bp ~ +12
bp) RANKL promoter, which were subcloned into the pGL-4.10 (luc2) vector. Analysis of the sequence indicated the presence of four C/EBP
binding motifs (CS1-4). (A) The RANKL promoter-luciferase reporter vectors were co-transfected into Hela cells with pCMV-LAP or pCI-LIP. Relative
luciferase activity was assayed 24 hours post-transfection. (B) A 2-bp mutation (AA to CC) was made at one site (mut-1, mut-2, mut-3, mut-4).

The RANKL promoter mutation constructs were co-transfected with pCMV-LAP or pCI-LIP into Hela cells. (C) Cooperative effect of C/EBP@ and
ATF4 on the RANKL promoter. Constructs of the RANKL promoter were co-transfected with expression vectors for C/EBPR-LAP, —LIP, ATF4 or GFP.
Synergistic activation of the promoter was observed with the combination of C/EBP-LIP and ATF4. The effect was diminished when the promoter
harbored a mutation at CS4. Full: 1.6 kb human RANKL promoter; m4: 1.6 kb human RANKL promoter that has a mutation at CS4. (D) A chromatin
immunoprecipitation assay was performed using C/EBP{ or ATF4 specific antibodies or control IgG in RA-FLS after treatment with IL-1( for

48 hours. The area containing the C/EBP consensus binding site 4 (CS4) on the RANKL promoter was amplified by semiquantitative RT-PCR.

(E) Immunoprecipitation was performed using C/EBPR or ATF4 specific antibodies or control in RA-FLS over-expressing C/EBPB-LIP. Western
blots for C/EBPR or ATF4 showed a positive band for either C/EBPR-LIP or ATF4.

motif of the RANKL promoter. ATF4 belongs to the
ATF/cAMP responsive element binding protein (CREB)
family, which contains a basic leucine zipper region, and is
one of the major regulators of osteoblast differentiation
[24]. Moreover, ATF4 regulates RANKL expression [22].

This study showed that ATF4 is expressed in RA syno-
vium and is involved in RANKL expression. Interestingly,
in ex vivo experiments (Figure 5D), ATF4 was mainly
expressed in the cytoplasm of FLS transfected with the
LacZ adenovirus vector (control), while ATF4 tended to
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Figure 5 ATF4 is constitutively expressed in rheumatoid arthritis (RA) synovium, but translocated into the nucleus by C/EBPB-LIP.

(A) Expression and distribution of ATF4 in RA synovium by immunofluorescence staining. Original magnification, 200x. (B) Expression of ATF4
protein levels from fibroblast-like synoviocytes from the synovium of RA patients (RA-FLS) by western blotting. ATF4 protein in Hela cells was
used as a positive control. (C) Expression of ATF4 mRNA of RA-FLS overexpressed C/EBPB by quantitative RT-PCR. Isolated RA-FLS were transfected
with adenovirus expression vectors for C/EBPB-LAP, —LIP or LacZ control. The level of ATF4 mRNA relative to LacZ control is shown. (D) Synovial
tissue from RA patients was cultured in serum-free medium for 24 hours and then replaced with fresh medium containing adenovirus expression
vectors for C/EBPR-LIP or LacZ control for a further 72 hours. Immunostaining for ATF4 was performed. Original magnification, 400 x .

be located in the nucleus of FLS that overexpressed LIP.  with recruitment of STAT3 to the promoter of the C/
ATF4 in cooperation with C/EBPB might be a crucial EBPJ gene, especially in hepatocytes [28]. Therefore, we
regulator of RANKL expression in mediating synovium-  consider that positive feedback loops involving pro-
induced bone resorption in RA. Other transcription fac-  inflammatory cytokines, IL-6, STAT3 and C/EBPp, might
tors, such as NF-xB, AP-1, STAT3 and Runt-related strongly increase RANKL expression in joints with RA.
transcription factor-2 (Runx2), may also interface with  Indeed, STAT3 is essential for stimulation of RANKL and
C/EBPp. Runx2 and C/EBPJ cooperatively promote the its binding element is located at —82 bp of the RANKL
expression of Indian Hedgehog in hypertrophic chon-  promoter, which is next to the C/EBPP responsive
drocytes [25]. STAT3 is induced by IL-1B, TNF-a, and  motifs. C/EBPB-LIP may exist as an anchor to form a
IL-6 and increases the expression of IL-6 and RANKL. complex with other transcription factors mediated by
A positive feedback loop, via IL-6 and STAT3, enhanced inflammatory pathways.

RANKL expression and osteoclastogenesis in inflamma- The C/EBPP isoform ratio can alter in response to
tory arthritis [26]. C/EBPP was previously known as cellular processes [7,29,30]. Of note, the LAP-LIP ratio
nuclear factor for IL-6 expression (NF-IL6) [27]. IL-6 in- is significant for osteoclastogenesis in PBMC through
duced by C/EBPP regulates C/EBPP gene transcription the mTOR pathway [11]. These papers indicate that an
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appropriate LAP-LIP ratio results in higher transcrip-
tional activation of the target gene, which is very im-
portant in proliferation and differentiation. We showed
that LIP protein is more highly expressed in RA-FLS
than LAP. This imbalance of the LAP-LIP ratio caused a
concomitant change in OPG mRNA expression. OPG is
an endogenous inhibitor of RANKL-RANK interaction
and is produced in synovial cells of patients with RA. The
balance between levels of RANKL and OPG (RANKL-
OPG ratio) is correlated with the extent of bone resorp-
tion in RA joints [31]. The current study demonstrates
that LIP drastically increased the RANKL-OPG ratio in
RA-FLS, which subsequently induced significant osteo-
clast formation.

Previous studies showed that C/EBPB-LAP is a key
regulator of cartilage degradation in inflammatory arth-
ritis. C/EBPB-LAP plays a crucial role in cartilage deg-
radation along with proteolytic enzymes such as MMP-
1, MMP-3, MMP-13, and aggrecanase-2 (ADAMTS-5)
in chondrocytes and FLS in inflammatory arthritis
[19,32,33]. The role of LIP is not well investigated in in-
flammatory arthritis. Our unpublished data revealed that
overexpression of LIP in FLS increased MMP-1, MMP-
3, MMP-9, MMP-13, and ADAMTS-4 mRNA similar to
the overexpression of LAP. The data presented here sug-
gest that LAP and LIP coordinate in enhancing expres-
sion of RANKL, MMPs, and ADAMTSs, which may
result in cartilage degradation and bone destruction of
RA joints. C/EBPB may be a common regulator, which
can be stimulated in response to pro-inflammatory cyto-
kines and upregulated in RA synovium. Therefore, select-
ive blockage of C/EBPpP expression may be one potential
strategy for preventing inflammation and bone resorption
in arthritis.

This study has several limitations. First, double stain-
ing for C/EBPB and RANKL did not work well on the
RA synovium sections, although the reason was unclear.
Therefore, we stained C/EBPP and RANKL separately.
However, the distribution of these molecules overlapped
each other, suggesting that C/EBPB and RANKL are co-
expressed. Next, the promoter assays were performed in
HeLa cells. We could not obtain reliable results of the
promoter assay in RA FLS probably because of low
transfection efficiency. However, the purpose of these
experiments was to see the effect of various transcription
factors that were exogenously introduced by expression
vectors. Therefore, the influence of cell characteristics on
the results is considered to be limited. Thirdly, the pro-
moter that harbors a mutation in CS1 showed increased
activity with C/EBPB-LIP (Figure 4B). This result suggests
that LIP act as a repressor in CS1. However, ChIP assay
for CS1 sequences did not show binding of C/EBPP on
CS1 (data not shown). Therefore, the function of CS1 re-
mains unclear at the moment.

Page 10 of 11

Rheumatoid arthritis
IL-18 TNFa IL-6 IL-17

'v synovium

C/EBPB1 t
LAP1 LIPt1
ATF4
MMPs ADAMTSs [RANKL tJOPG |
osteoclastogenesis

Cartilage degeneration Bone destruction

Figure 6 Scheme of the involvement of C/EBPB-LAP and -LIP
for cartilage and bone destruction in rheumatoid arthritis (RA).
Pro-inflammatory cytokines stimulate expression of C/EBPB-LAP and
-LIP in RA synovium. Synovium over-expressing C/EBPB, particularly
LAP, caused cartilage degeneration through MMPs and ADAMTSs.
C/EBPB-LIP promoted osteoclast formation through stimulation of
RANKL and repression of OPG leading to bone destruction. ATF4
cooperates with C/EBPB-LIP to stimulate RANKL expression.

Conclusions

In conclusion, C/EBPp increased RANKL expression in
RA-FLS and induced osteoclastogenesis (Figure 6). Pro-
inflammatory cytokines significantly induced C/EBP-LIP,
which strongly induced osteoclastogenesis by increasing
the RANKL-OPG ratio in RA-FLS. LIP possesses transac-
tivation activity for the RANKL promoter by recruiting
ATF4, which constitutively exists in the cytoplasm of RA-
FLS, to the C/EBP binding site in the RANKL promoter.
In pathological inflammatory arthritis, C/EBPp is a crucial
factor in damaging cartilage and bone in joints.

Abbreviations

o-MEM: a-minimum essential medium; AP-1: activator protein-1; ATF-4: activation
transcription factor 4; bp: base pairs; C/EBP: CCAAT/enhancer binding
protein; ChIP: chromatin immunoprecipitation; DMEM: Dulbecco’s modified
Eagle’'s medium; FBS: fetal bovine serum; FLS: fibroblast-like synoviocytes;
GCT: giant cell tumor; IL: interleukin; JAK-STAT: janus kinase-signal transducer
and activator of transcription; LAP: liver-enriched activator protein; LIP:
liver-enriched inhibitory protein; M-CSF: macrophage colony-stimulating
factor; MMP: matrix metalloproteinase; NF-kB: nuclear factor-kappa-B;

OPG: osteoprotegerin; PBMC: peripheral blood mononuclear cell;

RA: rheumatoid arthritis; RA-FLS: fibroblast-like synoviocytes from the
synovium of RA patients; RANKL: receptor activator of nuclear factor

kappa B ligand; RT: reverse transcription; siRNA: small interference RNA;
TNF: tumor necrosis factor; TAD: N-terminal transactivation domain;

TRAP: tartrate-resistant acid phosphatase.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

HT participated in all the experiments and drafted the manuscript. KO
conceived of the study, and participated in its design and coordination and
helped to draft the manuscript. Kl participated in the western blotting for
RA-FLS and immunofluorescense staining of cells for OPG and helped to
revise the manuscript. TU participated in the knockdown experiment with



Tsushima et al. Arthritis Research & Therapy

SiRNA and the luciferase assays and helped to draft the manuscript. Yl
participated in the design of the study and involved in revising the
manuscript critically for important intellectual content. All authors read
and approved the final manuscript.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (Basic
Research (C), (number 23592218) from the Japan Society for the Promotion
of Science and a Grant for Research on Regenerative Medicine for Clinical
Application (number 26220101) from the Ministry of Health, Labour and
Welfare of Japan. The funders had no role in the study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Received: 15 August 2014 Accepted: 19 January 2015
Published online: 17 February 2015

References

1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature.
2003;423:356-61.

2. Takayanagi H, Oda H, Yamamoto S, Kawaguchi H, Tanaka S, Nishikawa T,
et al. A new mechanism of bone destruction in rheumatoid arthritis:
synovial fibroblasts induce osteoclastogenesis. Biochem Biophys Res
Commun. 1997;240:279-86.

3. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S,
et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/
osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL.

Proc Natl Acad Sci USA. 1998,95:3597-602.

4. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al.
Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation
and activation. Cell. 1998,93:165-76.

5. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, et al.
Isolation of a novel cytokine from human fibroblasts that specifically inhibits
osteoclastogenesis. Biochem Biophys Res Commun. 1997;234:137-42.

6. Cao Z Umek RM, McKnight SL. Regulated expression of three C/EBP
isoforms during adipose conversion of 3T3-L1 cells. Genes Dev.
1991,5:1538-52.

7. Descombes P, Schibler U. A liver-enriched transcriptional activator protein,
LAP, and a transcriptional inhibitory protein, LIP, are translated from the
same mRNA. Cell. 1991:67:569-79.

8. Gutierrez S, Javed A, Tennant DK, van Rees M, Montecino M, Stein GS, et al.
CCAAT/enhancer-binding proteins (C/EBP) beta and delta activate osteocalcin
gene transcription and synergize with Runx2 at the C/EBP element to regulate
bone-specific expression. J Biol Chem. 2002,277:1316-23.

9. Tominaga H, Maeda S, Hayashi M, Takeda S, Akira S, Komiya S, et al. CCAAT/
enhancer-binding protein beta promotes osteoblast differentiation by
enhancing Runx2 activity with ATF4. Mol Biol Cell. 2008;19:5373-86.

10.  Hata K, Nishimura R, Ueda M, lkeda F, Matsubara T, Ichida F, et al. A CCAAT/
enhancer binding protein beta isoform, liver-enriched inhibitory protein,
regulates commitment of osteoblasts and adipocytes. Mol Cell Biol.
2005;25:1971-9.

11. Smink JJ, Begay V, Schoenmaker T, Sterneck E, de Vries TJ, Leutz A.
Transcription factor C/EBPbeta isoform ratio regulates osteoclastogenesis
through MafB. EMBO J. 2009;28:1769-81.

12. Ng PK, Tsui SK, Lau CP, Wong CH, Wong WH, Huang L, et al. CCAAT/
enhancer binding protein beta is up-regulated in giant cell tumor of bone
and regulates RANKL expression. J Cell Biochem. 2010;110:438-46.

13. Pope RM, Lovis R, Mungre S, Perlman H, Koch AE, Haines 3rd GK. C/EBP
beta in rheumatoid arthritis: correlation with inflammation, not disease
specificity. Clin Immunol. 1999,91:271-82.

14.  Nishioka K, Ohshima S, Umeshita-Sasai M, Yamaguchi N, Mima T, Nomura S,
et al. Enhanced expression and DNA binding activity of two CCAAT/enhancer-
binding protein isoforms, C/EBPbeta and C/EBPdelta, in rheumatoid synovium.
Arthritis Rheum. 2000;43:1591-6.

15. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham 3rd CO, et al.
Rheumatoid arthritis classification criteria: an American College of
Rheumatology/European League Against Rheumatism collaborative
initiative. Arthritis Rheum. 2010;,2010:2569-81.

16.  Sakaue H, Konishi M, Ogawa W, Asaki T, Mori T, Yamasaki M, et al.
Requirement of fibroblast growth factor 10 in development of white
adipose tissue. Genes Dev. 2002;16:908-12.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

Page 11 of 11

Tunyogi-Csapo M, Kis-Toth K, Radacs M, Farkas B, Jacobs JJ, Finnegan A,

et al. Cytokine-controlled RANKL and osteoprotegerin expression by
human and mouse synovial fibroblasts: fibroblast-mediated pathologic
bone resorption. Arthritis Rheum. 2008;58:2397-408.

Hashizume M, Hayakawa N, Mihara M. IL-6 trans-signalling directly induces
RANKL on fibroblast-like synovial cells and is involved in RANKL induction
by TNF-alpha and IL-17. Rheumatology (Oxford). 2008;47:1635-40.
Tsushima H, Okazaki K, Hayashida M, Ushijima T, Iwamoto Y. CCAAT/
enhancer binding protein beta regulates expression of matrix
metalloproteinase-3 in arthritis. Ann Rheum Dis. 2012,71:99-107.
Descombes P, Chojkier M, Lichtsteiner S, Falvey E, Schibler U. LAP, a novel
member of the C/EBP gene family, encodes a liver-enriched transcriptional
activator protein. Genes Dev. 1990;4:1541-51.

Zahnow CA, Cardiff RD, Laucirica R, Medina D, Rosen JM. A role for CCAAT/
enhancer binding protein beta-liver-enriched inhibitory protein in mammary
epithelial cell proliferation. Cancer Res. 2001;61:261-9.

Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, et al. Leptin
regulation of bone resorption by the sympathetic nervous system and
CART. Nature. 2005;434:514-20.

Lin KL, Chou CH, Hsieh SC, Hwa SY, Lee MT, Wang FF. Transcriptional
upregulation of DDR2 by ATF4 facilitates osteoblastic differentiation
through p38 MAPK-mediated Runx2 activation. J Bone Miner Res.
2010;25:2489-503.

Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, et al. ATF4 is
a substrate of RSK2 and an essential regulator of osteoblast biology;
implication for Coffin-Lowry Syndrome. Cell. 2004;117:387-98.

Ushijima T, Okazaki K, Tsushima H, Ishihara K, Doi T, lwamoto Y. CCAAT/
enhancer binding protein B regulates expression of indian hedgehog
during chondrocytes differentiation. Plos One. In press 2014.

Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, et al.
IL-Tbeta and TNFalpha-initiated IL-6-STAT3 pathway is critical in mediating
inflammatory cytokines and RANKL expression in inflammatory arthritis. Int
Immunol. 2011,23:701-12.

Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S, Nishio Y, et al. A nuclear
factor for IL-6 expression (NF-IL6) is @ member of a C/EBP family. EMBO J.
1990;9:1897-906.

Niehof M, Streetz K, Rakemann T, Bischoff SC, Manns MP, Horn F, et al.
Interleukin-6-induced tethering of STAT3 to the LAP/C/EBPbeta promoter
suggests a new mechanism of transcriptional regulation by STAT3. J Biol
Chem. 2001;276:9016-27.

Calkhoven CF, Muller C, Leutz A. Translational control of C/EBPalpha and
C/EBPbeta isoform expression. Genes Dev. 2000;14:1920-32.

Ushijima T, Okazaki K, Tsushima H, lwamoto Y. CCAAT/enhancer-binding
protein beta regulates the repression of type Il collagen expression during
the differentiation from proliferative to hypertrophic chondrocytes. J Biol
Chem. 2014;289:2852-63.

Haynes DR, Crotti TN, Loric M, Bain Gl, Atkins GJ, Findlay DM.
Osteoprotegerin and receptor activator of nuclear factor kappaB ligand
(RANKL) regulate osteoclast formation by cells in the human rheumatoid
arthritic joint. Rheumatology (Oxford). 2001;40:623-30.

Raymond L, Eck S, Mollmark J, Hays E, Tomek |, Kantor S, et al. Interleukin-1
beta induction of matrix metalloproteinase-1 transcription in chondrocytes
requires ERK-dependent activation of CCAAT enhancer-binding protein-beta.
J Cell Physiol. 2006,207:683-8.

Hayashida M, Okazaki K, Fukushi J, Sakamoto A, Iwamoto Y. CCAAT/
enhancer binding protein beta mediates expression of matrix metalloproteinase
13 in human articular chondrocytes in inflammatory arthritis. Arthritis Rheum.
2009,60:708-16.



	Abstract
	Introduction
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Clinical samples
	Isolation of human fibroblast-like synoviocytes
	Immunofluorescence staining
	Treatment of cells with cytokines
	Western blotting
	RNA extraction and real-time reverse transcription (RT)-PCR
	Osteoclast formation in a peripheral blood mononuclear cell (PBMC) and RA-FLS co-culture system
	Gene knockdown in RA-FLS
	Human RANKL promoter reporter constructs
	Plasmid transfection and luciferase assay
	Chromatin immunoprecipitation (ChIP) assay
	Immunoprecipitation (IP)
	Statistical analyses

	Results
	Co-localization of C/EBPβ and RANKL in the synovium from RA patients
	Expression of C/EBPβ in RA-FLS after treatment with �pro-inflammatory cytokines
	Overexpression of C/EBPβ regulates expression of RANKL and OPG in RA-FLS
	C/EBPβ knockdown by siRNA reduced RANKL expression in RA-FLS
	C/EBPβ induced osteoclast formation through RANKL expression in RA-FLS
	C/EBPβ functions as an activator of the human RANKL promoter
	C/EBPβ-LIP and ATF4 synergistically stimulate RANKL expression
	ATF4 constitutively exists in RA synovium

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

