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Phase estimation algorithm for the 
multibeam optical metrology
V. V. Zemlyanov1, N. S. Kirsanov1,2,3, M. R. Perelshtein1,3, D. I. Lykov1, O. V. Misochko   1,4, 
M. V. Lebedev1,4, V. M. Vinokur   2,5 ✉ & G. B. Lesovik1

Unitary Fourier transform lies at the core of the multitudinous computational and metrological 
algorithms. Here we show experimentally how the unitary Fourier transform-based phase estimation 
protocol, used namely in quantum metrology, can be translated into the classical linear optical 
framework. The developed setup made of beam splitters, mirrors and phase shifters demonstrates how 
the classical coherence, similarly to the quantum coherence, poses a resource for obtaining information 
about the measurable physical quantities. Our study opens route to the reliable implementation of the 
small-scale unitary algorithms on path-encoded qudits, thus establishing an easily accessible platform 
for unitary computation.

Unitary Fourier transform is a quintessential component for a multitude of quantum computational algorithms1–3 
as it underlies a versatile phase estimation routine4 which is at the core of various quantum metrological proto-
cols5–8. Such phase-sensitive protocols, utilizing coherence for measurements of physical quantities, find use in 
quantum sensors9,10, notably in the qudit-based devices (e.g., based on the superconducting artificial atoms or 
NV centers) for determining magnetic and electric fields11–17. Importantly, since these protocols do not neces-
sarily employ quantum entanglement18, they may be implemented on the systems that manifest wave yet clas-
sical behavior. Therefore, methods borrowed from quantum metrology can be applied to the classical optical 
phase measurements19–23, which, in particular, can be used to measure the position, velocity, and displacement 
of physical objects. Here we report on constructing a complex linear-optic-based device capable to carry out the 
Fourier-based phase estimation algorithm. The metrological potential of the intricate multiple-beam interference 
schemes can be, for instance, seen in the LIGO optical gravitational wave detector where the Heisenberg-limited 
sensitivity is achieved through combining Michelson and Fabry-Pérot interferometers and employing the 
squeezed states of light.

Our approach is predicated upon the fact that any finite-dimensional unitary matrix can be realized by means 
of 50:50 beam splitters, phase shifters and mirrors24. In order to better demonstrate the computational capabilities 
of the linear optics, we adopt the laser as a source of the light having the coherence length by far exceeding the 
size of the setup. This ensures the speed of measurements that is sufficient to support the stability of the inter-
ference pattern during the time necessary for collecting the required statistics. Note that in the single-photon 
regime, the time needed to obtain the same statistics would be much too long to preserve the same quality of 
the interference pattern throughout the entire measurement procedure. Using the multiphoton source does not 
eliminate the unitary nature of the algorithm, which employs for this moderate computation scale only the wave 
aspect of the signal. Switching to the single-photon source for practical computation purposes will translate the 
scheme into the fully quantum one, while maintaining the major characteristics manifested by the present device. 
A general architecture for such a multiport interferometer was first proposed by Reck et al.24 and then further 
reframed by Clements et al.25. The theoretical prospects of the proposed architecture were discussed in refs. 26,27. 
Experimentally, it was shown that linear optical protocols can be implemented on a photonic chip22,28. Yet, the 
practical engineering of such a structure remains highly challenging.

In what follows, we will overview our algorithm and the theoretical background, describe our experimental 
layout, and construct the analytical description of the computational scheme. Finally, we discuss the results and 
outline the future research directions.
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Preliminaries
Algorithm description.  We start with the description of the Fourier phase-estimation algorithm operating 
in the qudit regime. The initial qudit state is taken as a superposition of all computational states:
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∈ … −m d{0, 1, , 1}. The algorithm has to unambiguously determine the value of φ via a single-shot measure-
ment of the qudit state. This is achieved by applying a base-d quantum Fourier transformation with the corre-
sponding unitary operator F̂,
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Accordingly, by measuring the output state outΨ  one determines the value of φ.
The above algorithm appears as a subroutine in a family of conditional sequential sensing protocols with the 

scaling corresponding to the Heisenberg limit, for example, the Kitaev protocol. An essential principle of these 
protocols is the phase encoding: on each step of the procedure, the state of the qudit is tagged with the phase φ (as 
in Eq. (1)) which depends on the unknown constant physical value to be determined and on the sensing period 
of the step t.

Optical scheme.  Now we introduce our optical framework. In this setting the qudit is represented by the 
d coherent beams. Each element of its d-dimensional state vector is a complex amplitude of the corresponding 
beam. Accordingly, the state vector transforms when the light passes through the arrangement of beam splitters, 
phase shifters and mirrors. The task of constructing a particular unitary operator reduces to its decomposition 
into a sequence of the two-dimensional beam splitter transformations and individual phase shifts. In this section 
we devise base-3 (qutrit) scheme to carry out the Fourier transformation
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where χ determines the split ratio ( T cosχ= , χ=R sin ); α and θ are certain phases. The matrix ˆβ
Pj  corre-

sponding to the phase change by β of the j-th beam is defined as
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In order to prepare a beam splitter matrix with an arbitrary desired ratio of reflection to transmission, one has 
to assemble a Mach–Zehnder interferometer using two symmetric 50:50 beam splitters (for convenience, herein-
after we will omit the notation for dependence on α and θ if ( , ) ( /2, 0)α θ π= ):
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with A01
/4πˆ  corresponding to the ideal symmetric beam splitter.

As shown in Ref. 7, the Fourier transformation F̂ can be factorized as follows:
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. It is seen from this expression that the experimental realization of F̂ requires no more than 
4 symmetric 50:50 beam splitters. The optical circuit for F̂ is depicted in Fig. 1.

Experimental setup.  The experimental layout is divided into two modules, as shown in Fig. 2. In the state 
preparation module, the incident laser beam is converted into the qutrit initial state given by Eq. (1). The beam 
splitters BSa and BSb generate three beams each representing a particular basis state j  ( j {0, 1, 2}= ). The 1  and 
2  beams then pass through respectively one (PSφ) and two (PS2φ) phase shifters attached to a swivel platform 
which sets the relative phases 0, φ and 2φ. The value of φ depends on the position of the platform: by rotating the 
platform one alters the length of the optical paths through the phase shifters and, therefore, changes φ without 
affecting the ratio between the relative phases.

The primary module shown in Fig. 2 realizes Eq. (9). However, although Eq. (9) directly translates the Fourier 
transformation into the optical setting, it fails to take account of limitations intrinsic to the real equipment. 

0

1

2

Beam splitter

Phase shifter

Figure 1.  Optical circuit realizing the qutrit quantum Fourier transformation.

Figure 2.  Experimental scheme for the qutrit case of the metrological algorithm.
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Namely, the transmission the phase shifters is associated with the intensity losses. In order to take such losses into 
account we should employ the corresponding operators L
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where t is the absolute value of the transmission coefficient of and individual phase shifter. After the appropriate 
alignments, the equation for the operation realized in the primary module assumes the form
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where tps is the modulus of the transmission coefficient of PS1, …, PS4; χ0 defines the beam splitters’ split ratio 
( χ=T cos 0, R sin 0χ= ); iα  and θi correspond to BSi (see Eq. (5)); iψ  is the phase change due to reflection of 
Mi; xi is the phase change on PSi. In our experiment = .t 0 935ps , = .T 0 445 and = .R 0 555. The notation …[ ]i will 
be used later. For simplicity, the above formula does not explicitly include discrepancies in the optical distances. 
In this respect, we should define xi as a relative phase in which such terms along with the phase shift on PSi are 
taken into account. The output state vector can be written as

φ α θ α θ|Ψ 〉 = | 〉
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where the brackets …{ }sp denote the state prepared in the first module of the scheme; φt  are t2φ are the absolute 
values of the transmission coefficient of PSφ and φPS2  respectively (in our experiment t 0 875= .φ , t 0 8942 = .φ ); 
t 0 837ND = .  is the modulus of the transmission coefficient of neutral-density (ND) filter, used for leveling of the 
intensities; ( , )a aα θ , α θ( , )b b  and ψa correspond respectively to BSa, BSb and Ma.

For certain values of xi which we denote by xi
F and which are given by
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the transformation implemented in the scheme is similar to Eq. (9):
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Here we ignored the phases of the resulting beams incident on the detectors. For the description of the align-
ment procedure see Methods and SI. Figure 3 displays the theoretical plots obtained using Eq. (9) (dashed lines) 
and (13) (solid lines). Both series of plots are almost identical. Note, that taking losses into account in Eq. (13) 
results in smaller secondary peaks.

Results and Discussion
Figure 4 shows the measured intensities as functions of φ. The data on Di are fit by the square of ith element of the 
output vector function given by Eq. (11):

Figure 3.  Theoretical plots of the intensity on the 0  (blue line), 1  (red line) and 2  (green line) detectors as 
functions of φ. Dashed line shows the results obtained by means of Eq. (9), whereas the solid line refers to Eq. (13).
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where ai is the intensity scaling parameter; bi is the intensity bias simulating the interference visibility loss; κ and 
µ are respectively the phase scaling parameter and phase shift independent of i. The fitting is done using the 
method of least squares. Note, that the same unitary transformation can be realized with the different sets of 
parameters. For details on fitting and determining the corresponding errors see SI and Methods. The phases xi 
determined from the fit are given by

x x x x x x x x( , , , ) ( , , , ) (0 28, 0 30, 0 30, 0 28), (15)F F F F
1 2 3 4 1 2 3 4= ± . . . .

where the second term is the error of fitting. Despite the discrepancies (which, as a matter of fact, are small as 
compared to π) described by the second term, our data compare fairly well with the theoretical plots presented in 
Fig. 3. The results show that the interference is controlled to the high degree in spite of the complexity of the opti-
cal scheme. Thus, the described optical platform proves to be capable to perform small scale unitary operations.

Note that our experiment is carried out in a multiphoton rather than in a single-photon regime which typically 
serves as a bedrock for the optical implementations of the quantum algorithms. At the same time, similarly to 
many existing quantum algorithms, the realized Fourier phase-estimation protocol relies on the wave interference 
effects although it does not utilize specifically quantum phenomena. As any lossless quantum computation, the 
Fourier transform is described by the unitary operator4. We have constructed such a unitary operator through 
the specific arrangement of linear optical elements. It should be noted, however, that the discussed multiphoton 
approach does not support the algorithms relying on choosing between quantum alternatives (which takes place, 
for example, in the quantum random number generation procedure).

As shown in ref. 24, the number of beam splitters needed to construct a general N-dimensional unitary matrix 
U  grows as −N N( 1)/2. The practical realization of such a multiport architecture, however, imposes additional 
scalability limitations (see SI for the detailed quantitative analysis):

	 1.	 Restricted phase adjustment precision. The relative cumulative error in the constructed matrix U caused by 
the limited precision Δα with which we control the rotation angle of the optical holders and the width d of 
the phase shifters is of order N(d/λ)(n-1)Δα. Here n is the refractive index of the phase shifters, and λ is 
the light wavelength.

	 2.	 Restricted precision of the wavefronts’ alignment. The misalignment of the wavefronts results in the complex 
interference pictures which can no longer be considered one-dimensional. The visibility of the picture 

deteriorates with the factor ≈ −
αΔ π

λ( )1
N R

8

2 2

, where R is the size of the beam spot.
	 3.	 Phase fluctuations caused by the surface roughness. Assuming that the light acquires the delta-correlated 

random phase δξ due to the surface roughness of the optical elements, we estimate the corresponding 
visibility deterioration factor as ~ δξ−e N 2

.
	 4.	 Intensity losses. The intensity losses on the mirrors and beam splitters used in our experiment are about 1%, 

which is acceptable. By far larger losses (≈10%) are associated with the phase shifters. Nevertheless, the use 
of anti-reflective coating would reduce these losses to 1%. The signal intensity on the detector would be 
. ≈ −N0 99 exp( /100)N .

Based on these estimates, a detailed quantitative analysis devises the prospect for realizing matrices with N  up 
to of order 100 (this upper limit is set mostly by item 4, for other details see SI). This improvement will be built on 
the enhanced experimental and theoretical framework comprising the advanced adjustment precision of optical 
holders, eliminating the elements’ surface roughness, minimizing intensity losses (e.g., via employing the 
anti-reflective coating), and mitigating the drift of phases caused by the mechanical oscillations and instability of 

Figure 4.  The measured intensities on each of the detectors as functions of φ. The solid line shows the 
theoretical fit to the data. Each data point is calculated by averaging the experimental signal on the detector over 
~0.5 s with the fixed angle of the swivel platform; the vertical error bars represent the corresponding signal 
dispersion. The horizontal error bars reflect the precision limit of the swivel platform.

https://doi.org/10.1038/s41598-020-65466-3


6Scientific Reports |         (2020) 10:8715  | https://doi.org/10.1038/s41598-020-65466-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

the optical elements. Note that the latter issue results in the rising deviation between the data and the fit as seen in 
Fig. 3. The corresponding improvement will be achieved by implementing the mechanical feedback phase 
control.

Further refining the concert between the theoretical description and the experimental realization will be 
achieved via including into the scheme the machine learning algorithms capable to compensate the imprecision 
in the alignment of the optical elements. These techniques have already passed the reliability test in the base-4 
(ququart) version of the setup which we have already successfully realized. The obtained results manifest the 
improved accuracy and serve as the evidence of the scheme’s scalability. The detailed description of the ququart 
experiment will be the subject of the forthcoming publication.

There have been a recent progress in demonstrating the advantage of Quantum Fourier transforms (QFT) 
interferometers using both path and polarization modes29 and in realizing interferometric phase estimation algo-
rithm approaching the Heisenberg limit30. Our scheme employs larger number of linear optic elements as com-
pared to above references and utilizing path modes only. Yet we achieved a fairly high level of the correspondence 
between the experiment and theory. By adding the polarization degrees of freedom analogously to29,30, we will 
further increase the dimension of the unitary matrix realized by our scheme.

Methods
Our optical setup includes the following equipment:

Phase shifters.  The phase shifters mainly serve to adjust the relative phases of the beams. In our setup, we use 
pieces of thick glass; the intensity loss on these elements is near 12 5%. .

Beam splitters.  We employ beam splitters with dielectric coating optimized for the 400–700 nm range. The 
nominal split ratio is 50:50. In practice however, this holds only if the incident laser beam is unpolarized. For the 
case of the linearly polarized beam used in our experiment, the split ratio is close to 55:45.

Mirrors.  Dielectric mirrors optimized for the 400–700 nm range.

Laser.  Diode pumped solid state laser, 532 nm, 150 mW; the coherence length of light is 50 m.

Detectors.  Photodiode detectors.

Figure 5.  Four consecutive steps of the alignment procedure. At ith step, the output signal from the 
corresponding sector of the scheme (measured by the detector ADi) is tuned to comply with the theoretical 
value calculated through the breakdown of Eq. (13). The tuning is done through the alignment of PSi.
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7Scientific Reports |         (2020) 10:8715  | https://doi.org/10.1038/s41598-020-65466-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

The use of the photodiodes for the detection is justified by their high measurement speed (as opposed to the 
single-photon detectors), as the main goal of the present work was to test the interference capacity of the complex 
optical setup. However, an additional testing series employing the single-photon detectors has shown practically 
the same results as presented. This fact means that such a replacement does not pose any significant changes in 
the operation of the circuit.

The alignment of the scheme is done in accordance with a step-by-step procedure which lays in tuning the 
signal at the intermediate points of the beams’ paths (see Fig. 5). At each consecutive step, the interference inten-
sity at the given point is matched with the theoretical value obtained through the breakdown of Eq. (13): the ith 
step of the procedure leverages the ith block of operators ([ ]i… ) in the relation. At the first two stages, we receive 
the signal reflected from the phase shifters PS2 and PS3 using the detectors AD1 and AD2, respectively. In turn, the 
last two stages involve the signals from the detectors AD3 and AD4. The alignment is performed via rotating the 
phase shifters (i.e., altering the optical path length) preceding the given point. By doing so, one changes the phases 
xi which in the end should be equal to xi

F given by Eq. (12). For details see SI.
Each point in Fig. 4 is obtained by averaging signals from the detectors generated over ~0.5 s. The oscillations 

and instability of the optical elements are represented by the vertical error bars. To estimate the corresponding 
error, we measured the signal discrepancies appearing over a characteristic period of time (~0.5 s) with the fixed 
angle of the swivel platform (determining the value of φ). The horizontal error bars express the limited precision 
of the swivel platform.

The fitting of the experimental data is done via applying the method of least squares, see more detail in SI. The 
phases x x x xx [ , , , ]T1 2 3 4=  corresponding to the optimal fit turned out to be very close to = x x x xx [ , , , ]F F F F F T

1 2 3 4 . 
The fitting error of xk (k {1, 2, 3, 4}∈ ) is determined by the maximum size of the neighbourhood k

F  of xk
F such 

that for any xk k
F∈   the standard deviation of 

 φp x( , )i  (with = … …x x xx [ , , , , ]F
k
F F T

1 4  ) from p x( , )i
F φ  

( ∈i {0, 1, 2}) does not exceed the experimental error.

Data availability
All data generated or analyzed during this study are included in this published article and its 
Supplementary Information file.
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