Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hexaaquazinc(II) bis[tris(3-carboxy-pyridine-2-carboxylato)zincate(II)]

Mehrnaz Gharagozlou, ${ }^{\text {a }}$ Vratislav Langer ${ }^{\text {b }}$ and Andya Nematic ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Nanotechnology and Nanomaterials, Institute for Color Science and Technology, PO Box 16765-654 Tehran, Iran, ${ }^{\mathbf{b}}$ Environmental Inorganic Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden, and ${ }^{\text {c Iran Compiling Encyclopedia }}$ Foundation, Tajrish, Tehran, Iran
Correspondence e-mail: gharagozlou@icrc.ac.ir
Received 18 October 2010; accepted 15 November 2010
Key indicators: single-crystal X-ray study; $T=153 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$;
R factor $=0.061 ; w R$ factor $=0.158$; data-to-parameter ratio $=10.2$.

The title compound, $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{3}\right]_{2}$, consists of two $\left[\mathrm{Zn}(\mathrm{py}-2,3-\mathrm{dcH})_{3}\right]^{-}$anions (py-2,3-dcH is 3-carboxy-pyridine-2-carboxylate) and one $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation. The anion is a six-coordinate complex located on a threefold rotation axis with a slightly distorted octahedral geometry around Zn^{2+} ion. The cation is also six-coordinate with an octahedral geometry around the Zn atom, located at a $\overline{3}$ axis. Non-covalent interactions such as $\pi-\pi$ stacking [centroidcentroid distance $=3.828(4) \AA$] and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds play important roles in stabilizing the supramolecular structure.

Related literature

For first-row transition metal complexes of pyridine-2,3dicarboxylic acid and various bases and for $\mathrm{Zn}-\mathrm{O}$ distances, see: Aghabozorg, Daneshvar et al. (2007); Aghabozorg, Sadrkhanlou et al. (2007); Goher et al. (1993); Kang et al. (2006); Li et al. (2006); Prior \& Rosseinsky (2001); Swiegers \& Malefetse (2000); Yin \& Liu (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{3}\right]_{2}$
$M_{r}=1300.88$
$Z=1$
Trigonal, $P \overline{3}$
Mo $K \alpha$ radiation
$a=14.470$ (4) \AA
$\mu=1.68 \mathrm{~mm}^{-1}$
$c=6.284$ (2) \AA
$T=153 \mathrm{~K}$
$V=1139.4(6) \AA^{3}$

Data collection

Siemens SMART CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.237, T_{\text {max }}=0.538$
$1.20 \times 0.44 \times 0.42 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.158$
$S=1.00$
1356 reflections
133 parameters
4 restraints
10776 measured reflections 1356 independent reflections 1009 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.154$

Table 1
Selected bond lengths (\AA).

$\mathrm{Zn} 1-\mathrm{O} 1$	$2.083(4)$	$\mathrm{Zn} 2-\mathrm{O} 5$	$2.095(5)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.157(5)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{O}^{\text {iv }}$	$0.83(5)$	$1.72(2)$	$2.547(5)$	$169(7)$
O5-H52 \cdots O4	$0.83(5)$	$2.38(4)$	$3.157(7)$	$156(7)$
O5-H51 $\cdots 4^{v}$	$0.82(6)$	$2.02(3)$	$2.795(6)$	$158(6)$
Symmer				

Symmetry codes: (iv) $y,-x+y,-z$; (v) $-y, x-y, z$.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We acknowledge financial support of this work by the Nation Elite Foundation. We are also grateful to the Institute for Color Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2373).

References

Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. \& Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468-m2469.
Aghabozorg, H., Sadr-khanlou, E., Soleimannejad, J. \& Adams, H. (2007). Acta Cryst. E63, m1769.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.

metal-organic compounds

Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Goher, M. A. S., Youssef, A. A., Zhou, Z.-Y. \& Mak, T. C. W. (1993). Polyhedron, 12, 1871-1878.
Kang, Y., Zhang, J., Li, Z.-J., Cheng, J.-K. \& Yao, Y.-G. (2006). Inorg. Chim. Acta, 359, 2201-2209.

Li, M., Xiang, J., Yuan, L., Wu, S., Chen, S. \& Sun, J. (2006). Cryst. Growth Des. 6, 2036-2040.
Prior, T. J. \& Rosseinsky, M. J. (2001). Chem. Commun. pp. 495-496. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Swiegers, G. F. \& Malefetse, T. J. (2000). Chem. Rev. 100, 3483-3537.
Yin, H. \& Liu, S.-X. (2009). J. Mol. Struct. 918, 165-173.

supplementary materials

Hexaaquazinc(II) bis[tris(3-carboxypyridine-2-carboxylato)zincate(II)]

M. Gharagozlou, V. Langer and A. Nemati

Comment

Metal-organic coordination complexes with one-, two- or three-dimensional structures have attracted attentions for their potential applications as photoelectric materials, catalysis, carriers, sensors, etc. (Prior \& Rosseinsky, 2001; Swiegers \& Malefetse, 2000). From a chemical point of view, L-lysine, a base, contains two amino groups and one carboxylic acid group, these amino groups often participate in hydrogen bonding and as a general base in catalysis. There are previously reported compounds containing pyridine-2,3-dicarboxylic acid, (py-2,3-dcH2), (Goher et al., 1993; Yin \& Liu 2009; Aghabozorg, Daneshvar et al., 2007, Kang et al., 2006, Li et al., 2006).

The title compound consists of two $\left[\mathrm{Zn}(\mathrm{py}-2,3-\mathrm{dcH})_{3}\right]^{-}$anions and one $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ cation. The anion is a six-coordinate complex located at a 3-fold crystallographic axis around Zn 1 atom by three chelating (py-2,3-dcH) ${ }^{-}$ligands via one N and one O atom from carboxylate groups (Fig. 1). The cation is also six-coordinate with an octahedral geometry around Zn 2 atom, located at a 3-bar axis. L-lysine, even it was included during the synthesis, is not part of this crystal structure and we were surprised that the product material contains Zn atoms in both form of cation and anion units. In anionic complex the three $\mathrm{O}-\mathrm{Zn} 1-\mathrm{N}$ angles indicate that there is a distorted octahedral geometry around Zn 1 atoms (for selected bond distances and angles see Table 1), but in cationic unit there are three $\mathrm{O}-\mathrm{Zn} 2-\mathrm{O}$ angles exactly 180° as imposed by the crystallographic symmetry and good octahedral geometry environment around Zn 2 atom (Table 1). The anionic $\mathrm{Zn}-\mathrm{O}$ distances (Table 1) fall within the range of those found in related Zn complexes, 2.031-2.117 \AA (Aghabozorg, Daneshvar et al., 2007; Aghabozorg, Sadr-khanlou et al., 2007; Kang, et al., 2006; Li, et al., 2006;Yin, et al., 2009).

There are three principal hydrogen bonds of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ type (see Table 2) forming a complicated and extensive hydrogen bonding pattern. Graph-set analysis (Bernstein et al., 1995) on the first level is indicating chains with symbols $\mathrm{C}^{2}{ }_{2}(20)$ and $\mathrm{C}_{2}^{2}(16)$ for hydrogen bond with donor atoms O 3 and O 5 , respectively, as well as ring $R^{2}{ }_{2}(20)$ for hydrogen bond with O 3 as a donor. On second level graph-set, most important are ring $R_{2}^{1}(6)$ and chains $\mathrm{C}_{2}^{2}(14)$ and $\mathrm{C}_{2}^{2}(16)$ between hexaaqua zinc cations, as well as rings $R^{3}{ }_{3}(15)$ formed between anions and cations.

There are $\pi-\pi$ stacking interactions between anions proved by short distance $C g 4 \cdots C g 43.828$ (4) $\AA[C g 4$ is centroid of $\mathrm{N} 1 / \mathrm{C} 2-\mathrm{C} 6$ ring. Symmetry code: $1-x, 1-y, 1-z]$. These $\pi-\pi$ stacking interactions and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds have important roles in stabilizing the structure. Crystal packing is depicted in Fig. 2.

Experimental

The title compound was prepared by the reaction of pyridine-2,3-dicarboxylic acid (py-2,3-dcH2) (167 mg, 1 mmol), LLysine (L-Lys) ($164 \mathrm{mg}, 1 \mathrm{mmol}$) and with zinc(II) nitrate hexahydrate $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}(148.7 \mathrm{mg}, 0.5 \mathrm{mmol})$, which were dissolved in distilled water $(30 \mathrm{ml})$ as solvent in 2:2:1 molar ratio. The crystals were obtained by slow evaporation of solvent at room temperature.

supplementary materials

Refinement

Aromatic hydrogen atoms were refined isotropically with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and their positions were constrained to ideal geometry using an appropriate riding model, with $\mathrm{C}-\mathrm{H}=0.95$. The carboxylate and water H atoms were located at the difference Fourier map and refined isotropically with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$, and restrained to ideal geometry with $\mathrm{O}-\mathrm{H}$ distances 0.84 (2) \AA and $\mathrm{H} \cdots \mathrm{H}$ distance 1.34 (2) \AA for the water molecule.

Figures

Fig. 1. The molecular structure of the title compound, with the displacement ellipsoids drawn at 50% probability level.

Fig. 2. A view of along the a axis of the crystal packing in the title compounds. Layers perpendicular to c-directions are connected via hydrogen bonds.

Hexaaquazinc(II) bis[tris(3-carboxypyridine-2-carboxylato)zincate(II)]

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{3}\right]_{2}$	$D_{\mathrm{x}}=1.896 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1300.88$	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Trigonal, $P \overline{3}$	Cell parameters from 1491 reflections
Hall symbol: -P 3	$\theta=2.8-22.5^{\circ}$
$a=14.470(4) \AA$	$\mu=1.68 \mathrm{~mm}^{-1}$
$c=6.284(2) \AA$	$T=153 \mathrm{~K}$
$V=1139.4(6) \AA^{3}$	Block, colourless
$Z=1$	$1.20 \times 0.44 \times 0.42 \mathrm{~mm}$
$F(000)=660$	

Data collection

Siemens SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
graphite
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.237, T_{\text {max }}=0.538$
10776 measured reflections

> 1356 independent reflections
> 1009 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.154$
> $\theta_{\max }=25.1^{\circ}, \theta_{\min }=2.8^{\circ}$
> $h=-17 \rightarrow 17$
> $k=-17 \rightarrow 17$
> $l=-7 \rightarrow 7$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.158$
$S=1.00$
1356 reflections
133 parameters
4 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0993 P)^{2}+0.9035 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.86$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.82$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.035 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Zn1	0.3333	0.6667	$0.29441(18)$	$0.0155(4)$
O1	$0.2510(3)$	$0.5298(3)$	$0.1090(6)$	$0.0193(9)$
O2	$0.1958(3)$	$0.3552(3)$	$0.0954(6)$	$0.0194(10)$

O3	$0.3623(3)$	$0.2972(3)$	$0.1662(6)$	$0.0213(10)$
H3	$0.352(5)$	$0.247(4)$	$0.086(9)$	0.032^{*}
O4	$0.2312(4)$	$0.1865(3)$	$0.3858(7)$	$0.0322(11)$
N1	$0.3482(4)$	$0.5491(4)$	$0.4789(7)$	$0.0161(11)$
C2	$0.3119(4)$	$0.4565(4)$	$0.3746(8)$	$0.0155(12)$
C3	$0.3237(4)$	$0.3729(4)$	$0.4533(9)$	$0.0167(13)$
C4	$0.3667(5)$	$0.3851(5)$	$0.6543(10)$	$0.0216(14)$
H4	0.3725	0.3283	0.7164	0.026^{*}
C5	$0.4011(4)$	$0.4781(5)$	$0.7648(9)$	$0.0200(13)$
H5	0.4294	0.4863	0.9044	0.024^{*}
C6	$0.3935(4)$	$0.5601(5)$	$0.6677(9)$	$0.0183(13)$
H6	0.4219	0.6267	0.7391	0.022^{*}
C7	$0.2490(4)$	$0.4467(4)$	$0.1750(9)$	$0.0168(13)$
C8	$0.2983(5)$	$0.2751(4)$	$0.3263(9)$	$0.0187(13)$
Zn2	0.0000	0.0000	0.0000	$0.0226(5)$
O5	$0.0098(3)$	$0.1271(4)$	$0.1776(7)$	$0.0305(11)$
H51	$-0.038(3)$	$0.109(5)$	$0.267(8)$	0.046^{*}
H52	$0.069(2)$	$0.161(5)$	$0.238(9)$	0.046^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0124(5)$	$0.0124(5)$	$0.0217(7)$	$0.0062(2)$	0.000	0.000
O 1	$0.017(2)$	$0.016(2)$	$0.024(2)$	$0.0074(18)$	$-0.0023(17)$	$-0.0024(17)$
O 2	$0.016(2)$	$0.011(2)$	$0.031(2)$	$0.0056(18)$	$-0.0076(17)$	$-0.0055(17)$
O 3	$0.019(2)$	$0.016(2)$	$0.029(3)$	$0.0096(19)$	$0.0048(19)$	$-0.0047(18)$
O 4	$0.040(3)$	$0.013(2)$	$0.035(3)$	$0.007(2)$	$0.012(2)$	$0.0014(19)$
N 1	$0.012(2)$	$0.012(2)$	$0.020(3)$	$0.003(2)$	$0.0024(19)$	$-0.003(2)$
C 2	$0.013(3)$	$0.013(3)$	$0.018(3)$	$0.005(2)$	$0.001(2)$	$0.002(2)$
C 3	$0.011(3)$	$0.013(3)$	$0.025(3)$	$0.005(2)$	$0.003(2)$	$0.000(2)$
C 4	$0.021(3)$	$0.021(3)$	$0.027(3)$	$0.014(3)$	$0.003(3)$	$0.001(3)$
C 5	$0.015(3)$	$0.027(3)$	$0.021(3)$	$0.013(3)$	$-0.002(2)$	$-0.002(3)$
C 6	$0.014(3)$	$0.025(3)$	$0.018(3)$	$0.012(3)$	$-0.002(2)$	$-0.005(2)$
C 7	$0.009(3)$	$0.022(3)$	$0.022(3)$	$0.010(3)$	$0.003(2)$	$0.000(3)$
C 8	$0.020(3)$	$0.015(3)$	$0.026(3)$	$0.012(3)$	$-0.001(3)$	$0.001(2)$
Zn 2	$0.0185(6)$	$0.0185(6)$	$0.0307(11)$	$0.0092(3)$	0.000	0.000
O 5	$0.018(2)$	$0.029(3)$	$0.038(3)$	$0.008(2)$	$0.001(2)$	$-0.004(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{O} 1$	$2.083(4)$
$\mathrm{Zn} 1-\mathrm{N} 1$	$2.157(5)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.259(7)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.256(7)$
$\mathrm{O} 3-\mathrm{C} 8$	$1.294(7)$
$\mathrm{O} 3-\mathrm{H} 3$	$0.83(5)$
$\mathrm{O} 4-\mathrm{C} 8$	$1.217(7)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.327(7)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.340(7)$

$\mathrm{C} 3-\mathrm{C} 4$	$1.380(8)$
$\mathrm{C} 3-\mathrm{C} 8$	$1.502(8)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.369(8)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{C} 5-\mathrm{C} 6$	$1.386(8)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{Zn} 2-\mathrm{O} 5$	$2.095(5)$
$\mathrm{O} 5-\mathrm{H} 51$	$0.82(5)$

sup-4

C2-C3	1.393 (8)	O5-H52	0.83 (6)
C2-C7	1.514 (8)		
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	91.76 (15)	C5-C4-H4	119.7
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	165.35 (16)	C6-C5-C4	118.2 (5)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	77.62 (16)	C6-C5-H5	120.9
O1 ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{N} 1$	98.55 (15)	C4-C5-H5	120.9
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{N} 1$	93.83 (16)	N1-C6-C5	122.5 (5)
C7-O1-Zn1	116.9 (4)	N1-C6-H6	118.8
C8-O3-H3	117 (5)	C5-C6-H6	118.8
C6-N1-C2	118.7 (5)	O2-C7-O1	125.8 (5)
C6-N1-Zn1	128.6 (4)	O2-C7-C2	116.8 (5)
C2-N1-Zn1	112.5 (3)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 2$	117.3 (5)
N1-C2-C3	122.5 (5)	O4-C8-O3	126.5 (5)
N1-C2-C7	114.5 (5)	O4-C8-C3	121.3 (5)
C3-C2-C7	122.8 (5)	O3-C8-C3	111.9 (5)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	117.2 (5)	O5-Zn2-O5 $5^{\text {ii }}$	180.0
C4-C3-C8	119.2 (5)	$\mathrm{O} 5-\mathrm{Zn} 2-\mathrm{O} 5^{\text {iii }}$	85.74 (18)
C2-C3-C8	123.5 (5)	Zn2-O5-H51	114 (5)
C3-C4-C5	120.6 (5)	$\mathrm{Zn} 2-\mathrm{O} 5-\mathrm{H} 52$	111 (5)
C3-C4-H4	119.7	H51-O5-H52	109 (3)
$\mathrm{O} 1{ }^{\text {iv }}-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 7$	-172.0 (4)	C7-C2-C3-C4	-169.1 (5)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 7$	96.2 (4)	N1-C2-C3-C8	-170.8 (5)
$\mathrm{N} 1{ }^{\text {iv }}-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 7$	-94.3 (4)	C7-C2-C3-C8	14.7 (9)
N1 ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{Ol}-\mathrm{C} 7$	53.1 (8)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-3.3 (9)
N1-Zn1-O1-C7	-2.2 (4)	C8-C3-C4-C5	173.0 (5)
$\mathrm{O} 1{ }^{\text {iv }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 6$	-132.6 (6)	C3-C4-C5-C6	-1.3 (9)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 6$	-176.9 (5)	C2-N1-C6-C5	-2.6 (8)
O1 ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 6$	93.2 (5)	$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	-177.4 (4)
$\mathrm{N} 1{ }^{\text {iv }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 6$	-79.0 (4)	C4-C5-C6-N1	4.5 (9)
N1 ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 6$	15.1 (5)	$\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	173.2 (4)
$\mathrm{Ol}^{\text {iv }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	52.4 (8)	$\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 2$	-3.5 (6)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	8.0 (4)	N1-C2-C7-O2	-166.2 (5)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	-81.9 (4)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{O} 2$	8.7 (8)
N1 ${ }^{\text {iv }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	105.9 (4)	N1-C2-C7-O1	10.8 (7)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	-159.9 (4)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{O} 1$	-174.3 (5)
C6-N1-C2-C3	-2.5 (8)	C4-C3-C8-O4	63.8 (8)
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	173.1 (4)	C2-C3-C8-O4	-120.1 (7)
C6-N1-C2-C7	172.4 (5)	C4-C3-C8-O3	-110.0 (6)
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$	-12.0 (6)	C2-C3-C8-O3	66.1 (7)
N1-C2-C3-C4	5.4 (8)		

Symmetry codes: (i) $-y+1, x-y+1, z$; (ii) $-x,-y,-z$; (iii) $x-y, x,-z$; (iv) $-x+y,-x+1, z$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)
$D-H \cdots A$
D-H
$\mathrm{H} \cdots A$
$D \cdots A$
$D-\mathrm{H} \cdots A$

supplementary materials

$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{v}}$	$0.83(5)$	$1.72(2)$	$2.547(5)$	$169(7)$
$\mathrm{O} 5-\mathrm{H} 52 \cdots \mathrm{O} 4$	$0.83(5)$	$2.38(4)$	$3.157(7)$	$156(7)$
$\mathrm{O} 5-\mathrm{H} 51 \cdots 4^{\mathrm{vi}}$	$0.82(6)$	$2.02(3)$	$2.795(6)$	$158(6)$

Symmetry codes: (v) $y,-x+y,-z$; (vi) $-y, x-y, z$.

Fig. 1

Fig. 2

