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Objective: The decreased stability of atherosclerotic plaques increases the risk

of ischemic stroke. However, the specific characteristics of dysregulated

immune cells and effective diagnostic biomarkers associated with stability in

atherosclerotic plaques are poorly characterized. This research aims to

investigate the role of immune cells and explore diagnostic biomarkers in the

formation of unstable plaques for the sake of gaining new insights into the

underlying molecular mechanisms and providing new perspectives for disease

detection and therapy.

Method: Using the CIBERSORT method, 22 types of immune cells between

stable and unstable carotid atherosclerotic plaques from RNA-sequencing and

microarray data in the public GEO database were quantitated. Differentially

expressed genes (DEGs) were further calculated and were analyzed for

enrichment of GO Biological Process and KEGG pathways. Important cell

types and hub genes were screened using machine learning methods

including least absolute shrinkage and selection operator (LASSO) regression

and random forest. Single-cell RNA sequencing and clinical samples were

further used to validate critical cell types and hub genes. Finally, the DGIdb

database of gene–drug interaction data was utilized to find possible

therapeutic medicines and show how pharmaceuticals, genes, and immune

cells interacted.

Results: A significant difference in immune cell infiltration was observed

between unstable and stable plaques. The proportions of M0, M1, and M2

macrophages were significantly higher and that of CD8+ T cells and NK cells

were significantly lower in unstable plaques than that in stable plaques. With
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respect to DEGs, antigen presentation genes (CD74, B2M, and HLA-DRA),

inflammation-related genes (MMP9, CTSL, and IFI30), and fatty acid-binding

proteins (CD36 and APOE) were elevated in unstable plaques, while the

expression of smooth muscle contraction genes (TAGLN, ACAT2, MYH10,

and MYH11) was decreased in unstable plaques. M1 macrophages had the

highest instability score and contributed to atherosclerotic plaque instability.

CD68, PAM, and IGFBP6 genes were identified as the effective diagnostic

markers of unstable plaques, which were validated by validation datasets and

clinical samples. In addition, insulin, nivolumab, indomethacin, and a-
mangostin were predicted to be potential therapeutic agents for unstable

plaques.

Conclusion: M1 macrophages is an important cause of unstable plaque

formation, and CD68, PAM, and IGFBP6 could be used as diagnostic markers

to identify unstable plaques effectively.
KEYWORDS
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Introduction
Ischemic stroke is one of the major causes of death,

functional limitations, and disabilities worldwide, accounting

for more than 80% of 760,000 stroke cases that occur each year

in the United States (1). Ischemic stroke is commonly caused by

atherosclerosis, a chronic inflammatory disease with a

progressive pathological process involving the accumulation of

intimal plaque in the arterial wall (2). Despite the fact that

atherosclerosis develops slowly and remains silent for decades, it

can pose a life-threatening threat when plaque bursts or

ruptures, leading to ischemic stroke and myocardial infarction

(3). The stability of atherosclerotic plaques is a major factor in

the development of symptomatic stroke and increases the risk of

ischemic stroke and acute coronary syndromes (4). Unstable

plaques are characterized by large necrotic cores, thin fibrous

caps, and speckled calcifications accompanied with increased

inflammation (5). As unstable plaques are more likely to rupture

and cause local thrombosis or embolism, early identification of

unstable plaques and prevention of rupture or erosion are of

clinical importance.

Immune cell infiltration within the vessel wall is closely

associated with the stability and progression of atherosclerosis

(6). Monocytes and macrophages participate in the engulfment

of oxidized low-density lipoprotein. They also play an important

role in inflammatory responses by secreting pro-inflammatory

mediators, matrix-degrading proteases (MMPs), eventually

causing cell death through necrosis or apoptosis. The death of
02
macrophages leads to the release of lipids and tissue factors,

resulting in a pro-thrombotic necrotic core, which is one of the

fundamentals of unstable plaques (7). A significant body of

experimental evidence has demonstrated that T helper (Th) 1

cells play a pro-atherogenic role, while regulatory T (Treg) cells

play an anti-atherogenic role. Treg cells, on the other hand, can

become pro-atherogenic (8). By controlling immune responses

through cell–cell contact, antigen presentation, and cytokine

production, B cells play a part in both systemic and local

immune responses in atherosclerotic arteries (9). However, the

specific characteristics of dysregulated immune cells and

effective diagnostic biomarkers associated with plaque stability

within atherosclerosis lesions are poorly understood.

Many gene expression profiles have been applied to

investigate the immune cell distribution and molecular

diagnostic biomarkers by using high-throughput sequencing

technologies such as microarray, RNA-sequencing (RNA-seq),

and single-cell RNA-sequencing (scRNA-seq). As a powerful

tool for discovering important cell types and diagnostic markers,

machine learning has been widely employed in many studies to

identify relevant biomarker features and in classifying and

validating biomarkers (10, 11) In the present study, we first

estimated the quantity of 22 immune cell using the CIBERSORT

approach and calculated differentially expressed genes (DEGs)

between stable and unstable atherosclerotic carotid artery

tissues, then used machine learning algorithms to filter

essential cell types and hub genes, and finally validated key cell

types and hub genes in clinical samples. This study aims to

explore the key roles of immune cells and key genes in the
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development and progression of unstable plaques for the sake of

providing new perspectives for disease diagnosis and treatment

and the study of immune molecular mechanisms.
Methods

Data collection

The gene expression profiles of carotid atherosclerotic plaques

in the training set and the validation set were downloaded from

GEO database (http://www.ncbi.nlm.nih.gov/geo) and EBI

database (https://www.ebi.ac.uk/services). The training set was

obtained from GSE120521 (12), GSE41571 (13), GSE163154

(14), GSE111782 (15), and GSE43292 (16), and the validation

set was obtained from E-MTAB-2055. Single-cell data of carotid

atherosclerotic plaques were obtained from GSE155514 (17),

including two asymptomatic patients and one symptomatic

patient. The included datasets and the baseline clinical

characteristics of atherosclerosis patients are provided in

Supplementary Table S1.
Clinical sample collection and
histological stability measurement

Carotid atherosclerotic plaques were obtained from patients

who had undergone carotid endarterectomy. Ethical approval

was granted by the local ethics committee of Shanghai Changhai

Hospital (Ethics approval number: CHEC2020-164). All patients

were fully informed of the research and signed the informed

consent forms. Clinical data for included patients could be

obtained in Supplementary Table S2. Histological stability was

defined according to a modified, well-defined, well-validated

American Heart Association (AHA) atherosclerotic scoring

system (18, 19). This scoring system grades the severity of

hemorrhage, thrombus, lipid core, fibrous tissue, chronic

plaque inflammation, chronic cap inflammation, acute

plaque inflammation, acute cap inflammation, foam cells,

neovascularity, and cap rupture to measure the overall stability

of the plaques. The details of score points are shown in

Supplementary Table S3.
Data pre-processing

GSE120521, GSE41571, GSE163154, GSE111782, and

GSE43292 were downloaded using the R package GEOquery.

The probe expression matrix was then converted into a gene

expression matrix using the platform annotation file. The array

data expression matrix was normalized by robust multichip

average (RMA). The average value was obtained if multiple

probes corresponded to one gene. Then, we merged the five
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datasets and used the “ComBat” function in sva package to

remove batch effects among the datasets. To estimate the batch

effect in the merged data, principal component analysis (PCA)

was used to visualize the data.
Immune cell infiltration analysis
by CIBERSORT

Based on the normalized gene expression data from the

disease and control samples, the web tool CIBERSORT (http://

CIBERSORT.stanford.edu/) was used to calculate immune cell

infiltration and explore the disease immune microenvironment.

The 22 immune cell genes (LM22) were used as the reference set.

The number of permutations set was 1,000. A p-value < 0.05 in

the CIBERSORT results was retained. The result of immune cell

infiltration was visualized by ggplots and pheatmap packages

and further subjected to PCA using the R package factoextra and

FactoMineR. The correlation between various immune cells was

calculated by Spearman analysis, and the result of immune cell

infiltration correlation was visualized by using corrplot package.
Differentially expressed genes analysis

The DEG analysis on unstable vs. stable plaques was

performed by using t model.matrix, lmFit, contrasts.fit, eBayes,

and topTable in R package limma. The threshold for DEGs was

|log fold change (FC)| > 1.5 and false discovery rate (FDR) <

0.05. The results were visualized in volcano plots and heatmaps

using the R packages ggplot and pheatmap.
Functional enrichment analysis of DEGs

GO functional enrichment and KEGG enrichment analysis

were performed using the R package ClusterProfiler. The GO

analysis consisted of three main components, including

biological process, cellular component, and molecular

function. To ensure the reliability of the enrichment results,

we used Benjamini–Hochberg FDR to correct the p-value for

multiple hypothesis testing, and FDR < 0.05 indicated that the

enrichment was statistically significant.
Least absolute shrinkage and selection
operator regression and random
forest analysis

A least absolute shrinkage and selection operator (LASSO)

regression prediction model was constructed by using the

“cv.glmnet” function in R package glmnet. The parameters

used in the LASSO analysis were alpha = 1 and nlambda =
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1,000, and lambda.min was chosen as the optimal lambda.

The random forest analysis was performed using the

“RandomForest” function. The minimum error was chosen as

the mtry node value, and the value of the image that tended to be

stable was chosen as the ntree. The top 10 key difference immune

cells and top 30 key DEGs were selected based on the feature

weights mean decrease accuracy (MDA) and mean decrease Gini

(MDG), respectively. The union of differential immune cells and

differential genes obtained by random forest analysis algorithm

and LASSO regression prediction model was used to screen key

differential immune cells and key DEGs.
scRNA-seq data analysis

The Seurat package (20) was used to analyze single-cell data.

Low-quality cells were defined as those with <200 unique

molecular identifiers (UMIs) or mitochondrion-derived UMI

counts of higher than 20%. Gene expression matrixes were

normalized and scaled to acquire linear conversion for the

remaining high-quality cells using the “NormalizeData”

function and the “ScaleData” function. For PCA, the top 2,000

variable genes were selected, and the 30 most important

principal components were employed for cluster analysis. The

batch effects were subsequently eliminated by combining single-

cell data from several samples using the Harmony package’s

“Runharmony” function (21). The clusters were shown using

uniform manifold approximation and projection (UMAP). Cell

types were annotated based on the expression of known markers

such as T cells (CD3D, CD4, and CD8), B cells (CD79A), SMC

(MYH11, TNFRSF11B, and LUM), myeloid cells (FCN1, CD68,

IL1B, and CD163), endothelial cells (VWF and DYSF), mast cells

(TPSB2), and fibroblast (THY1). To assess the stability score and

instability scores of different cell subclusters, we included low

and high expressed genes of unstable plaques, calculated the

scores using the “AddmoduleScore” function, and visualized

with violin plots.
Deconvolution of bulk RNA-seq data
based on scRNA-seq reference data

To establish the proportions of our defined 16 major cell

types in bulk RNA-seq data, BisqueRNA (v1.0.5) (22) and MuSic

(v0.2.0) (23) were used to deconvolute the cellular composition.

Briefly, the expression matrix and cell-type annotations were

extracted in the scRNA-seq data to create a reference signature

matrix. The corrected bulk RNA-seq matrix and reference

signature matrix were performed by deconvolution analysis

using “ReferenceBasedDecomposition” function in Bisque and

“music_prop” in MuSic with default parameters. The estimated

cell fractions were visualized in bar plots.
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The regulatory network of immune-
related genes and immune cells

We calculated Spearman correlations based on key

difference gene expression and key difference immune cells,

selected interactions with absolute values of correlations > 0.1

to construct regulatory networks, and considered statistically

significant pairs of key difference genes and key difference

immune cells. The network was visualized using Cytoscape

software (version 3.8.2). The intersection of the top 30 genes

of the three algorithms was selected as the core gene.
miRNA regulatory gene
network construction

Seven bioinformatics tools were utilized to predict miRNA

target genes, including miRanda (http://www.microrna.org/),

RNA22 (https://cm.jefferson.edu/rna22/), TargetScan (http://

www.targetscan.org/vert_72/), PITA(https://genie.weizmann.ac.

il/pubs/mir07/mir07_data.html, PicTar (https://pictar.mdc-

berl in.de/) ,DIANA-microT(http://diana. imis .athena-

innovation.gr/DianaTools/index.php), and miRmap (https://

mirmap.ezlab.org/). The miRNA target genes were selected

when it had been predicted by at least five tools.
Histology and immunohistochemistry

Fresh carotid atherosclerotic plaque samples were fixed in

4% neutral formaldehyde overnight and embedded in paraffin.

Five-millimeter-thick serial sections were cut from the samples.

In order to retrieve antigen from the slides, they were

deparaffinized and microwave heated in citrate buffer (pH 6.0).

Using 3% hydrogen peroxide, endogenous peroxidase activity

was quenched after gradual cooling. The primary antibodies

were incubated at 4°C overnight after protein blockage with 3%

bovine serum albumin (BSA) for 30 min. Slides were incubated

with secondary antibodies for 60 min at room temperature after

being washed with phosphate-buffered saline (PBS). A

diaminobenzidine-based color development followed by

hematoxylin counterstaining was performed on the slides. The

following primary antibodies were used: CD68 (Abcam, U.K.),

PAM (Abcam, U.K.), and IFGBP6 (Abcam, U.K.).
IHC score analysis

We used the Densito quantmodule in Quant Center 2.1 software

to quantify the immunohistochemistry (IHC) score of the target

region for each spot on each chip separately. IHC score =∑(PI×I)=

(percentage of cells of weak intensity×1)+(percentage of cells of
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moderate intensity×2)+percentage of cells of strong intensity×3. PI

indicates the percentage of positive signal pixel area; I represents the

coloring intensity.
Potential therapeutic drugs for unstable
atherosclerotic plaques

Based on the core genes, The DGIdb database (https://www.

dgidb.org/) of gene–drug interaction data was used to identify

potential therapeutic drugs, and a Sankey diagram was used to

depict the interactions between drugs, genes, and immune cells.
Statistical analysis

Statistical analyses were mainly performed using R (version

4.0.4) and GraphPad Prism (version 8.0.1). Wilcoxon test was

used to estimate the expression differences between two groups.

Correlations between stability score and IHC scores were

calculated using Spearman’s rank correlation.
Results

Immune cell infiltration in unstable and
stable carotid artery plaques

Four microarray raw datasets and one RNA-seq dataset

containing a total of 77 cases of unstable and 67 cases of stable

carotid atherosclerosis were selected as the training dataset for

the study of immune cell infiltration and DEG analysis. The

basic information of the selected datasets is shown in

Supplementary Table S1. Through gene expression profiling

and PCA, we observed that there were baseline batch

differences in the merged datasets (Supplementary Figures

S1A, B). Then, we used “ComBat” algorithm to correct the

batch effect so as to increase the analysis power in the following

analysis. After applying the batch-correction methods, the batch

effects were all eliminated to some extent (Supplementary

Figures S1C, D).

To study immune cell infiltration in unstable and table

carotid artery plaques, the corrected expression matrix

(including five datasets) was subjected to CIBERSORT to

estimate the abundances of infiltrating immune cells in a

mixed cell population (24). The results showed that M2

macrophages, CD8+ T cells, resting mast cells, naive B cells,

Tfh cells, M0 macrophages, and M1 macrophages were the main

immune cells that infiltrated the plaque (Figures 1A, B). The

correlation between immune cells in unstable carotid plaques

was further investigated. In mast cells, NK cells, and CD4+

memory T cells, the proportion of resting population was

negatively correlated with that of the corresponding activated
Frontiers in Immunology 05
population (Figure 1C). The proportion of M1 macrophages was

negatively correlated with that of NK and activated DC cells and

positively correlated with that of gdT and resting DC cells. The

proportion of M2 macrophages was negatively correlated with

that of plasma and monocytes (Figure 1C). Based on the results

of immune cell infiltration, unstable and stable plaques were

clearly separated in the PCA plot, suggesting a significant

difference in immune cell infiltration between unstable and

stable plaques (Figure 1D).

Subsequently, we used the Wilcoxon test to identify

differential immune cells between unstable and stable plaques

in the merged dataset (Figure 2A) and individual datasets

(Supplementary Figure S2). A total of 12 immune cell types

were significantly different in unstable and sable plaques in the

merged dataset (Figure 2A). For example, the proportion of M0,

M1, and M2 macrophages in unstable plaques was significantly

higher than that in stable plaques, and the proportion of CD8+ T

cells and NK cells in unstable plaques was significantly lower

than that in stable plaques (Figure 2A). LASSO regression and

random forest algorithms were further applied to identify

disease critical cell types. Using LASSO regression, we

identified 12 immune cell types associated with plaque stability

(Figure 2B). In the random forest algorithm, top 10 immune

cells were selected as the key immune cell types based on the

feature weights of MDA and MDG (Figures 2C–E). M1

macrophages and M1 macrophages, and resting CD4+ T

memory cells were the top-ranked cell types by the two feature

weights (Figures 2D, E). Based on the union of LASSO and

random forest algorithms, we identified a total of 10 immune cell

types associated with the plaque stability, including CD8+ T cells,

naive B cells, monocytes, plasma cells, Tregs, activated NK cells,

M0 macrophages, M1 macrophages, M2 macrophages, and

activated mast cells.
DEGs in unstable and table carotid
artery plaques

In addition to the immune cell infiltration analysis, we also

explored the gene expression profiles between unstable and table

carotid arterial plaques. The corrected expression matrix

(including five datasets) was performed by PCA, and there was

a significant group-bias clustering for the unstable and stable

carotid arterial plaques, indicating that they had distinct gene

expression profiles (Figure 3A). To identify unstable plaque-

related genes, we performed DEG analysis and identified 1,139

DEGs, of which 600 genes were significantly upregulated and

539 genes were significantly downregulated in unstable plaques

compared to stable plaques (Figure 3B; Supplementary Table 4).

The expression of antigen presentation genes (CD74, B2M, and

HLA-DRA), inflammation-related genes (MMP9, CTSL, and

IFI30), and fatty acid-binding protein (CD36 and APOE) were

elevated in unstable plaques, while the expression of smooth
frontiersin.org
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muscle contraction genes (TAGLN, ACAT2, MYH10, and

MYH11) were decreased in unstable plaques (Figures 3B, C),

suggesting that immune cell infiltration, lipid deposition, and

decreased smooth muscle contractility were important factors

contributing to plaque instability.

GO enrichment analysis revealed that DEGs were mainly

enriched in “neutrophil activation involved in immune

response,” “extracellular matrix organization,” “cell–substrate

junction,” and “collagen binding” (Supplementary Figure S3A).

DEGs in KKGG pathway were mainly enriched in the “focal

adhesion” and “extracellular matrix (ECM)–receptor interaction

pathways” (Supplementary Figure S3B). These findings

suggested that plaque instability was primarily caused by

immunological response, extracellular matrix, and cellular

adhesion molecules. We further utilized LASSO regression and

random forest algorithms to screen key DEGs. Using LASSO

regression analysis, we screened 20 key DEGs (Figure 3D). Using

the random forest algorithm, we selected the top 30 genes as the

key DEGs based on the feature weights MDA and MDG

(Figures 3E, F). Combining the above methods, we screened a

total of 60 key genes associated with plaque instability, including

16 upregulated genes and 44 downregulated genes in unstable

plaques vs. stable plaques (Figures 3G, H).
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Contribution of cell subsets to
atherosclerotic plaque instability

To identify cell subsets that expressed genes associated

with plaque instability, we collected scRNA-seq data of

carotid plaques. Following quality control, we obtained 7,186

high-quality single-cell data, upon which we performed

normalization, unsupervised dimensionality reduction, and

graph-based clustering (Figure 4A). Annotations of cell types

were based on canonical markers, such as ACAT2 for smooth

muscle cell (SMC), CD3D for T cells, CD79A for B cells, and

CD68 for macrophages (Supplementary Figure S4). We

identified a total of 16 cell subsets including SMC subsets,

endothelial cell subsets, myeloid cell subsets, and lymphocyte

subsets. We also identified an intermediate state of SMC, termed

“SEM” cells and fibrochondrocytes (FC) in the plaques based on

the expression of TNFSF11B and LUM (Supplementary Figure

S4). The marker genes for each subpopulation were calculated,

and the results are shown in Figure 4B. We next explored the

expression levels the DEGs across cell subsets. It was found that

the stable plaque-associated genes were mainly expressed in

SMC and SEM cells such as PLN, CNN1, and SLC25A4. In

contrast, unstable plaque-associated genes were mainly
B

C D

A

FIGURE 1

Immune cell infiltration in unstable and stable plaques. (A) Bar plot showing the composition of 22 types of immune cells across samples.
(B) Heatmap of the composition of 22 types of immune cells across samples, colored by normalized relative abundance. (C) Correlation
heatmap of 22 types immune cells in ruptured plaque samples. Blue indicates positive correlation, and red indicates negative correlation.
(D) Principal component analysis plot of immune cells infiltration, colored by dataset (upper) and plaque stability (lower).
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B C

D E

A

FIGURE 2

|Identification of key immune cell types associated with the stability of carotid plaques. (A) Identifying the significantly different infiltrates of
immune cells in unstable and stable plaques by Wilcoxon test. (B) LASSO regression was conducted to analyze the different infiltrates of immune
cells in unstable and stable plaques. (C–E) RandomForest was conducted to analyze the different infiltrates of immune cells in unstable and
stable plaques. Key immune cell types associated with the stability of carotid plaques were identified by mean decrease accuracy (D) and mean
decrease Gini (E). *p < 0.05; **p< 0.01; ***p < 0.001; ****p < 0.0001.
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A

FIGURE 3

Identification of key differentially expressed genes (DEGs) between unstable and stable plaques. (A) PCA plot of gene expression profile, colored
by unstable and stable plaque groups. (B) Volcano map of DEGs in unstable plagues compared to stable plagues. The significantly upregulated
DEGs (FDR < 0.05 and a log2FC>1.5) were labeled in red, and the significantly downregulated DEGs (FDR < 0.05 and a log2FC<−1.5) were
labeled in blue. (C) The expression of top 40 DEGs was visualized by heatmap. (D) LASSO regression was conducted to analyze the DEGs in
unstable plague and stable plague groups. (E, F) RandomForest was conducted to analyze the DEGs in unstable plague and stable plague
groups. (G) Venn diagram was conducted to obtain the intersection of the key DEGs screened by the two methods. (H) Expression of key DEGs
was visualized by heatmap.
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expressed in macrophages including ADAP2 and MAF. We

further constructed instability scores and stability scores based

on the DEGs and found that myeloid cell subsets had high

instability scores, with M1 macrophages having the highest score

(Figure 4C). SMC, SEM, FC, and fibroblasts had high stability

score, with SMC and SEM having the highest score (Figure 4D).

To further validate the immune infiltration of unstable

plaques, we applied MuSiC and Bisque to deconvolute

the cellular composition based on scRNA-seq marker genes.

The results illustrated that the myeloid cells, especial

M1macrophages, and FC cells were also elevated in unstable

plaques. While SMC and SEM were downregulated in unstable

plaques (Figure 4E). These findings indicated that loss of SMC

and infiltration of macrophage subsets, especially M1
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macrophages, were the most important risk factors

contributing to plaque instability.
Immune cells and DEGs synergistically
affect plaque instability

To determine the interaction relationship between DEGs

and differential immune cells, we further calculated their

Spearman correlations (Supplementary Figure S5A). Key

DEGs with an absolute value of correlation >0.1 with immune

cells were selected to construct the network (Supplementary

Figure S5B). In this network, we selected the top 30 genes as core

genes by three algorithms of degree, betweenness, and closeness;
B

C D

E

A

FIGURE 4

Contribution of M1 macrophages to atherosclerotic plaque instability. (A) UMAP projection showing the single-cell atlas of carotid
atherosclerotic plaques. (B) Dot plot displaying the fractions of expressing cells (dot size) and mean expression level in expressing cells (dot
color) of marker genes (rows) across clusters. (C) Dot plot showing the expression of DEGs in different clusters of carotid atherosclerotic
plaques. (D) Violin plots showing the instability score (upper) and stability score (lower) in atherosclerotic plaque clusters. (E) Immune cell
infiltration in unstable and stable plaques estimated by Music and BisqueRNA. *p < 0.05; **p< 0.01; ***p < 0.001; ****p < 0.0001.
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took the intersection of these three algorithms as the final core

genes; and identified a total of 26 core genes (Figure 5A). We

found that some core genes were significantly positively

correlated with immune cells; for instance, IGFBP6, CNN1,

and CD8+ T cells were significantly positively correlated, while

SLC3A2 and CD8+ T cells were significantly negatively

correlated (Figure 5B). CNN1, ENAH, KANG1, and KANG5

were significantly negatively correlated with M1 macrophages

(Figure 5C). All these results suggested that immune cells may

cooperate with differential genes to affect the plaque stability.
Frontiers in Immunology 10
Construction of miRNA regulatory
network of core genes

Based on the data of gene interaction with miRNA from

PITA, RNA22, miRmap, microT, miRanda, PicTar, and

TargetScan databases, we further constructed an miRNA

regulatory network of core genes and found that FERMT2,

PAM, and TMEM47 were regulated by multiple miRNAs. For

example, PAM was regulated by miR-181a, miR-181b, and

miR200, and TMEM47 was regulated by miR495, miR320, and
B

C

D

A

FIGURE 5

Identification of hub genes in the network. (A) Venn plot showing the intersection of genes identified by three algorithms. (B, C) Spearman’s
correlation between hub DEGs CNN1, IGFBP6, and SLC3A2 and CD8+ T cells and M1 macrophages. (D) miRNA–genes network. The interactions
between miRNA and target genes were predicted by seven bioinformatics tools; interactions appeared in at least five tools were visualized here.
Genes are colored in red, while miRNA are colored in blue.
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miR417 (Figure 5D). Knowing that miRNA plays a role in gene

expression regulation and disease progression, the study of

miRNA gene regulation network may help gain new insights

to diseases diagnosis and treatment.
CD68, PAM, and IGFBP6 genes are
effective diagnostic markers of disease

To validate our above results, we further included another

independent dataset E-MTAB-2055 with 24 unstable plaques

and 23 unstable plaques as the validation dataset. A total of 28
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genes were also differentially expressed in the validation dataset.

In order to evaluate the diagnostic value of these genes, the

receiver operating characteristic (ROC) curves were established,

and the area under the ROC curve (AUC) was assessed. Fourteen

genes were identified with high diagnostic efficacy (AUC>0.75)

in both the training and validation sets (Supplementary Figure

S6). Among the core genes that we identified, CD68 were the

marker of myeloid cell subsets. There was a significant

correlation between IGFBP6 and immune cells. PAM was

regulated by more miRNAs. PAM was significantly

downregulated in unstable plaque tissues in dataset E-MTAB-

2055 (Figure 6A). The AUC value in training dataset and
B

C

A

FIGURE 6

Diagnostic effectiveness of the biomarkers. (A) The E-MTAB-2055 dataset was used to validate the differential expression for gene PAM.
Diagnostic effectiveness of the PAM by ROC analysis in the training set and validation dataset. (B, C) Expression levels and diagnostic
effectiveness of IGFBP6 and CD68 in the training set and validation dataset.
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validation dataset was 0.90 and 0.79, respectively (Figure 6A),

indicating that PAM had a good diagnostic performance for

unstable plague. IGFBP6 was also significantly downregulated in

unstable plaque tissues in the validation dataset (Figure 6B).

IGFBP6 was also a good predictor for unstable plagues in both

the training and validation datasets with an AUC value of 0.86

and 0.81, respectively (Figure 6B). In addition, CD68, the

universal macrophage marker, was highly expressed in

unstable plaques. The AUC value for CD68 in the training and

validation dataset was 0.88 and 0.80, respectively (Figure 6C).

These molecules were all good indicators of plaque stability.

To further validate these biomarkers for diagnosis of

unstable plaques, we collected atherosclerotic samples and

scored them based on AHA atherosclerotic scoring system

(19) (Supplementary Table 3). Consistent with sequencing

data, CD68 was highly expressed in unstable plaques and was

downregulated in stable plaques (Figures 7A, B). In contrast,

PAM and IGFBP6 were reduced in unstable plaques and were

increased in stable plaques (Figures 7A, B). CD68 was

significantly positively correlated with stability score, and

PAM and IGFBP6 were negatively correlated with stability

score (Figure 7C). Thus, these three genes could be reliable

diagnostic predictors for unstable plaques.
Potential therapeutic agents for unstable
plaque treatment

Based on key DEGs, we used the DGIdb database (https://

www.dgidb.org/) of gene–drug interaction data to identify

potential therapeutic drugs and demonstrate the interactions

between drugs, genes, and immune cells (Figure 8;

Supplementary Table 5). The 96 potential drugs were

identified to target 10 genes. MDM2, KCNA5, and ANO1 had

relatively abundant targeted drugs and were correlated with

multiple immune cells, serving as the potential therapeutic

targets for unstable plaques. Insulin, nivolumab, indomethacin,

and a-mangostin were predicted to be potential therapeutic

agents for unstable plaques, some of which have been proven to

have clinical benefits for atherosclerosis or ischemic stroke.
Discussion

The rupture of unstable plaque and the subsequent

thrombus formation is one of the main causes of ischemic

strokes. Prevention of cerebrovascular and cardiovascular

adverse events requires identification of the biomarkers of

patients at risk of stroke and viable therapeutic targets for

unstable atherosclerosis plaque. In this study, we estimated the

infiltrating immune cells and explored the potential biomarkers

in unstable plaques in atherosclerosis patients based on

bioinformatics analysis and machine learning, finding that M1
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macrophages were an important cause of unstable plaque

formation, and CD68, PAM, and IGFBP6 were also diagnostic

markers for the early identification of unstable plaques.

Atherosclerosis is characterized by vascular inflammation,

which adds to plaque instability (25). Despite decades of

research, the immunological mechanisms underlying plaque

instability remain largely unknown. Here, we obtained bulk

RNA-seq data and microarray data of carotid atherosclerotic

plaques, applied deconvolution methods, and compared the

differences of immune cells between stable and unstable

plaque samples. The results showed that M2 macrophages, M0

macrophages, M1 macrophages, and CD8+ T cells were the main

immune cells that infiltrated the plaques, which was consistent

with the finding of previous studies that T cells and macrophages

represented the largest population of leukocytes in

atherosclerotic plaques (26). The proportion of M0, M1, and

M2 macrophages in unstable plaques were much higher than

that in stable plaques, but the proportion of CD8+ T cells and

NK cells was significantly lower than that in stable plaques,

suggesting that macrophage infiltration is the main cause of

unstable plaque formation. Monocyte-derived cells are recruited

into the subendothelial region, where they evolve into

mononuclear phagocytes, which consume the accumulated

normal and modified lipoproteins, converting them into

cholesterol-laden “foam cells.” Foam cells, a kind of

macrophages, persist in plaques and contribute to disease

progression. While lipoprotein clearance by macrophages is

likely to be advantageous at the onset of this immune

response, there is no negative feedback of absorption, resulting

in these cells being engorged with lipids. The lipid metabolic

imbalance may result in change in the macrophage phenotype

and jeopardization of important immune activities (7).

Technological advances in characterizing molecular

heterogeneity at the single-cell level enable us to better

understand the biological diversity of cells present in

atherosclerotic plaques (27). Alma Zernecke et al. (28)

comprehensively provided authoritative information of the

immune cell phenotypes in mouse model using scRNA-seq

and mass cytometry. They identified 17 immune subsets

including five macrophage subsets, namely, resident,

inflammatory, Trem2+ foamy, interferon-inducible, and

resembling cavity macrophages. We also investigated the

immune cel l phenotypes in pat ients with carot id

atherosclerosis. In human atherosclerotic plaques, we did not

identified neutrophils and ILC2 cells as those in mouse

atherosclerotic plaques, probably because of species differences.

We found that macrophages are the most abundant immune cell

types and had distinct phenotypes. M1 macrophages, which

were also detected in the mouse model, highly expressed

inflammatory cytokines and had the highest instability score in

atherosclerotic human aortas. This indicated that M1

macrophage cells could be the most important immune cells

responsible for plaque formation and plaque instability.
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FIGURE 7

Potential biomarkers validated by clinical samples. (A, B) Representative images of hematoxylin–eosin and IHC staining for unstable (A) and
stable (B) plaques. (C) Correlation analysis between stability and IHC score in atherosclerotic plaques. The significance was calculated by
Spearman analysis.
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FIGURE 8

Sankey diagram showing the flow among drugs, genes, and immune cells. The drug–gene interaction was obtained from DGIdb (https://www.
dgidb.org).
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Inflammatory macrophages and resident macrophages also

contributed to the plaque instability. Proinflammatory factors,

such as tumor necrosis factor (TNF), interleukin (IL)-1, IL-12,

and IL-23, and chemokines CXCL9, CXCL10, and CXCL11,

might be secreted by M1 macrophages. High quantities of

reactive oxygen species and nitric oxide are produced by these

proinflammatory macrophages, contributing to the development

of the inflammatory response. Cells expressing proinflammatory

factors were preferentially distributed in shoulder regions that

are more susceptible to rupture (29). It is worth noting that

transcriptome may not comprehensively reflect the phenotype of

myeloid cells. Future work could combine the power of cell

surface phenotype (by CITE-Seq or CyTOF) and single-cell

transcriptome analysis to provide a more comprehensive view

of the immune cell infiltrate in atherosclerotic lesions.

We also explored the expression profiles between unstable

and stable plaques. Further analysis indicated that the function

of these upregulated genes in unstable plaques were associated

with immune cells such as CD74, HLA-DRA, CSTB, andMMP9.

While the downregulated genes in unstable plaques were

correlated with SMC contraction genes such as TGALN,

ACTA2, MYH11, and MYH10. GO and KEGG analysis also

revealed that immunological response, extracellular matrix, and

cellular adhesion molecules may be associated with plaque

instability, suggesting that in addition to immune cells,

SMCs and the extracellular matrix also affected plaque

instability. SMCs secrete and deposit ECM proteins and

are therefore thought to prevent the destabilization of

atherosclerosis plaques. However, if SMCs undergo phenotypic

transformation, they may release numerous MMPs that are

capable of digesting ECM proteins (30). Our results also

showed that SMCs had the highest stability score; the score

was downregulated when SMCs turn into FC cells, indicating

that SMC phenotypic transformation also affects plaque stability.

Recently, lineage tracing and single-cell RNA sequencing

profiling have revealed additional SMC plasticity in

atherosclerosis, demonstrating that SMC may generate cells

that look like foam cells, macrophages, mesenchymal stem

cells, and osteochondrogenic cells (31–33). The functional

influence of these phenotypes on plaque formation

and stability and their relevance in vivo are worth

further exploration.

Recent research has found that some inflammatory

cytokines could be biomarkers for plaque vulnerability and

major adverse vascular events, such as MCP-1 protein (34).

CCL2, which encodes MCP-1, is also elevated in unstable

plaques at the transcription level in our study. We further

screened some potential effective diagnostic biomarkers of

unstable plaques by LASSO regression and the randomized

forest algorithm. These genes were further validated in the

validation dataset and 14 unstable plaque-related genes (CD68,

CNN3, FAM114A1, PKBP10, FSTL3, IGFBP6, KRT8, LY6E,

OCCT1, PAM, PRKCDBP, RASL12, TMEM43, and TMEM47)
Frontiers in Immunology 15
were identified as good indicators for the diagnosis of unstable

plaques. Some of these genes were reported to participate in the

pathogenesis of atherosclerosis. For example, CNN3 is an actin

filament-associated regulatory protein expressed in SMCs and

multiple types of non-muscle cells. It can help inhibit actin-

activated myosin ATPase and stabilize the actin cytoskeleton

(35). FAM114A1 was recently identified as a candidate gene

involved in coronary artery disease in a transcriptome−wide

association study (36). FSTL3 was elevated in unstable plaques

and could induce lipid accumulation and inflammatory response

in macrophages through regulating CD36 and LOX-1 expression

(37). Among the core genes that we identified, CD68 were the

marker of myeloid cell subsets. IGFBP6 was significantly

correlated with multiple immune cells; PAM was regulated by

more miRNAs. These three genes were further validated with

clinical samples to evaluate their expression levels and their

diagnostic value.

In our study, machine learning has been used to screen

critical genes and immune cells. Machine learning could provide

better predictive performance than traditional statistical models,

capturing complex interactions between predictors and

nonlinear relationships between predictors and outcomes.

Recent advancement in spatial transcriptomics technology has

enabled us to explore the co-localization of different transcripts

signals within the tissues (38). Several machine learning

algorithms have been proposed to integrate spatial

transcriptomics data and other data (39). Dongqing Sun et al.

(40) presented STRIDE to decompose cell types from spatial

mixtures by leveraging topic profiles trained from single-cell

transcriptomics based on the machine learning method. Not

only do this algorithm map rare cell types to spatial locations,

but it also improves gene and domain localization. Hu et al. (41)

developed the SpaGCN algorithm, which identifies genes with

spatial patterns by integrating gene expression data, spatial

location information, and histology images. Thus, machine

learning technology could also be applied in spatial

transcriptomic and is a highly promising perspective for

atherosclerosis research. Machine learning has also been

emerging as a highly effective method for outcome prediction,

risk stratification biomarker discovery, and personalized

medicine strategies in clinical research (42). For example,

Terrada et al. (43) developed highly accurate diagnostic

methods for the detection of atherosclerosis at a large scale.

Ambale-Venkatesh et al. (44) applied machine learning methods

to deep phenotyped datasets, giving accurate outcome

predictions in cardiovascular event. Hand et al. (45) identified

important features related to quantitative atherosclerosis

characterization and patients at risk of rapid coronary plaque

progression. In future research and medical practice, machine

learning could help patient-centered precision medicine

discovery and the development of the continuum from target

validation to optimization of pharmacotherapy by exploiting

information contained in diverse sources of big datasets such as
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“omics” data and by integrating advanced analytics into the

practice of translational medicine.

We also predicted the potential therapeutic candidates for

the unstable plaque. Some drugs are interesting. Insulin was

predicted to target adrenomedullin (ADM) and treat unstable

plaque in our study. It has previously been observed that insulin

could improve cardiovascular outcomes by reducing plasma

glucose and improving lipid profiles. Insulin also has

p l e io t rop i c e ff e c t s , i nc lud ing an t i - inflammatory ,

antithrombotic, and antioxidant characteristics. Insulin

appears to be able to counteract the pro-oxidant effects of

ambient hyperglycemia and glycemic fluctuation by inhibiting

the activation of oxidative stress. However, insulin activities are

still a point of contention when it comes to the risk of

unfavorable cardiovascular events (46). The indomethacin was

found to produce a 61% reduction in platelet thromboxane,

indicating that it had a partial inhibitory effect on COX-1 in vivo

(47). In a retrospective study, nivolumab treatment was found to

reduce atherosclerotic plaques. Strong PDL1 expression on

dendritic cells within complicated plaques may govern

previously unknown beneficial mechanisms (48). Physiological

levels of dihydrotestosterone were reported to attenuate the

progression of atherosclerosis in rabbits by suppressing intimal

foam cell formation of macrophage partly via the suppression of

LOX-1 expression (49). A meta-analysis reported that the risk of

stroke or transient ischemic attack (TIA) reduced in patients

with paroxysmal or persistent atrial fibrillation who received the

antiarrhythmic agents dronedarone (50). a-Mangostin could

decrease cholesterol and triglycerides and suppress the

progression of atherosclerosis in Apoe−/− mice, possibly

through M2 macrophage polarization (51). But as these drugs

and targets are only predictions at the theoretical level, more

animal experiments and clinical trials are needed to provide

more evidence.

In conclusion, we identifiedM1macrophage as an important

cause of unstable plaque formation and CD68, PAM, and

IGFBP6 as diagnostic markers for early identification of

unstable plaques. These findings may provide a new strong

scientific basis for the diagnosis and treatment of unstable

atherosclerotic plaques.
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SUPPLEMENTARY FIGURE 1

Data processing. (A, B) Box plot and principal component analysis (PCA) of
expression profile across selected dataset before batch effect correction.

(C, D) Box plot and principal component analyses of expression profile
after batch effect correction.

SUPPLEMENTARY FIGURE 2

Immune infiltration in individual dataset. Identifying the significantly

different infiltrates of immune cells in unstable and stable plaques by
wilcoxon test

SUPPLEMENTARY FIGURE 3

GO and KEGG pathway enrichment analysis of the DEGs between

unstable and stable plaques. (A) Dot plot of enriched GO termed for
DEGs. (B) Dot plot of enriched KEGG pathway for DEGs.
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SUPPLEMENTARY FIGURE 4

Cell Annotation by signature markers in scRNA-seq data. Heatmap of the
expression levels of representative marker genes of the atherosclerotic

plaque clusters. The color represents the gene expression levels.

SUPPLEMENTARY FIGURE 5

Correlation of DEGs and key immune cell types. (A) Heatmap shows

Spearman correlation between DEGs and immune cells. (B) Network
between key DEGs and key immune cell types. Red lines represent

positive correlation while blue ones represent negative correlation.

Immune cell types are colored in orange while genes are colored in blue.

SUPPLEMENTARY FIGURE 6

Potential biomarkers for unstable plaques. Diagnostic effectiveness of the

potential biomarkers by ROC analysis in the training set and validation
data set.
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