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Establishing a model for in vitro differentiation of human embryo-
nic stem cells (hESCs) towards the germ cell lineage could be used
to identifymolecularmechanisms behind germ cell differentiation
that may help in understanding human infertility. Here, we evalu-
atewhether a lackof exogenous fibroblast growth factor 2 (FGF2) is
supporting spontaneous differentiation of hESCs cultured on
human foreskin fibroblast (hFF)monolayers towardsgermcell line-
age. Additionally to depriving the hESCs of exogenous FGF2, cells
were stimulated with all-trans retinoic acid (ATRA). To get a more
comprehensive impression on effects of removal of FGF2 and
stimulation with ATRA, we combined the results of three cell
lines for each experimental setting. When combining gene
expression profiles of three cell lines for 96 genes, only 6 genes
showed a significant up-regulation in all cell lines, when no FGF2
was added to the media for 12 weeks. None of these genes are
related to the germ lineage, whereas genes for neuronal cells
(PAX6 and NR6A1) and endothelial cells (FLT-1 and PTF1A) were
up-regulated. To induce and support the differentiation towards
the germ lineage we stimulated hESCs with different concen-
trations of ATRA for 7 and 14 days. We observed no significant
difference in gene expression on RNA level when combining all
cell lines. Whereas, the overall outcome was negative, one of
these cell lines demonstrated an up-regulation of DDX4 on RNA
and protein level after 7 days of ATRA stimulation. In summary,
our data showed that the lack of exogenous FGF2 results in up-
regulation of genes crucial for neuronal and endothelial cell differ-
entiation of hESCs, but not in the up-regulation of genes related to
germ cell differentiation when cultured on hFFs. Additionally, we
demonstrated that ATRA supplementation did not result in a gen-
eral specific direction of hESCs towards the germ lineage.
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Introduction

Infertility is a common problem, affecting 10-15% of all
couples, and in around half of the cases the cause is
related to males [de Kretser 1997]. The cells which give
rise to the male gametes (spermatozoa) are the spermatogo-
nial stem cells (SSCs), which originate from the primordial
germ cells (PGCs) present in the fetus [Stukenborg et al.
2010]. Due to obvious ethical reasons these cells cannot be
studied in vivo and little is known about the early develop-
mental phase, due to technical difficulties in vitro.
Therefore, providing an alternative source of germ cells
would be of interest for studying the early mechanisms of
germ cell differentiation and identifying potential causes of
infertility.
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Human embryonic stem cells (hESCs) are promising
candidates for regenerative medicine due to their pluripo-
tency and capability to self-renew [Bongso et al. 1994;
Thomson et al. 1998]. An important factor for hESC self-
renewal and pluripotency is fibroblast growth factor 2
(FGF2) [Levenstein et al. 2006; Rosler et al. 2004]. When
deprived of FGF2, hESCs lose their pluripotency and differ-
entiate spontaneously [Greber et al. 2011; Laursen et al.
2007; Levenstein et al. 2006]. Although hESC represent
very early stages of differentiation, different hESC lines
have been shown to vary in their characteristics and potential
to differentiate. Most hESC lines have the tendency to differ-
entiate towards either one of the three germ cell layers
[Abeyta et al. 2004; Melichar et al. 2011]. This difference
between hESC lines has furthermore been reported to be
laboratory specific [Newman and Cooper 2010].

Regarding differentiation potential of these cell lines,
hESCs have been shown to differentiate spontaneously to
early germ cells when cultured as embryoid bodies [Clark
et al. 2004] and also in adherent monolayer with mouse
embryonic fibroblasts (mEFs) [Bucay et al. 2009; Laursen
et al. 2007; West et al. 2011]. In terms of the germ lineage,
it has been shown that both mouse embryonic stem cells
(mESCs) and hESCs are capable to differentiate to male
and female germ cells in vitro but with low efficiency
[Clark et al. 2004; Hubner et al. 2003; Panula et al. 2011;
Toyooka et al. 2003]. Many factors have been suggested to
play a role in germ cell development. One of them is all-
trans retinoic acid (ATRA), which is generated by a series
of oxidative reactions from the dietary vitamin A. ATRA is
known to play an important role in spermatogenesis and is
believed to be a growth activator of mouse PGCs in vitro
[Akmal et al. 1997; Koshimizu et al. 1995]. Previous
studies have used various concentrations of ATRA for stimu-
lating germ cell differentiation from both mESCs and hESCs
[Eguizabal et al. 2009; Geijsen et al. 2004; Richards et al.
2010].

In order to optimize a general protocol for early germ cell
differentiation for hESCs we asked whether human foreskin
fibroblasts (hFFs), which have been shown to be supportive
for hESC cultures [Hongisto et al. 2012; Hovatta et al. 2003]
were able to support spontaneous differentiation of different
hESCs to germ cell linage when no additional FGF2 was
added to the culture media. Additionally, we investigated if
hESC lines can be further differentiated in general into
germ cells when stimulated with ATRA.

Results

Three different hESC lines derived in two different labora-
tories were used to evaluate whether hFFs could support
germ cell differentiation in general during long term
culture without supplementing the culture media with
FGF2. These cells were also examined to determine
whether they could be further stimulated with ATRA
towards germ cell lineage and if the stimulation was
dosage dependent.

Gene expression comparison of three undifferentiated hESC
lines before and after spontaneous differentiation in
adherent culture on hFFs
A panel of 96 genes was used to compare the gene signature
for three undifferentiated hESC lines (LRB010, LRB017, and
CLS1). Each cell line showed a unique signature of both stem
cell related genes and genes linked to differentiation.
However, to get an overview about a more general effect of
the absence of exogenous FGF2, we compared the gene
expression of 96 genes pooled for all three hESC lines
(LRB010, LRB017, and CLS1) treated with FGF2 against
untreated. Hereby, we revealed significant differences
between six genes eukaryotic elongation factor 1alpha1
(EEF1A1), fms-related tyrosine kinase 1 (FLT1), paired box-
6 (PAX6), nuclear receptor subfamily 6, group A, member 1
(NR6A1), POU class 5 homeobox 1 (POU5F1), and pancreas
specific transcription factor, 1A (PTF1A) (Fig. 1). All six
genes were up-regulated by the absence of exogenous
FGF2, whereas the other 90 genes showed no significant
difference between treated and untreated cultures (Sup-
plementary Table 1).

Effect of ATRA stimulation on DDX4, DAZL, POU5F1, and
NANOG gene expression in hESCs cultured in the absence of
FGF2
Expression of germ cell marker (DDX4 and DAZL) as well as
markers for pluripotency (POU5F1 and NANOG) was eval-
uated with quantitative polymerase chain reaction (Q-PCR)
for three hESC lines (LRB010, LRB017, and CLS1) after dif-
ferentiating for 7 days with ATRA stimulation, but without
exogenous stimulation of FGF2 for 12 weeks. This revealed
no significant elevated gene expression of any of the tested
genes, when all cell lines were analyzed together.

Whereas, the analysis of these genes showed a quite hom-
ogenous expression pattern for POU5F1 (Fig. 2A), NANOG

Figure 1. Effect of long-term hESC culture without exogenous FGF2.
The pooled analysis revealed a significant up-regulation of six genes
related to endothelial (FLT-1 and PTF1A-p48), neuronal cells (PAX6
and NR6A1), as well as pluripotency (POU5F1) and cancer related
genes when up-regulated (EEF1A1). Relative quantity was calculated
by ddCt method for each sample, from the mean of four replicates.
Error bars: SEM: standard deviation of the mean, Significance: ∗P <
0.05, ∗∗P < 0.01
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Figure 2. Stem (POU5F1, A) and germ cell (DDX4, B) markers pooled (A and B) and single evaluation (a-f) in three hESC lines after stimulation
with ATRA for 7 days in vitro. No up- or down-regulation could be observed by Q-PCR gene expression analysis after supplementation with ATRA
when all cell lines were pooled (A and B). Gene expression of germ cell markers in LRB017 showed a positive response to the supplementation with
ATRAwhen compared to day 0. Day 0 is control hESCs that have been spontaneously differentiated on hFFs for 12 weeks and showed a significant
higher expression of POU5F1 and DDX4 genes compared to hFF alone. Relative quantity was calculated by ddCt method for each sample, from the
mean of three replicates. Error bars: SD: standard deviation, Significance: ∗∗∗P < 0.001
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and DAZL (Supplementary Fig. 1) for each cell line (Fig. 2a-c),
the expression ofDDX4 instead varies between the different cell
lines (Fig. 2B). While CLS1 and LRB010 showed no increased
DDX4 expression levels after stimulation with different ATRA
concentrations (Fig. 2d and f), when compared to the starting
cell population (cultured for 12 weeks without exogenous
FGF2), LRB017 showed a strong response (highest after stimu-
lation with 500 ng) after stimulation for 7 days when compared
to the situation at day 0 (Fig. 2e). Normal hFFs were used as
negative control for all genes. hFFs showed a significant lower
expression of all analyzed genes when compared to the
hESCs at the start of the culture (day 0; Fig. 2).

Focusing the effect of ATRA stimulation on DDX4
expression in LRB017, we further investigated protein levels
of DDX4, POU5F1, and PAX6 in LRB017 after stimulation
with different concentrations of ATRA (Fig. 3). While the
gene expression analysis revealed in the strongest
up-regulation with 500 ng/ml, the strongest protein expression
was observed after 7 days stimulation with 100 ng/ml ATRA in
vitro (Fig. 3). After 14 days of ATRA stimulation, the highest
protein expression was observed after stimulation with 500
ng/ml (Fig. 3). Evaluating POU5F1 expression on protein
level, POU5F1 revealed a strong expression when stimulated
for 7 day or 14 days with ATRA (Fig. 3). However, PAX6
expression was not observed after ATRA stimulation for 7 or
14 days (data not shown).

DDX4 expression in undifferentiated hESCs
In addition to the three cell lines used in the experiments
mentioned above, we detected DDX4 RNA in 8 additional

Figure 3. Western blot analysis of DDX4 and POU5F1 in LRB017
after stimulation with ATRA for 7 and 14 days. ATRA is all-trans
retinoic acid dissolved in DMSO. Positive control for DDX4 is
human adult testis and for POU5F1 is undifferentiated hESCs
(LRB017). All markers analyzed DDX4, POU5F1, and GAPDH
showed bands of expected size (75kDa, 43kDa, and 35kDa,
respectively).

Figure 4. DDX4 expression at RNA level in 8 undifferentiated hESC
lines and 3 hiPSC lines established in 5 different laboratories. DDX4
expression was detected at RNA level in all cell lines analyzed. Relative
quantity was calculated by ddCt method for each sample frommean of
three replicates.

Figure 5. Immunocytochemical evaluation of DDX4 expression in hESC lines. No specific protein expression of DDX4 could be observed in any of
the evaluated stem cells lines (black arrows, H9 (A), HS207 (B), HS360 (C) and HS401 (D)), whereas positive protein expression of DDX4 (white
arrow heads) could be observed in male germ cells in cross-sections of a human testicular biopsy (E). Negative controls for the primary antibody
for all samples are shown as small Figures (A-E). Scale bars: 50µm.
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undifferentiated hESC lines and 3 human induced pluripo-
tent stem cell (hiPSC) lines when defining the status of
DDX4 in those stem cell lines. Our experiment showed
expression of DDX4 RNA in all undifferentiated cell lines
analyzed (in total 14 different undifferentiated pluripotent
cell lines), albeit at varying levels (Fig. 4). DDX4 protein
expression was not detected when analyzing four undifferen-
tiated hESC lines (H9, HS207, HS360, and HS401) by
immunocytochemical analysis (Fig. 5).

Discussion

Spontaneous differentiation of hESCs towards early germ
cell lineage on mEFs has previously been shown [Bucay
et al. 2009; Laursen et al. 2007; West et al. 2008]. In order
to answer the question if hESCs in general could be spon-
taneously differentiated towards the germ cell lineage on
hFFs we cultured three hESCs in absence of exogenous
FGF2 and combined the results of all three cell lines, in
order to reduce cell line specific effects which are well-
known for hESC lines. The expression analysis showed a sig-
nificant up-regulation of 6 out of 96 genes when three hESC
lines (LRB010, LRB017, and CLS1) were cultured without
supplementation of FGF2 for 12 weeks and analyzed
together. A significant up-regulation was observed in
EEF1A1, which is ubiquitously expressed in mammalian
cells and takes part in various important cellular mechan-
isms (e.g., cytoskeletal remodeling) as well as control mech-
anisms of cell cycle, growth, and death [Kobayashi and
Yonehara 2009; Koiwai et al. 2008; Scaggiante et al. 2008]
and the modulation of cell signaling [Yan et al. 2008].
Recently, the over expression of EEF1A1 has been connected
to the formation of cancer (e.g., prostate cancer) and cell
proliferation activities [Scaggiante et al. 2008; Scaggiante
et al. 2011]. When focusing on pluripotent markers,
known to be expressed by stem as well as pluripotent
cancer cells, significant up-regulation of POU5F1 (also
known as OCT4) and NR6A1 (also known as GCNF) has
been observed. NR6A1 is known to repress POU5F1
[Chung et al. 2001] . Therefore the up-regulation of these
genes might be the result of the interaction between both
genes. Additionally, NR6A1 has been mentioned to be
involved in the transition from primitive neuronal stem
cells (pNSC) to definitive neural stem cells (dNSC) [Aka-
matsu et al. 2009]. Consistent with this finding Greber
et al. [2011] demonstrated very recently, that FGF2 inhibits
neuronal induction of hESCs when cultured on the extra-
cellular matrix Matrigel. Focusing on genes expressed in
neuronal cells, our combined analysis of all three different
hESCs showed a significant increase of NR6A1 and PAX6
supporting the published data in a more general way.
Another marker, up-regulated after 12 weeks of culture
without FGF2 was FLT-1 (also known as VEGFR-1), which
is known to play a role in tumor growth in different
organs (e.g., brain, lung, prostate) [Gille et al. 2001;
Shibuya 1995], and is expressed in the vascular endothelium.
Consistent with this we found PTF1A up-regulated. PTF1A
is a basic helix-loop-helix (bHLH) transcription factor

which is activated by vascular endothelium [Krapp et al.
1996; Krapp et al. 1998]. In summary, the combined analysis
of all three hESCs revealed that culturing without exogenous
FGF2 initiates the up-regulation of genes expressed in neur-
onal as well as endothelial cells, which is consistent with pre-
vious studies using single cell lines. However, a spontaneous
up-regulation of markers crucial for germ cell differentiation
as well as a down-regulation of pluripotency markers could
not be demonstrated. Therefore, the lack of exogenous FGF2
does not ensure the absence of the FGF pathway.

Additionally to spontaneous differentiation of hESCs
without exogenous FGF2, we investigated the general effect
of different concentrations of ATRA on the direction
towards germ cell differentiation. ATRA is the active form
of vitamin A and has been shown to be essential for sperma-
togenesis [Thompson et al. 1964; Wolbach and Howe 1925].
Various concentrations of ATRA have been used in previously
published studies for inducing germ cell differentiation from
ESCs but an optimal concentration has not yet been published
[Aflatoonian et al. 2009; Eckhoff and Nau 1990; Geijsen et al.
2004; Nayernia et al. 2006]. When analyzing all three cell lines
together after culture for 7 days with different concentrations
of ATRA, no overall significant up-regulation of the germ cell
specific markers DDX4 or DAZL could be shown for all 3 cell
lines. In addition, no significant effect of down-regulation of
the pluripotent markers POU5F1 and NANOG could be ob-
served. However, it has been shown in previous studies that
hESC gene profiles differ even if they have common features.
To show this effect on the reported germ cell specific marker
DDX4, we checked additionally to our three hESC lines, eight
hESC, as well as three hiPSC lines for their ‘natural’ expression
of DDX4. As shown by other studies [Aflatoonian et al. 2009;
Kee et al. 2006; West et al. 2008; West et al. 2010] and as ex-
pected, all cell lines showed an expression of DDX4 on RNA
level, but not on protein level when analyzed with immuno-
cytochemistry (ICC). Therefore, we checked our three cell
lines on a single cell line basis for the expression of DDX4
on RNA as well as protein after stimulation with ATRA. By
this analysis we could demonstrate that only one cell line
(LRB017) was able to show augmented DDX4 expression of
RNA as well as protein after stimulation with ATRA for 7
and 14 days. DDX4 shows the highest expression after 7 day
stimuli with 100 ng/ml ATRA on protein level while on
RNA level the highest DDX4 expression is observed after
stimuli with 500 ng/ml ATRA. However, when evaluating
POU5F1 expression on protein level, we observed no differ-
ence between the different stimuli with ATRA or the unstimu-
lated LRB017 sample. The difference observed between DDX4
expression of RNA and protein can be explained by post tran-
scriptional regulation and/or variation in mRNA and protein
turnover rates [Cox et al. 2005; Hack 2004]. This result de-
monstrates that hESCs have different tendencies to differen-
tiate into different cell types and that choosing the ‘optimal’
hESC line is crucial for differentiation into specific cell types.

In summary, our study showed for the first time by
analyzing hESCs in a combined way that culturing these
cell lines on hFFs without exogenous supplementation of
FGF2 results in a significant up-regulation of genes specific
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for endothelial as well as neuronal cells, but not for genes
related to germ cell differentiation. We could also demon-
strate that differentiation towards the germ lineage by stimu-
lation with ATRA is cell line dependent and that DDX4 is
already expressed on RNA level in different levels in
hESCs as well as hiPSCs.

Materials and Methods

Ethics
All issues concerning the experimental setups and evaluation
techniques have been approved by the local Scientific Ethical
Committee, Region Midtjylland, Denmark and the Ethics
Board of Karolinska Institutet, Stockholm, Sweden.

Stem cell culture
All hESC lines used in this study were fully characterized and
showed teratoma formation in vivo. The three hESC lines
used for spontaneous differentiation and ATRA stimulation
were: LRB017 (46,XY) and LRB010 (46,XY) both derived at
the University Hospital in Copenhagen, Denmark, and CLS1
(46,XY) derived at Ciconia Private Hospital, Højbjerg,
Denmark. All three cell lines had been derived using immu-
nosurgery. The eight hESC lines used for detection of the
reported germ cell specific marker DDX4 were: HS181 (46,
XX), HS207 (46,XX), HS346 (46,XX), HS360 (46,XY),
HS401 (46,XY) (all derived after isolating the inner cell
mass mechanically at Karolinska Institutet, Karolinska Uni-
versity Hospital Huddinge, Sweden), H9 (46,XX, derived
using immunosurgery at University of Wisconsin, USA),
CLS2 (46,XY, derived using immunosurgery at Ciconia
Private Hospital, Højbjerg, Denmark), and LRB003 (46,XY,
derived using immunosurgery at the University Hospital in
Copenhagen, Denmark). The three hiPSC lines used for
detection of DDX4 were reprogrammed by transfecting
hFFs using a lentiviral system. CHiPSW and CHiPS22b
were transfected with POU5F1, SOX2, LIN28, and
NANOG while CHiPSA was transfected with NANOG,
POU5F1, SOX2, KLF4, and MYC (University of Geneva,
Geneva, Switzerland [Chicha et al. 2011]. The undifferen-
tiated stem cell lines were cultured in two different labora-
tories on inactivated (irradiation 40 Gy) hFFs (CRL-2429;
ATCC, Manassas, VA, USA) at 37°C in 5% CO2. Culture
media used for the undifferentiated hESCs consisted of
Knockout Dulbeccós Modified Eaglés medium (P/N
10829018, Invitrogen, Paisley, UK) supplemented with
20% Knockout serum replacement (P/N 10828028, Invitro-
gen), 0.5% penicillin-streptomycin (P/N 15140122, Invitro-
gen), 2mM L-Glutamine (P/N 25030024, Invitrogen), 1%
non-essential amino acids (P/N 11140035, Invitrogen) and
0.5mM 2-mercaptoethanol (P/N M3148-25ml, Sigma
Aldrich, Stockholm, Sweden). The media used for culturing
undifferentiated stem cells was supplemented with either
4ng/ml (CLS1, CLS2, LRB010, LRB017, LRB003) or 8ng/
ml FGF2 (the remaining cell lines) (P/N PHG-0021, Bio-
source, Camarillo, CA, USA). Undifferentiated stem cells
were passaged enzymatically using either trypsin
(TRYPSIN 0.05%, EDTA, P/N 25300062, Invitrogen) every

9-14 d (CLS1, CLS2, LRB010, LRB017, LRB003) or
TrypLE select (P/N 12563011, Invitrogen) every 5-7 d (the
remaining cell lines). Under these culture conditions all
the hESC lines showed typical morphology of undifferen-
tiated hESCs and expressed the six consensus markers for
undifferentiated hESCs (NANOG, POU5F1, GDF3,
DNMT3B, GABRB3, and TDGF1) [Adewumi et al. 2007].

Differentiation of hESCs
To induce spontaneous differentiation the CLS1, LRB017,
and LRB010 hESC lines were cultured in an adherent
culture on hFFs for 12 w without supplementing the
culture media with FGF2. Cells were passaged every 9-14 d
during the 12 w. After the 12 w of spontaneous differen-
tiation, the cells were stimulated with different concen-
trations of ATRA dissolved in dimethyl sulfoxide
((DMSO) 20, 100, 500, 2500ng/ml, P/N R2625, Sigma-
Aldrich) and cells were harvested for analysis at day 7 and
14 (Supplementary Fig. 2). The media was changed every
other day and the cells were not passaged during the stimu-
lation time.

RNA isolation and cDNA amplification
hESCs were harvested enzymatically using either trypsin
(CLS1, CLS2, LRB010, LRB017, LRB003) or TrypLE select
(remaining cell lines) and stored in RNAprotect Cell
Reagent until time of RNA extraction. The RNAwas isolated
with RNeasy Mini Kit (P/N 74104, Qiagen, Hilden,
Germany) according to manufactures protocol. The cells
were homogenized by using QIAshredder (P/N 79654,
Qiagen, Hilden, Germany). The RNA was treated with
DNase 1 (P/N 048K6043, Sigma Aldrich). RNA concen-
tration and quality was measured by Nanovue plus (GE
Healthcare, Little Chalfont, UK). cDNA amplification was
performed from 100 ng of RNA with High capacity cDNA
RT Kit (P/N 4368814, Applied Biosystems (ABI), Carlsbad,
CA, USA). The cDNA was pre-amplified with TaqMan Pre-
Amplification Pool for human stem cell pluripotency array
according to manufactureŕs protocol (P/N 4405625, ABI)
before loading on TaqMan low density array cards (TLDA,
P/N 438544, ABI).

Gene expression analysis
TaqMan low density array cards (TLDA, P/N438544, ABI),
designed by the International Stem Cell Initiative
[Adewumi et al. 2007], were used for comparative analysis
of CLS1, LRB017, and LRB010 in undifferentiated state as
well as after spontaneous differentiation for 12 w on hFFs.
The analysis was done according to manufactures protocol.
Briefly, the TLDA cards are based on TaqMan chemistry
where gene expression of a panel of 96 genes was analysed
in one run. The TLDA cards are pre-loaded with 96
TaqMan gene expression assays of importance for hESC
pluripotency, self-renewal, and differentiation, together
with six endogenous controls assigned for normalization.
Mean of endogenous controls 18S, ACTB, and GAPDH
was used for normalization. Gene expression was calculated
by taking mean of the quadruplicates of each sample, then
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normalized to mean of 18S, ACTB, and GAPDH of the same
sample (dCt). Undifferentiated CLS1 was used as calibrator
(ddCT) and gene expression was finally presented as relative
quantity (fold change (2−ddCT)). Q-PCR was performed on
7500 Fast Real-time PCR System (ABI) for ATRA stimulated
hESCs as well as the 11 additional lines analyzed for DDX4
expression. TaqMan Gene expression Master Mix (P/N
4369510, ABI) was used for TaqMan Gene expression
assays from ABI: DDX4 (VASA, Assay ID Hs00251859_m1),
DAZL (Assay ID Hs00154706_m1), and 18S (Assay ID
Hs99999901_s1) was used for normalization. SYBR Green
PCR Master Mix (P/N 4309155, ABI) was used for analysis
with SYBR Green primers: NANOG fw 3′-CAA AGG CAA
ACA ACC CAC TT–5′ rev 3′-CTG GAT GTT CTG GGT
CTG G0T–5′. POU5F1 fw 3′-GAC AAC AAT GAA AAT
CTT CAG GAG A–5′ rev 3′-TTC TGG CGC CGG TTA
CAG AAC CA – 5′. GAPDH fw 3′- GAA GGT GAA GGT
CGG AGT CAA C–5′ rev 3′- CAG AGT TAA AAG CAG
CCC TGG T– 5′. Gene expression was calculated by taking
mean of the triplicates ran for each sample, and then normal-
ized to mean of 18S or GAPDH (depending on chemistry
used) of the same sample (dCt). Cells from Day 0 of ATRA
differentiation was used as calibrator of each cell line
(ddCT) and gene expression was finally presented as relative
quantity (fold change (2−ddCT)).

Protein isolation and quantification
The LRB017 hESCs were harvested enzymatically with
trypsin and lysed in lysis buffer (P/N 9803, Cell Signalling
Technology, Danvers, MA, USA) and supplemented
with 1mM phenylmethanesulphonylfluoride (PMSF), 5mM
sodium fluoride (NaF), and 15mM Complete Mini Protease
Inhibitor (P/N 11836153001, Roche Diagnostics, Indianapo-
lis, IN, USA). The samples were incubated on ice for 30 min
followed by 10 min centrifugation at 20,000g at 4°C. The
lysate was harvested and protein concentration measured by
Bio-Rad protein assay (Bradford method, P/N 500-0006,
Bio-Rad).

Western blot analysis
14 µg of each protein lysate were mixed with sample
buffer (62.5 mM Tris base, 2% sodium dodecyl sulphate
(SDS) and 10% glycerol, pH 6.9), 0.5% dithiothreitol
(DTT), and a small quantity of bromophenol blue.
The samples were heated for 5 min at 95°C. The pro-
teins were separated on Criterion TGX Precast gel, 4-
15% (P/N 567-1084, Bio-Rad, Hercules, CA, USA)
with 1 × running buffer (P/N SC-24949, Bio-Rad) for
1 h at 140V and then electro-transferred to a Amer-
shamTM Hybond-P membrane (P/N RPN303F, GE
Healthcare) at 130mA in transfer buffer (P/N 161-
0734, Bio-Rad) for 1 h. The membranes were blocked
with AmershamTM ECL Prime Blocking Agent (50 g/L,
P/N RPN418, GE Healthcare) in TBS (P/N SC-24951,
Santa Cruz Biotechnology, Santa Cruz, CA, USA) with
0.1% Tween 20 for 1 h at room temperature (RT).
The membranes were incubated with primary antibodies
overnight and secondary antibodies for 2 h. Primary

antibodies used for the western blotting were: goat
polyclonal anti-GAPDH (diluted 1:200 (1 µg/ml), P/N
SC-20357, Santa Cruz Biotechnology), rabbit polyclonal
anti-DDX4 (diluted 1:1000 (1µg/ml), P/N ab13840,
AbCam, Cambridge, UK), rabbit polyclonal anti-POU5F1
(diluted 1:400, P/N ab19857 Abcam) and rabbit polyclonal
anti-PAX-6 (diluted 1:500 (0.4 µg/ml), P/N SC-11357,
Santa Cruz Biotechnology). Secondary antibodies used for
the western blotting were: horseradish peroxidase-conjugated
(HRP) donkey anti-goat (diluted 1:5000 (0.08 µg/ml), P/N
SC-2033, Santa Cruz Biotechnology) and HRP donkey
anti-rabbit (diluted 1:5000 (0.08 µg/ml), P/N NA934V,
GE Healthcare). The antibodies were all diluted in the
blocking solution. As positive control for DDX4, POU5F1,
and PAX-6, human protein lysates from adult testicular
biopsies, hESCs (LRB017) and human fetal brain (P/N
P1244035, BioChain, Hayward, CA, USA) were used. The
membranes were developed with AmershamTM ECL Prime
Western Blotting Detection reagent (P/N RPN2232, GE
Healthcare).

Immunocytochemistry (ICC)
hESCs (HS207, HS360, HS401, and H9) were harvested from
culture media and fixed in 4% paraformaldehyde (PFA)
overnight at 4°C and routinely embedded in paraffin (P/N
P3808, Sigma Aldrich) after dehydration via gradually
increasing ethanol concentration. Afterwards, samples were
cut into 4 µm sections. 4% PFA fixed and paraffin embedded
human testicular tissue was used as positive control for
DDX4 detection of germ cells. The samples were rehydrated
using xylene and gradually decreasing EtOH series. Briefly,
the samples were blocked with 5% goat serum (P/N S-
1000, Vector Laboratories, Peterborough, UK) in 0.1%
bovine serum albumin (BSA) in phosphate buffered saline
(PBS) for 20 min. Primary antibody, rabbit polyclonal
anti-DDX4 (P/N ab13840, AbCam) was diluted (1:100
(10 µg/ml)) in 0.1% BSA in PBS and incubated overnight
at 4°C. For the negative control for the primary antibody,
samples were incubated with rabbit polyclonal IgGs (P/N
ab27478, AbCam) with the same concentration of the
primary antibody overnight at 4°C. The samples were
washed three times for 5 min in PBS and afterwards directly
incubated with the secondary antibody, biotinylated goat
anti-rabbit IgG (ready to use, P/N ab64256, AbCam) for 1
h at 37°C. Samples were washed three times for 5 min in
PBS and incubated with ABC reagent from Vectastain
ABC-kit (P/N PK6100, Vector Laboratories) for 30 min at
37°C. The samples were washed three times and stained
with DAB for 45 s at room temperature, washed again
twice for 2 min in H2O, incubated for 7 s in haemalaun
(P/N 1.09249.1000 Merck, Germany) and rinsed for 5 min
in tap water. Samples were dehydrated in a gradually increas-
ing EtOH series and xylene and mounted with Entellan® new
(P/N 1.07961.0100 Merck) and analyzed under the micro-
scope (Eclipse E800; Nikon; Japan) and pictures were
taken with a 12.5 million-pixel cooled digital color camera
system (Olympus DP70, Japan).
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Statistical evaluation
The gene expression levels were calculated as mean ± stan-
dard deviation (SD) or standard deviation of the mean
(SEM) as stated in the figure legends. Student test (Sigma-
Plot 11.0; Systat Software Inc. CA, USA) was used to
compare the difference between two experimental settings.
A difference was considered statistically significant when
the p value was ≤ 0.05.
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