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Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-derived reactive oxygen
species (ROS) promote chronic liver inflammation and remodeling that can drive hepatocellular
carcinoma development. The role of NOX expression in hepatocellular carcinoma (HCC) has been
partially investigated; however, the clinical relevance of collective or individual NOX family member
expression for HCC survival remains unclear. Here, we obtained NOX mRNA expression data for 377

: HCCsamples and 21 normal liver controls from the TCGA data portal and performed Kaplan-Meier

. survival, gene ontology functional enrichment, and gene set enrichment analyses. Although most

. NOX genes exhibited little change, some were significantly induced in HCC compared to that in normal
controls. In addition, HCC survival analyses indicated better overall survival in patients with high NOX4
and DUOX1 expression, whereas patients with high NOX1/2/5 expression showed poor prognoses.

: Gene-neighbour and gene set enrichment analyses revealed that NOX1/2/5 were strongly correlated

. with genes associated with cancer cell survival and metastasis, whereas increased NOX4 and DUOX1

. expression was associated with genes that inhibit tumour progression. On the basis of these data, NOX

. family gene expression analysis could be a predictor of survival and identify putative therapeutic targets
in HCC.

Persistent inflammation can initiate and accelerate tumorigenesis'. The liver functions to metabolise various

endogenous and exogenous substances; however, this constant exposure results in sustained chronic inflamma-
© tory stimulation and damage that leads to hepatitis and subsequent remodeling. When left uncontrolled, these
. processes can cause portal fibrosis, liver cirrhosis, and ultimately liver cancer”®. Among the primary hepatic
. malignancies, hepatocellular carcinoma (HCC) is a clear example of inflammation-related cancer, as most cases
© result from liver damage incurred after prolonged inflammation in the cirrhotic liver®. Therefore, it is essential
* to identify the fundamental factors in the inflammatory cascade regulating the transition from chronic hepatic
. injury to dysplastic or regenerative nodules or HCC tumours, which may serve as therapeutic targets and prog-

nostic markers in HCC®.

Several inflammatory factors may influence HCC prognosis and survival. In this regard, several studies have
suggested a role for the NADPH oxidases (NOX) complex, which is mainly involved in the generation of reactive
oxygen species (ROS). The mammalian NOX complex family comprises seven paralogues: NOX1-5 and dual
oxidase 1/2 (DUOX1/2)%7. NOX-derived ROS are central factors in oxidative stress and related reduction-oxidase
signalling incongruity involved in HCC initiation and development and therefore, considered to be oncogenic
factors®%; however, the functional significance of NOX family members varies by tumour origin'®. Several NOX
studies have suggested close associations between the expression of specific NOX members and HCC prognosis,
as well as angiogenesis and metastasis as in other malignancies!®-'*. For instance, high NOX1 expression has
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Figure 1. NOX family gene expression in liver hepatocellular carcinoma (LIHC). (A) Relative increase of NOX
family mRNA expression in LIHC compared to that in normal control tissue. (B) Relative expression differences
of NOX family genes in LTHC.

unfavourable effects on recurrence-free survival, whereas increased NOX4 expression has beneficial effects on
both recurrence-free survival and overall survival on HCC'?. Moreover, another study reported that patients with
high DUOX1 expression had longer recurrence-free and overall survival on HCC'. Analysing the effects of the
NOX family members on HCC prognosis requires assessing the entire family of NOX genes, using both tumour
and adjacent non-tumour tissues and the clinicopathological information of the patients with HCC. However, no
study has investigated the effects of the entire family of NOX family genes on HCC prognosis to date.

The present study analysed the expression of all NOX family members in tissue samples from 377 patients
with HCC and 21 normal liver tissue samples to determine whether they could be used to predict prognosis. We
also analysed the expression of related genes using The Cancer Genome Atlas (TCGA), Gene Set Enrichment
Analysis (GSEA), and Database for Annotation, Visualization and Integrated Discovery (DAVID). Significantly,
our results validated the relevance of the expression of each NOX family gene to overall survival in the clinical
treatment of HCC.

Results

NOX family mRNA expression in liver hepatocellular carcinoma (LIHC).  Figure 1 shows the mRNA
expression levels of NOX family members in LTIHC. Interestingly, NOX1/4/5 and DUOX1/2 expression was higher
in LIHC as compared to that in normal controls, whereas NOX2 and NOX3 expression levels were unchanged.
Moreover, tumour NOX4 and NOX2 expression was markedly higher and lower, respectively, compared to that in
the normal controls, the NOX2 mRNA level was the highest among the NOX family genes. On the other hand, NOX3
expression was undetectable (Fig. 1A and B). NOX family gene expression showed no significant gene alterations
overall (Table 1 and Supplementary Fig. 1). Although no marked differences were observed between sexes, NOX1
and NOX4 expression was significantly higher in male and younger patients, respectively (Supplementary Fig. 2).
With respect to tumour stage, DUOX2 expression was significantly higher in advanced TNM stage tumours, how-
ever, no significant difference was observed between histological stages (Supplementary Fig. 3).

Effect of NOX family gene expression on LIHC patient survival. Table 2 summarises the clinico-
pathological data of the patients with LIHC enrolled in this study. To determine the prognostic significance of
the NOX family genes in patients with LIHC, we examined the correlations between expression of NOX family
members and overall survival of the patients. Initially, Kaplan-Meier curves were used to plot overall survival
with mRNA expression, using Cutoff Finder (http://molpath.charite.de/cutoff) (Fig. 2). High expression levels of
NOX4 and DUOX1 were significantly associated with a better prognosis (Hazard ratio [HR]: NOX4, 0.37 [95% CI,
0.16-0.84]; DUOX1, 0.69 [95% CI, 0.49-0.99]) (Fig. 2A). However, high NOX1/2/5 expression was significantly
associated with a poor prognosis (NOXI1, 2.91 [95% CI, 1.35-6.26]; NOX2, 2.59 [95% CI 1.45-4.62]; NOXS5, 3.26
[95% CI 1.32-8.07]) (Fig. 2B).

Gene neighbours of the NOX family in LIHC.  The 100 genes most correlated with NOX family members
were identified using GeneNeighbors and classified according to DAVID-based analyses on biological processes,
cellular components, and molecular functions (Supplementary Table 1), of which all three showed significant
differences (P < 0.05).

NOX1. NOXI gene neighbours highly expressed in LIHC were primarily associated with metabolic processes
(NADP, glucose, and glucose-6-phosphate) when analysed according to biological processes (Supplementary
Table 1). For cellular components, NOX1 was associated with the cytosol and binding-related molecular functions
(protein, NADP, and snRNP binding).
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NOXI NADPH | Mitogenic Oxidase (Pyridine Nucleotide-Dependent Superoxide- Xq22.1 171 27
Oxidase 1 | Generating)
CYBB (Cytochrome B-245 Beta Chain), Superoxide-Generating
NADPH | NADPH Oxidase Heavy Chain Subunit, Heme-Binding Membrane
NoOX2 Oxidase 2 | Glycoprotein Gp91phox, Neutrophil Cytochrome B 91kDa Xp21.1 0.33 40
Polypeptide
NADPH . . . . . .
NOX3 Oxidase 3 Mitogenic Oxidase 2, NADPH Oxidase Catalytic Subunit-Like 3 6q25.3 NA 4.0
NADPH . . . . . .
NOX4 Oxidase 4 Kidney Superoxide-Producing NADPH Oxidase, Kidney Oxidase-1 | 11q14.3 9.52 4.0
NOX5 NADPH |\, ppy Oxidase, EF-Hand Calcium Binding Domain 5 15q23 1.07 4.0
Oxidase 5
Dual NADPH Thyroid Oxidase 1, Nicotinamide Adenine Dinucleotide
DUOX1 N Phosphate Oxidase, Flavoprotein NADPH Oxidase, Large NOX 1, | 15q21.1 2.28 5.0
Oxidase 1
Long NOX 1
Dual NADPH Thyroid Oxidase 2, Nicotinamide Adenine Dinucleotide
DUOX2 | Oidase 2 Phosphate Oxidase 15q21.1 127 30

Table 1. NADPH oxidase family of liver hepatocellular carcinoma.

NOX2. NOX2 gene neighbours highly expressed in LIHC were associated with the inflammatory response, cell
adhesion, and signalling pathways (VEGE, B cell receptor, integrin-mediated, and cell surface receptor signalling
pathways) when analysed according to biological processes (Supplementary Table 1). For cellular components,
NOX2 was associated with the plasma membrane, receptor activity (phosphatidylinositol and tyrosine kinase),
and binding-related molecular function (MHC class I and actin).

NOX3. NOX3 gene neighbours highly expressed in LIHC were mainly associated with the immune response
(defence response and innate response) when analysed according to biological processes (Supplementary
Table 1). For cellular components, NOX3 was associated with keratin filaments and the extracellular region, and
receptor activity (G-protein and transmembrane signalling) for molecular functions.

NOX4. NOX4 gene neighbours highly expressed in LIHC were mainly associated with angiogenesis and cell
adhesion when analysed according to biological processes (Supplementary Table 1). For cellular components,
NOX4 was associated with focal adhesion and extracellular components, and binding-related molecular functions
(integrin and extracellular matrix).

NOX5. NOX4 gene neighbours highly expressed in LIHC were mainly associated with angiogenesis, cell adhe-
sion, and various signalling molecules (VEGE, Rho protein, GTPase and MAPK) when analysed according to bio-
logical processes (Supplementary Table 1). For cellular components, NOX5 was associated with the extracellular
matrix and plasma membrane, and binding-related molecular functions (growth factor, integrin, VEGF-activated
receptor, and actin).

DUOX1. DUOXI gene neighbours highly expressed in LIHC were mainly associated with GTPase activity and
the mitotic cell cycle when analysed according to biological processes (Supplementary Table 1). For cellular com-
ponents, DUOXI was associated with intracellular cellular components, and for molecular functions, it was asso-
ciated with binding-related functions (kinesin, GTPase, and NADPH oxidase).

DUOX2. DUOX2 gene neighbours highly expressed in LIHC were mainly associated with differentiation,
hydrogen peroxide metabolism, and negative regulation of cell proliferation when analysed according to biolog-
ical processes (Supplementary Table 1). For cellular components, DUOX2 was associated with the extracellular
space and membrane, and binding-related molecular functions (calcium-dependent phospholipid binding, RNA
polymerase DNA binding, and CXCR receptor binding).

GSEA of the NOX family in LIHC.  GSEA was performed to identify significantly enriched pathways that
differed between the high (top 10%) and low (bottom 10%) NOX-expressing groups based on pathways provided
in curated gene set enrichment analysis, KEGG, and oncogenic signatures of gene sets that represent the signa-
tures of cellular pathways often dis-regulated in cancer (Figs. 3 and 4, and Supplementary Table 2).

NOX1. Inthe high-NOXI group, the GO terms filament, STAT phosphorylation, mitochondrial translation,
and type I interferon, and pathways involving the regulation of autophagy and oxidative phosphorylation, were
significantly enriched when compared with those in the low-NOX1 group (Supplementary Table 2).

NOX2. Inthe high-NOX2 group, the GO terms immune response, cell activation, and cell adhesion, and path-
ways involving chemokine, immune response and phagocytosis, were significantly enriched when compared with
those in the low-NOX2 group. Moreover, high NOX2 expression was associated with oncologic signatures involv-
ing EGFR, RAF, and KRAS (Supplementary Table 2).
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Number 377 (100.0)
Sex 377 (100.0)
Female 122

Male 255

Age 377 (100.0)
<60 years 180

> 60 years 196

NA 1

TNM stage 377 (100.0)
Stage I 175

Stage II 87

Stage III 86

Stage IV 5

NA 24
Histological grade 377 (100.0)
Grade 1 55

Grade 2 180

Grade 3 124

Grade 4 13

NA 5

Vital status 377 (100.0)
Alive 245

Dead 132
Child-Pugh classification 377 (100.0)
A 223

B 21

C 1

NA 132
Histological type 377 (100.0)
Hepatocholangiocarcinoma 7
Hepatocellular carcinoma 367
Fibrolamellar carcinoma 3

Adjacent hepatic tissue inflammation extent type | 377 (100.0)

Mild 101

Severe 19

None 119

NA 138

Ishak Fibrosis score 377 (100.0)
0 - no fibrosis 76

1,2 - portal fibrosis 31

3,4 - fibrous septa 30

5 - nodular formation and incomplete cirrhosis | 9

6 - established cirrhosis 72

NA 159
Thrombocytopenia (<150 X 10°/L) 377 (100.0)
Yes 76

No 234

NA 67
Albumin level, g/dL 377 (100.0)
>35 217

<35 86

NA 74

AFP (ng/mL) 377 (100.0)
<20 152

>20 132

NA 93
Continued
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Feature Total (%)
History of hepatocellular carcinoma risk

Hepatitis B 105
Hepatitis C 51
Hepatitis B+ C 7
Alcohol consumption 118
Non-alcoholic fatty liver disease 18

Table 2. Clinicopathological information of the liver hepatocellular carcinoma patients.

NOX3. In the high-NOX3 group, the GO terms filament, mitochondrial translation, and ribosome, and path-
ways involving RNA polymerase, ribosome, and oxidative phosphorylation, were significantly enriched when
compared with those in the low-NOX3 group (Supplementary Table 2).

NOX4. In the high-NOX4 group, the GO terms chromatin and DNA replication, and pathways involving the
cell cycle, DNA replication, mismatch repair, p53 signalling, and oxidative phosphorylation, were significantly
enriched when compared with those in the low-NOX4 group (Supplementary Table 2).

NOX5. In the high-NOX5 group, the GO terms type I interferon, filament, STAT phosphorylation, and drug
metabolic process, and pathways involving autophagy regulation, fatty acid metabolism, peroxisome, and the
RIG-1 signalling pathway, were significantly enriched when compared with those in the low-NOX5 group. In
addition, increased NOX5 expression was associated with oncologic signatures involving PKCA (Supplementary
Table 2).

DUOXI1. In the high-DUOX1 group, the GO terms chromatid segregation and cell division, and pathways
involving the cell cycle, DNA replication, mismatch repair, and the p53 signalling pathway, were significantly
enriched when compared with those in the low-DUOX1 group (Supplementary Table 2).

DUOX2. In the high-DUOX2 group, the GO terms extracellular matrix, metabolic process, leukocyte migra-
tion, and Rho protein signal transduction, and pathways involving extracellular matrix receptor interaction,
phagocytosis, and the cell cycle, were significantly enriched when compared with those in the low-DUOX2 group
(Supplementary Table 2).

Discussion

Several factors associated with hepatic inflammatory signalling are involved in HCC occurrence and progression,
including ROS™. In mammalian cells, physiologically low levels of ROS play a central role in molecular commu-
nication by acting as secondary messengers; however, persistent ROS accumulation can induce inflammatory
responses, resulting in genetic instability, chromosomal damage, and tumour development and metastasis!*1°.
Because NOX family members are involved in ROS production and carcinogenesis'’""?, the present study sought
to determine whether these factors were significantly correlated with HCC patient survival.

Previous studies have reported that several NOX subtype proteins are tumour-suppressive or serve as favour-
able prognostic factors in the liver. For example, high DUOX1I expression in HCC is associated with prolonged
disease-free and overall survival after radical tumour resection; however, this gene is frequently silenced by pro-
moter hyper-methylation in human HCC tumour tissues and cancer cell lines'®. Furthermore, restoration of
DUOX1 expression significantly inhibits cancer cell proliferation by inducing G2/M phase arrest™. As such, it was
concluded that DUOXI acts as a tumour suppressor in HCC development. In addition, another study has sug-
gested that NOX1 and NOX4 are useful prognostic biomarkers after HCC resection'?. In this study, HCC patients
with high NOX1I or low NOX4 expression, as assessed by immunohistochemistry, had worse recurrence-free and
overall survival rates'% Therefore, it was suggested that these patients would benefit from adjuvant treatment after
surgical tumour resection, although the underlying molecular mechanisms remain unknown. Similarly, Isable
et al. reported that NOX4 may act as a tumour suppressor in the liver, based on data from partial hepatectomy
and xenograft mouse models and analyses data from human HCC cell lines and liver tumour tissues®.. It was
concluded that NOX4 in liver tumour cells acts as a growth inhibitor, consistent with its potential role in counter-
acting growth factor signals and/or inducing senescence?!. However, these studies addressed only NOX1/4 and
DUOX1. Moreover, only some of these studies discussed the underlying mechanisms involved, especially those
pertaining to the cell cycle, and none presented a comprehensive analysis of the underlying mechanisms. Given
the lack of information on the relationship between these genes and HCC survival, we investigated the potential
of NOX family members as prognostic factors in HCC.

In our study, NOX1/4/5 and DUOX1/2 expression was higher in hepatocellular carcinoma tissues than in
control normal liver tissues (Fig. 1). Paradoxically, higher mRNA expression levels of NOX4 and DUOX1 were
significantly associated with prolonged overall survival (Fig. 2A), whereas increased NOX1/2/5 expression was
significantly associated with a poor overall survival (Fig. 2B). These findings are supported by those of several
previous studies in which NOX4 and DUOX1 expression was associated with a favourable prognosis and NOX1
expression was correlated with decreased survival'? 1321,

We performed bioinformatics analyses to verify the effect of NOX family expression on cumulative overall
survival in HCC. Notably, NOX1 expression was significantly associated with metabolic processes, including
those of NADP, glucose, and glucose-6-phosphate. Cancer cells often exhibit accelerated aerobic glycolysis to deal

SCIENTIFICREPORTS |7: 11060 | DOI:10.1038/s41598-017-11280-3 5


http://2
http://2
http://2
http://2
http://2

www.nature.com/scientificreports/

A NOX3 NOX4
o | o
© ©
283 28
: :
g 3 g 3
= =
g3 o
=} 3
Es Es
O — NOX3<7.474 (&S] —— NOX4 < 43.96
e — NOX3>7.474 HR = 0.63 (0.35-1.12), p = 0.11 S —— NOX4>43.96 HR = 0.37 (0.16-0.84), p = 0.014.
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Months Months
DUOX1 DUOX2
e <
© ©
23 2se
: :
a © n o
o° o°
= =
g3 gz
= =}
Es Es
O — DUOX1<37.29 (&) — DUOX2<65.14
s L= DUOX1 > 37.29 HR = 0.69 (0.49-0.99), p = 0.042 2 — DUOX2>65.14 HR = 0.6 (0.34-1.06), p = 0.077
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Months Months
B NOX1 NOX2
o | <
© ©
2 22
5" 5
M o "N <
3 3
o [0
= =
&: R
=} =}
= €
O — NOX1<39.05 O — NOX2 (CYBB) < 84.21
g | | == Noxi»2908 HR = 2.91 (1.35-6.26), p = 0.0043 &.of|| —=NXe(CNER) >4 HR = 259 (1.45-4.62), p = 0.00084
: - T : . - -
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Months Months
NOX5
o
©
3 |
3
o H
[0
2
B
3
€
53
(@] — NOX5<31.04
g == NOX5 > 31.04 HR = 3.26 (1.32-8.07), p = 0.0067
T - -
0 20 40 60 80 100 120
Months

Figure 2. Survival analysis of NOX family genes in LIHC. Kaplan-Meier analysis of the association between
mRNA expression of NOX family and overall survival of the patients. (A) Cumulative overall survival curve of
the patients with high and low expression of NOX3, NOX4 and DUOX1 and 2 (B). Cumulative overall survival
curve of the patients with high and low expression of NOX1, NOX2, and NOX5. P values were determined by

Fisher’s exact test.

with unfavourable situations, primarily hypoxic conditions, and this can distinguish cancer cells from normal
cells?* 2. In addition, NOX2 expression was significantly associated with the inflammatory response and VEGF
signalling pathway in HCC, consistent with previous reports that VEGF functions as a direct link between chronic
inflammation and tumour progression®*. Especially, the oncologic signatures of NOX2 expression correlate with
EGFR, RAF, and KRAS activity. Moreover, NOX5 expression was significantly associated with angiogenesis and
VEGEF signalling, as well as STAT phosphorylation, type I interferon, and autophagy regulation in HCC. The
NOX5 oncologic signature was also significantly enriched for PKCA signalling. Our analyses revealed that expres-
sion of both NOX1 and NOX5 was associated with increased STAT protein phosphorylation, type I interferon
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Figure 3. GSEA results for tumours with high NOX 1-5 expression. Representative GSEA data with p values for
(A) NOX1, (B) NOX2, (C) NOX3, (D) NOX4, and (E) NOXS5 are shown.

receptor-related gene expression, and the induction of autophagy regulatory genes. Autophagy is a typical sur-
vival strategy utilized by tumour cells in unfavourable environments such as hypoxia or hypoperfusion®-2°.
This process has been reported to induce JAK2/STAT3 phosphorylation and can contribute to cancer cell survival.
Lastly, NOX2 expression was associated with the induction of oncogenic KRAS and RAF signalling, and upregu-
lation of angiogenesis-related genes that contribute to tumour progression, metastasis, and reduced survival rate.

Next, we analysed the genes associated with prolonged survival of HCC patients. A significant increase in
NOX4 expression was found in LTHC tissues compared to that in normal controls, paradoxically, however, NOX4
expression was correlated with a better prognosis. Indeed, NOX4 promotes angiogenesis and cell adhesion
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Figure 4. GSEA results for tumours with high DUOX1/2 expression. Representative GSEA data with p values
for (A) DUOX1 and (B) DUOX2 are shown.

control?”-28; however, genes associated with pathways involving the cell cycle, DNA replication, mismatch repair,
and p53 signalling were also significantly enriched in patients with high NOX4 expression. Previous reports
indicate that NOX4 not only promotes angiogenesis via endothelial nitric oxide synthase activation, HIF-
la-mediated angiogenesis, and VEGF expression, but also inhibits the epithelial-to-mesenchymal transition to
attenuate liver cancer progression®"#-?. Thus, the functional significance of NOX4 expression in HCC requires
further study.

With respect to the dual oxidase enzymes, DUOX]1 expression was associated with NADPH oxidase activity
and the cell cycle, DNA replication, mismatch repair, and p53 signalling pathways, which were responsible for
favourable effects on HCC survival, whereas DUOX2 expression was associated with attenuated cell proliferation,
immunological pathways involving Fc-gamma receptor-mediated phagocytosis, and cell cycle regulation, which
are associated with a better prognosis. LIHC samples showed higher DUOX1 and DUOX2 expression as compared
to non-malignant tissues, and this expression pattern was previously associated with diminished recurrence-free
and overall survival®. Unlike our present study, NOX4 expression was not significantly correlated with survival
in the previous study®. This discrepancy may be due to the relatively large number of patients enrolled in our
study (n=377 vs. n=107). Moreover, genes associated with mismatch repair, G2M checkpoint, and the cell
cycle were also induced in patients with high DUOXI expression levels. Similarly, recent genome sequencing
and cell cycle analyses demonstrated that DUOX1 overexpression was associated with cell accumulation in
the G2/M phase and cell cycle arrest®. In addition, genes associated with leukocyte migration and Fc-gamma
receptor-mediated phagocytosis were highly induced in patients with high DUOX2 expression. In the tumour
environment, Fc gamma receptor activity elicits antibody-dependent cellular cytotoxicity or phagocytosis®=*.
According to these data, NOX4 and DUOX1/2 exhibit a tumour suppressive function.

In summary, our data shed light on the clinicopathological mechanisms of NOX family members in HCC,
including their diverse roles in inflammatory signalling, angiogenesis, tumour-suppressive and oncogenic gene
expression, DNA repair, and the cell cycle control. Thus, NOX genes can positively or negatively affect HCC
patient survival through various mechanisms. These findings support the use of a NOX gene expression panel to
predict HCC patient survival after tumour resection and suggest that molecular targeting of NOX enzymes may
be an effective strategy for HCC therapy.

Methods

Gene expression profiles. Level 3 mRNA expression and clinical data from 377 LIHC and 21 normal
control samples were obtained from the TCGA data portal, and RSEM_genes_normalised RNA-Seq data were
acquired from Firebrowse for analysis of gene expression. All of these datasets downloaded during and analysed
during the current study are available in the TCGA data portal (http://tcga-data.nci.nih.gov/tcga) and Firebrowse
(http://firebrowse.org/?cohort=LIHC&download_dialog=true).

Analysis of MRNA microarray data. The data from TCGA portal were analysed using R software
(v.3.2.5; http://www.r-project.org). The Rank Normalize module in GenePattern (http://broadinstitute.org/
cancer/software/genepattern) was used to normalise the chip data. The data for the fold change of NOX family
genes in LIHC compared to normal controls were derived from Firebrowse (http://firebrowse.org/viewGene.
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html?gene=NOX1), where the gene name in the web address for Firebrowse could be substituted by the name
of the gene of interest. Illuminahiseq_maseqv2-RSEM_genes_normalised RNA-Seq data were acquired from
Firebrowse (http://firebrowse.org/?cohort=LIHC&download_dialog=true) and analysed using GeneNeighbors,
amodule programmed in GenePattern, to select genes closely related to NOX family genes**. cBioportal (http://
www.cbioportal.org/) was used to analyse changes in the expression of NOX family genes in LIHC.

Functional enrichment analysis. First, 100 differentially expressed genes (DEGs) analysed using
GeneNeighbors were imported into Database for Annotation, Visualization and Integrated Discovery (DAVID)
(http://david.abcc.nciferf.gov/) for gene ontology (GO) functional enrichment analyses. After the data for DEGs
were submitted, they were converted and analysed using the gene accession conversion tool and functional anno-
tation tool in DAVID, respectively. Gene set enrichment analysis (GSEA) was performed to find enriched mRNAs
predicted to have a correlation with pathway in C2, a curated gene set and the Kyoto Encyclopedia of Genes and
Genomes (KEGG), and in C5, a gene set that contain genes annotated by the same GO term, and in C6, oncogenic
signatures of gene sets that represent the signatures of cellular pathways that are often dis-regulated in cancer.
Especially, GO analysis encompassed three domains: biological processes, cellular components, and molecular
functions. P < 0.05 was considered to indicate a statistical significance.

Survival analysis. Cutoff Finder (http://molpath.charite.de/cutoff) was used to determinate cutoff values
for LIHC mRNA expression. Illuminahiseq_maseqv2-RSEM_genes_normalised RNA-seq data of NOX family
genes were uploaded from a tab-separated files, and the rows represented patients and columns represented vari-
ables (http://molpath.charite.de/cutoff/load.jsp). The cutoff determination in Cutoff Finder was based on survival
for significance based on the log-rank test for patient outcome (http://molpath.charite.de/cutoff/assign.jsp). The
cumulative event (death) rate was calculated with the Kaplan-Meier method, using the time to the first event as
the outcome variable. The criterion for the survival date for statistical analysis was the day from the date of oper-
ation to the date of death. Survival curves were compared by the log-rank test for high and low expression groups
on each NOX gene family.

Statistical analysis. Statistical analyses were performed using Prism software (v.5.0; GraphPad Prism
Software, La Jolla, CA, USA) and the Statistical Package for Social Sciences for Windows (SPSS 13.0, Inc.,
Chicago, IL, USA). Distributions were compared between two groups by the t-test (or the Kolmogorov-Smirnov
test when the expected frequency within any cell was <5) for continuous variables, and the x? test (or Fisher’s
exact test when the expected frequency within any cell was <5 for categorical variables) for categorical variables.
Distributions of the characteristics among three or more groups were compared by ANOVA. P < 0.05 was con-
sidered statistically significant.
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