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Abstract

Habitat loss from land-use change is one of the top causes of declines in wildlife species of

concern. As such, it is critical to assess and reassess habitat suitability as land cover and

anthropogenic features change for both monitoring and developing current information to

inform management decisions. However, there are obstacles that must be overcome to

develop consistent assessments through time. A range-wide lek habitat suitability model for

the lesser prairie-chicken (Tympanuchus pallidicinctus), currently under review by the U. S.

Fish and Wildlife Service for potential listing under the Endangered Species Act, was pub-

lished in 2016. This model was based on lek data from 2002 to 2012, land cover data rang-

ing from 2001 to 2013, and anthropogenic features from circa 2011, and has been used to

help guide lesser prairie-chicken management and anthropogenic development actions. We

created a second iteration model based on new lek surveys (2015 to 2019) and updated pre-

dictors (2016 land cover and cleaned/updated anthropogenic data) to evaluate changes in

lek suitability and to quantify current range-wide habitat suitability. Only three of 11 predictor

variables were directly comparable between the iterations, making it difficult to directly

assess what predicted changes resulted from changes in model inputs versus actual land-

scape change. The second iteration model showed a similar positive relationship with land

cover and negative relationship with anthropogenic features to the first iteration, but exhib-

ited more variation among candidate models. Range-wide, more suitable habitat was pre-

dicted in the second iteration. The Shinnery Oak Ecoregion, however, exhibited a loss in

predicted suitable habitat that could be due to predictor source changes. Iterated models

such as this are important to ensure current information is being used in conservation and

development decisions.
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Introduction

Species distribution models are often used to support conservation decisions [1,2], including

prioritizing locations and actions for conservation and management. Sofaer et al. [1] identified

iterative modeling as one of several criteria in an assessment rubric to evaluate and communi-

cate species distribution model use and quality. Most species distribution models are static,

representing a single point in time. Without regular updates, predictions can become out-of-

date and thus less accurate [3]. Iterative models can incorporate new location and predictor

data to produce updated maps of habitat suitability [e.g., 4, 5]. The routine iteration of these

models could provide valuable information regarding a species’ habitat associations and cur-

rent geographical location for managers and biologists. For example, the U.S. Department of

Agriculture gypsy moth surveillance program is guided by models that are iterated annually,

incorporating both new observation data and up-to-date predictors [4]. Iterative modeling

may also serve as a powerful tool to inform the conservation and protection of threatened or

endangered species as habitat changes through time. This ideally would involve a relatively

automated process whereby new survey data and up-to-date predictors are included as they

become available to update prediction [6]. Comparing iterative models can prove challenging,

however, as predicted changes between model iterations could reflect on-the-ground habitat

changes or changes in methods or inputs. While climate data are systematically updated over

time, such as the weather station data used in White et al. [6], this is not common for many

other data sets.

The lesser prairie-chicken (Tympanuchus pallidicinctus) is a prairie grouse species of con-

servation concern, whose range encompasses the Southern Great Plains region of Colorado,

Kansas, New Mexico, Oklahoma, and Texas [7,8]. Their display grounds, or leks, tend to be in

elevated locations with minimal vegetation [9] that are in close proximity to densely vegetated,

vertically structured nest (mid-height to tall grasses) [10] and brood (forbs subshrubs and

shrubs) habitat [11]. Lesser prairie-chickens conduct most of their activities and complete

their life cycle within 1500 m of known leks [12–14]. Landscape characteristics related to

reproductive habitat within 5000 m of a lek can influence lek attendance [11]. Populations

have fluctuated over time across the range [15], with population decline linked to habitat frag-

mentation, degradation, and loss resulting from energy production [16], agricultural conver-

sion, anthropogenic features [16–19], and woody encroachment [20,21]. Landscape change

continues to occur, as evidenced by land cover time series such as changes between different

broad land cover classes [22] and increased energy development in the region, particularly

New Mexico and Texas [23].

A group of modelers, wildlife biologists, and wildlife management agency personnel co-

produced a lek habitat suitability model for the lesser prairie-chicken [24]. The model was

based on lek location data from 2002–2012 and 11 predictors representing the ecological and

anthropogenic features from a period circa 2011 (data dependent on predictor). Lek suitability

was modeled because leks are considered a focal point for prairie grouse management [25], lek

locations are surveyed annually using aerial and ground-based monitoring methods through-

out the lesser prairie-chicken range, and breeding habitats, a primary determinant in lesser

prairie chicken populations [26], are closely associated with lek sites [14,27]. The predictors

included in the model were based on input from wildlife management agency personnel. How-

ever, in subsequent years, landscapes in the Southern Great Plains of the U.S. have changed

and are projected to continue to change [28]. It is important to understand changes in habitat

suitability over time to ensure management actions are based on the most recently available

predictor data. To maintain up-to-date predictions of lek habitat suitability for lesser prairie-

chickens across their range, it is critical to periodically update models with new lek
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occurrences and current landscape condition data sets as they become available. Our initial

goal was to apply the first iteration model to temporally updated predictors to evaluate changes

in suitable habitat. Nevertheless, as we will show, this goal proved difficult. We modified our

goal to instead quantify changes in the amount of predicted suitable habitat based on a second

iteration model. We highlight potential challenges that may arise with iterating models with

the goal of identifying changes in suitability related to trade-offs in using the best available

data and data that can easily be updated temporally. We provide updated habitat suitability

predictions to agencies and habitat managers who are using the first iteration habitat suitability

model in decision making and evaluate changes in important land use/land cover categories in

the study region.

Methods and materials

Study area

This study, the development of a second iteration model, includes an expanded region, incor-

porating the 2011 estimated occupied range (EOR) of the lesser prairie-chicken buffered by

16.1 km (10 mi) as defined by the Lesser Prairie-Chicken Interstate Working Group and

mapped on the Southern Great Plains Crucial Habitat Assessment Tool (https://www.sgpchat.

org/; Fig 1). The EOR is a western association of fish and wildlife agencies lesser prairie

chicken range-wide conservation plan delineation based on experts that is buffered by 10 miles

to capture potential annual variability from shifting habitat, population size, and detectability.

We expanded the study area to county boundaries that match political jurisdictions for man-

agement applications and added counties on the northern edge where new populations have

been detected [29]. This resulted in a 32,868,102-ha area, covering 105 counties in Colorado,

New Mexico, Kansas, Oklahoma, and Texas compared to the 89 counties (28,420,417-ha area)

included in Jarnevich et al. [24]. Our expanded analysis area is inclusive of the four ecoregions

that comprise the lesser prairie-chicken range [8]. Analyses focused on the study area, the

entire EOR+10 (the buffered estimated occupied range), and each of the four ecoregions

within the EOR+10.

Predictor updates

State wildlife management agency representatives, in consultation with modelers and biolo-

gists, chose 11 predictors at a 210 m resolution for the first iteration model [Table 1; 24]. For

the second iteration, we used updated versions of all the predictors except for the categorical

U.S. state predictor, which distinguished the five different states covered by the study area, and

topographic position index, which can highlight higher locations on the landscape that are

used for lekking [30], as neither of these have changed since the first iteration model develop-

ment (see Table 1 for exact dates by predictor).

In the first model iteration, potential land cover sources were evaluated by state wildlife

management agency representatives, as some sources better represented different states within

the study region. Land cover categories were based on the National Land Cover Dataset

(NLCD) 2011 product for Kansas and Oklahoma; Colorado and New Mexico were based on

Southwest Regional Gap Land Cover Dataset [34] and Texas was based on the Ecological Map-

ping Systems of Texas [35] land cover data set. Because these data sets had different vegetation

mapping categories, each state’s representatives defined classes as those known/suspected to

be used by lesser prairie-chickens (hereafter known/suspected used) based on research and

expert knowledge to develop a compatible data set across the three data sources. These classes

focused on grasslands (including pasture/hay) and shrublands as combinations of these broad
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classes are important for the species [e.g., 11]. Additionally, we were not interested in the spe-

cific land cover type at a location, but rather the composition of vegetation in the area around

a location. In the first iteration, Jarnevich et al. [24] compared models using different radii

based on utilized area around leks (~1600 m [12–14] to ~5000 m [11,20]) to calculate the per-

cent of land cover types known/suspected used by lesser prairie-chickens within a specified

Fig 1. Study site location map. The extent of the second iteration habitat suitability model for lesser prairie-chicken leks

across the five states of its current range, overlaid with the species’ Estimated Occupied Range (EOR) area, buffered by 16.1

km, and shaded by ecoregion. Second iteration study extent added the new counties to the initial iteration extent. [Projected

Coordinate System: Albers Conic Equal Area].

https://doi.org/10.1371/journal.pone.0256633.g001
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radius neighborhood. Jarnevich et al. [24] selected a 5000 m radius and we used this same

neighborhood size.

For the second model iteration, we decided to use the single landcover data source, NLCD

(specifically, the 2016 data set) [36], for all states. This data source has a history of updating the

Table 1. Methods and sources used to create predictor variables used to model lesser prairie-chicken lek suitability.

Predictor Creation step Modification Range

Distance to FAA

structures [1]

Euclidean distance (km) to FAA structures taller than 50 ft

using ArcGIS Spatial Analyst tools

Created with FAA structure locations from 1973 to 2011 (first

iteration) and 1973 to 2019 (second iteration).

0.03 to

31 km

Distance to highway [2] Euclidean distance (km) to highways using ArcGIS Spatial

Analyst tools

ESRI ArcGIS Data and Maps, version 10, “mroads” layer

including Primary = S1100 or S1200 for both iterations; second

iteration manual clean-up of misclassified road types.

0.02 to

32 km

Distance to roads [2] Euclidean distance (km) to roadways using ArcGIS Spatial

Analyst tools

ESRI ArcGIS Data and Maps, version 10, “mroads” layer

including Secondary = S1400for both iterations; second iteration

had manual clean-up of misclassified road types.

0.01 to

12 km

Distance to

transmission line [3]

Euclidean distance (km) to transmission lines using ArcGIS

Spatial Analyst tools

First iteration data purchased from Platts “North America Electric

Transmission Lines GIS Layer,” in April 2011; second iteration

data from new freely available data set observed through 2018.

0 to 48

km

Well density [4] Filtered points to exclude wells with indication of inactive or

plugged. Point statistics in ArcGIS Spatial Analyst

neighborhood functions, summing the number of points in a

circle with a 1600 m radius.

Well data compiled from each state government including spud

dates of 1900 to 2011 (first iteration) and of 1900 to 2019 (second

iteration).

0 to

48.24

wells

Average EVI [5] Average of average annual Enhanced Vegetation Index (EVI)

from 2008 to 2017

Original MODIS phenology product (MCD12Q2 v006) averaged

across 2000 to 2009; updated was generated from raw MODIS

data for the most recent decade available

0.04 to

0.41

Percent used land cover

types within 5000 m [6,

7]

Classified shrubland (51, 52), grassland/herbaceous (71), and

pasture/hay (81) as known/suspected used unless

overlapping with woody encroachment. Focal Statistics

(suit_�, Sum) / Focal Statistics (constant, Sum), Calculated

for a 5000 m radius, then resampled to 210 m.

First iteration used the Southwest Regional Gap Land Cover

Dataset (2001) in Colorado and New Mexico, the NLCD (2011)

for Kansas and Oklahoma, and Ecological Mapping Systems of

Texas (2013) with categories in each assigned to known/suspected

used or unused categories and input into same focal statistics

equation. Second iteration based on NLCD 2016, classified in

same way as NLCD 2011, with woody encroached areas removed

from known/suspected used.

0 to

100%

CRP within 5000 m [8] Focal Statistics (suit_�, Sum) / Focal Statistics (constant,

Sum) � 100, calculated for a 5000 m radius, then resampled

to 210 m

CRP data from 2012 (first iteration) and 2019 (second iteration).

Directly comparable.

0 to 70%

Land Condition Index

[9]

Created from transportation corridors, urban and industrial

development, and managed/modified land cover data in 2017

[31]. Scale was 0 to 1, with higher values representing less

human impact.

Original landscape condition layer produced in 2012 had a

different scale (1–10,000) and inputs [32].

0 to 1

State Categorical value for each of the five states Used original layer from Jarnevich et al. [24] n/a

Topographic

Ruggedness Index (TRI)

Topographic Ruggedness Index calculated following Riley

et al. [33]; resampled to 210 m

Used original layer from Jarnevich et al. [24] 0 to 27

Predictor name, steps taken to create the predictor, changes in predictor from the first iteration predictor [24] (“modification”), and the range in values (minimum to

maximum) in the training data including both presence and background locations for all predictors used to model lesser prairie-chicken lek suitability. FAA indicates

Federal Aviation Administration, CRP refers to the Conservation Reserve Program, and EVI is enhanced vegetation index.
1 Digital Obstacle File (DOF): https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/dof/.
2 Roads layer from ESRI: https://www.arcgis.com/home/item.html?id=871852b13b53426dabdf875f80c04261.
3 Homeland Infrastructure Foundation-Level Data: https://hifld-geoplatform.opendata.arcgis.com/datasets/electric-power-transmission-lines.
4 Well data compiled for each state, removing those with indication no longer active or plugged: https://wellsdatabase.com.
5 MODerate resolution Imaging Spectroradiometer (MODIS) Vegetation Indices: https://lpdaac.usgs.gov/products/mod13q1v006/.
6 National Land Cover Dataset (NLCD) 2016: https://www.mrlc.gov/data/nlcd-2016-land-cover-conus.
7 Woody encroachment: http://pljv.org/for-habitat-partners/maps-and-data/data-downloads/.
8 Conservation Reserve Program (CRP) information summarized from 2019.
9 Comer and Hak (2017): https://www.natureserve.org/conservation-tools/modeling-landscape-condition.

https://doi.org/10.1371/journal.pone.0256633.t001
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data set unlike the data sources previously used for Colorado, New Mexico, and Texas. The

Southwest Regional Gap Land Cover Dataset for Colorado and New Mexico had not been

updated since 2001 and The Ecological Mapping Systems of Texas had not been updated since

2013. Additionally, concerns from state experts related to the quality of the NLCD 2011 prod-

uct for Colorado and New Mexico were alleviated with improvements in the NLCD 2016 data

set and another modification described below.

Lesser prairie-chickens’ use of grassland and shrubland habitats while excluding woodlands

is well documented [21,37]. A major concern with originally using NLCD 2011 for New

Mexico and Texas was NLCD 2011 classification of areas encroached by mesquite, which is

unutilized by lesser prairie-chickens, as shrubland, which is utilized. We used a recently pro-

duced mesquite and red cedar encroachment layer (Playa Lakes Joint Venture, http://pljv.org/

for-habitat-partners/maps-and-data/data-downloads/) to remove encroached areas from

known/suspected used.

Percent Conservation Reserve Program lands within 5000 m radius, chosen for the same

reason as known/suspected used radius, was also used as a predictor as these lands often con-

tain suitable vegetation and were important in previous lek models [38]. These are lands

enrolled in a program to remove environmentally sensitive lands from agricultural production

and convert them to vegetative cover.

First iteration anthropogenic predictors based on 2011 information included roads, trans-

mission lines, wells, and Federal Aviation Administration (FAA)-identified structures. Lesser

prairie chicken avoidance of these types of features have been well documented [e.g., 14, 16,

19, 30]. In the second iteration, we used the latest updated versions of these data sets. However,

the updated versions included not only new features constructed on the landscape but also

removal of inaccurate features identified through quality checks (see Table 1 for specific dates

and more information). We also used an updated version of the landscape condition index

(2012 version used in first iteration), which is a human modification index based on transpor-

tation corridors, urban and industrial development, and managed/modified land cover data

[31]. This predictor highlights features avoided by lesser prairie-chickens. Hak and Comer

[22] created their updated predictor using different inputs and a different output scale than

their 2012 version, making it impossible for us to directly assess changes between the two time

periods.

Mean annual enhanced vegetation index (EVI; a spectral vegetation index that calculates

photosynthetically active vegetation), incorporated in iteration one as a surrogate for resource

availability [24], is no longer included as part of the NASA terra moderate resolution imaging

spectroradiometer (MODIS) phenology product (MCD12Q2 v006). For the second iteration,

we produced EVI with the 250 m resolution MODIS vegetation indices (MOD13Q1) version 6

product [39] within the Google Earth Engine platform [40]. We calculated annual mean EVI

for each year within 2008–2017 (the most recent 10-year period available) and then averaged

all years to create a decadal average EVI. As with landscape condition index, the values

were not comparable between iterations as we were unable to directly replicate the NASA

MCD12Q2 v006 algorithm.

Maxent model iteration

We updated some components of model development from that previously used by Jarnevich

et al. [24]. We used the newest version of the Maxent software for modeling species distribu-

tions, version 3.4.1 [41], within the Software for Assisted Habitat Modeling (SAHM; version

2.2.1) [42]. Maxent is a machine learning method that uses the principle of maximum entropy

to identify relationships between available environment (as assessed via background points)
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and observed locations to predict habitat suitability at unknown locations [41,43,44]. Maxent

is a commonly used method to create habitat suitability models when absence data are lacking.

We input the updated predictors described above (Table 1). For presence data, there were

1,257 leks observed from 2015 to 2019 [45] by the different state agencies (see S1 Supporting

Information for survey details), resulting in 1,012 pixels at 210 m resolution with at least one

lek observation during the time period (compared to first iteration 2002–2012 n = 1,402 pixels

at 210 m resolution). Thus, lek presence locations used included 12 in Colorado, 443 in New

Mexico, 207 in Kansas, 284 in Oklahoma, and 66 in Texas. We generated 10,000 background

points within the 16.1 km buffered estimated occupied range within which the lek surveys

occurred using the MDSBuilder module within SAHM and a sampling bias layer, using a bias

correction method sensu [46] rather than trying to directly model bias (e.g., [47]). The bias

layer reflected the percentage of the EOR+10 area surveyed for leks by state with 30% for Colo-

rado, 56% for New Mexico, 9% for Kansas, 80% for Oklahoma, and 34% for Texas as estimated

by the Lesser Prairie-Chicken Interstate Working Group (including all non-USGS authors). A

bias layer is needed to mimic bias existing in the presence data as these were not statistically

collected and without a bias layer the model results may reflect sampling effort rather than

habitat suitability [46,48]. Using this bias layer with the study area created 923 background

points in Colorado, 2,928 in New Mexico, 790 in Kansas, 2,956 in Oklahoma, and 2,403 in

Texas. Within SAHM we examined correlations among predictors for the updated source

data, and all correlation coefficients (Pearson, Spearman, and Kendall) remained < +/-0.7,

which is required to avoid issues from collinearity [49]. We used 10-fold cross-validation to

evaluate model performance within SAHM, with the final model presented using all data

points rather than averaging the 10 cross-validation models. We ran Maxent with default

SAHM settings and examined response curves and the difference between training and aver-

age cross-validation area under the curve (AUC) as indicators of overfitting, setting a differ-

ence of 0.05 as an a priori cutoff for requiring changes. We also examined AUC to evaluate

model performance.

As with the first iteration, we developed two sets of models. We ran models that both

included and excluded state as a predictor to account for potential differences between states

in their management strategies, treatment of Conservation Reserve Program (CRP) lands, and

monitoring activities.

We used predictor importance from Maxent output, measured by both permutation impor-

tance (relativized measured change in AUC) when predictor values are randomly permutated

between presence and background while other predictors are held constant) and percent con-

tribution (model-dependent measure based on additive training gain at each iteration during

model fitting). We also provide response curves produced by SAHM that are based on values

for each predictor when other predictors are held constant.

We examined continuous relative habitat suitability index maps from Maxent, where the

term ‘relative’ indicates that the results are a relative index of habitat suitability rather than a

probability of occurrence due to the model reliance on presence data rather than presence-

absence data. In addition to continuous maps, many applications of species distribution mod-

els use a binary map that discretizes the predictions [e.g., 50]. We provided discretized versions

of map products based on three different threshold rules following Jarnevich et al. [24] to

allow practitioners to select context-specific costs of false positives (i.e., missing habitat that is

actually suitable in the final habitat suitability map). These thresholds include the minimum

training presence (MTP; value is the minimum prediction for any training presence location),

fifth percentile (orders prediction values for all training presence locations and selects value

that would classify the bottom 5% as unsuitable), and tenth percentile (orders prediction values

and misclassifies the bottom 10%). We created maps based on these three thresholds and
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calculated the amount of predicted suitable lek habitat within the study area, the estimated

occupied range, and ecoregions in R v3.6.0 [51] using the raster package [52] and the tidyverse

package [53]. All predictors and model raster outputs are available through the Science Base

data repository [54].

Habitat suitability comparison

We intended to apply the Jarnevich et al. [24] Maxent models to the updated predictors. How-

ever, because of barriers to direct comparison described above, we used an alternative to

directly examine land cover changes that could impact lek habitat suitability. We compared

the amount of the landscape in the three known/suspected used classes in the NLCD 2016

product version of land cover for 2011 to land cover for 2016. This method allowed a direct

comparison of landscape land cover changes as these two layers are from the same source and

are produced using the same methodology. We also compared the predictions from Jarnevich

et al. [24], which are being used by decision makers, to our second iteration models within the

2016 study extent to see how predictions changed between the two model iterations, realizing

that differences could arise due to methodological differences, quality of the predictors, and

changes on the landscape.

Results

Maxent model

Average EVI followed by percent known/suspected used land cover within 5,000 m contrib-

uted the most to predicting habitat suitability in the second iteration models both with and

without state (S1 Fig). Excluding state, the top four predictors were the same for the second

iteration models as measured by Maxent computation of permutation importance. When state

was included, it was the third-most important predictor in the model, with Kansas having the

highest suitability.

Response curves illustrate general trends in the relationship between each predictor and lek

suitability. The responses were similar in models both with and without state, with suitability

values being dampened with models including state (S1 Fig). There was a general trend of

increasing suitability with increasing percent known/suspected used, percent CRP and land-

scape condition index. Suitability quickly dropped off as well density increased whereas suit-

ability was predicted to be higher across a broader range of distance from transmission lines,

roads, highways, and FAA structures. Individually, these anthropogenic features had a low

contribution to the model, except for well density as measured by Maxent permutation impor-

tance. Viewed together as anthropogenic impacts, they contributed 14.0% and 19.3% to runs

with state and without state, respectively.

Despite the similarities in the two second iteration models (with and without state), there

were large differences in suitability predictions across the study area when state was included as

a predictor (Figs 2 and 3 and S1 Table). The differences were most apparent for Texas, which

had markedly less suitable habitat at higher thresholds when state was included (with state had

484,531 [MTP], 2,290,091 [5 percentile], and 1,926,204 [10 percentile] ha less). The models

without state included had more suitable habitat across all thresholds for all states except Kansas

and New Mexico for the MTP threshold. For models without state, predicted suitable habitat in

the buffered estimated occupied range was generally higher than the first iteration estimates

[24], particularly for the 5 and 10 percentile thresholds. Models with state had more variability

in pattern of predicted suitable area within the estimated occupied range between iterations.

There was a similar relationship in area predicted suitable in the entire study area (Table 2).

Among ecoregions, Mixed Grass had the highest suitable area across thresholds and models,
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Fig 2. Lek suitability model predictions by threshold and predictor set. Lesser prairie-chicken lek suitability model

predictions without state boundary as a predictor (a, c) and including state boundary as a predictor (b, d) displayed as (a-

b) the three different suitability thresholds used to classify the models into suitable and unsuitable habitat including

minimum training presence (MTP), 5th percentile, and 10th percentile and (c-d) the continuous habitat suitability index,

displayed using a minimum maximum stretch method. [Projected Coordinate System: Albers Conic Equal Area].

https://doi.org/10.1371/journal.pone.0256633.g002
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followed by Shortgrass/CRP mosaic and Shinnery Oak (mixed as second or third), with Sand

Sagebrush having the lowest suitable area (S2 Table and Fig 3). Shinnery Oak decreased in suit-

able area from the first iteration to the second, while the others all increased except MTP for the

model without state for Sand Sagebrush and Shortgrass/CRP mosaic.

Habitat suitability comparison

There were several differences between the first iteration predictors and the second iteration

predictors. Overall, there was a change in the amount of the landscape in the individual land

Fig 3. Comparison of area predicted suitable by threshold, predictor set, state, study extent, and ecoregion. Lesser prairie-

chicken lek suitable habitat predictions for different thresholds (columns) including minimum training presence (MTP), 5th

percentile, and 10th percentile and different region types (rows) including state, buffered estimated occupied range (EOR+10), and

ecoregion. Bars are grouped by the model (with or without state included as a predictor) and iteration (first or second version).

https://doi.org/10.1371/journal.pone.0256633.g003

Table 2. Metrics comparing area of suitable habitat modeled with and without state as a predictor.

Model AUC Threshold method Threshold value Study area suitable (Suitability change) [ha] EOR+10 area suitable (Suitability change) [ha]

Test Train

With State 0.81 0.81 MTP 0.0002 28,693,101 (+372,447) 14,835,272 (+285,024)

5 per. 0.0084 16,095,406 (+2,605,190) 9,537,136 (+2,014,090)

10 per. 0.0167 13,330,142 (+3,691,576) 8,265,642 (+2,824,333)

Without

State

0.71 0.72 MTP 0. 00004 28,521,583 (-1,088,661) 14,572,311 (-543,228)

5 per. 0.0004 21,616,404 (+5,628,527) 11,516,918 (+3,366,294)

10 per. 0.0011 18,335,960 (+6,223,604) 10,046,157 (+3,867,178)

Suitability change, in parentheses, depicts the net change in suitable area between the first [24] and second iteration, for study area and estimated occupied range

buffered by 10 mi (EOR+10) area [8]. AUC = area under the curve; MTP = minimum training presence, 5 per. = 5 percentile, and 10 per. = 10 percentile.

https://doi.org/10.1371/journal.pone.0256633.t002
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cover types classified as known/suspected used, but the total amount in these three land cover

types only decreased slightly (Table 3; <1% decrease). This small net loss between NLCD 2011

and NLCD 2016, however, does not account for the addition of the woody encroachment,

which overlaid with almost 1.5 million hectares of known/suspected used cover classes primar-

ily Mixed Grass and Shinnery Oak ecosystems (Table 3b and 3c). The small net loss also does

not reflect the greater number of locations that switched cover classes, where some locations

became classes classified as unused while others became classes classified as known/suspected

used (Table 3b). All states except Colorado had a net loss of more than 350,000 ha of known/

suspected used land cover for a total loss of 1,718,473 hectares across the study area, which is

largely accounted for by woody encroachment. Overall, Kansas had the most stable area of

known/suspected used land cover in the study region between 2011 and 2016. Within the buff-

ered estimated occupied range, all ecoregions experienced a net loss in known/suspected used

land cover based on changes in NLCD (Table 3c), with the greatest decrease in the Mixed

Grass and Shinnery Oak ecoregions.

It is difficult to directly attribute changes in habitat suitability between the model iterations

to changes on the landscape, but we can still assess changes in predicted habitat suitability. The

second iteration models predicted a greater percentage of the estimated occupied range as suit-

able than the first iteration models both overall (Table 2) and by state (Fig 3 and S2A Table).

Given the small difference in change noted between the two NLCD time periods (Table 3) rela-

tive to the large first and second iteration known/suspected used difference for Colorado, New

Mexico, and Texas (S3B Fig), changes in predicted habitat suitability for these states may

reflect the difference in land cover products more than actual changes on the landscape. For

ecoregions, there were decreases for the Shinnery Oak Ecoregion for all models and thresholds

(Fig 3 and S2B Table; roughly similar to loss in predicted suitable habitat), while there were

also decreases for the models without state with the MTP threshold for the Sand Sagebrush

and the Shortgrass/CRP mosaic Ecoregions.

Discussion

Due to the issues previously discussed it was not possible to directly assess the changes in lek

habitat suitability that occurred between the generation of the first and second iteration mod-

els. The inability to assess direct changes due to changes in data availability and cleaning of

errors in original predictor data contributed to these issues. These issues suggest that it may

not be simple for researchers to provide models to managers that could simply be applied to

temporally updated input predictors unless a model is originally developed with this type of

iteration in mind. The goal of the first iteration was to produce the best model with the best

available data. Through that effort, alternative predictor data sets were explored, and the best

data were chosen for different parts of the range. These data sets were then modified to make

them comparable so that a range-wide predictor could be developed. These decisions resulted

in complicated predictor production, such as three different land cover data sources that

needed to be reconciled into a single predictor, with each data set having differing approaches

to temporal updates.

We set out to create a second iteration, assuming we would be able to obtain temporally

updated predictors, such as the time sequenced NLCD data set, and apply the first iteration

model to the updated predictors as is often done for climate change assessments. Our assump-

tion was incorrect due to lack of consistent temporal updates of predictors, except for percent

CRP. Even the EVI predictor produced by a NASA program was discontinued as a product

and we were unable to replicate its production. Thus, we fit a new model with recent lek survey

data and associated updated predictor variables. We attempted to revise predictors in a way
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that would allow for direct comparison in future iterations. We reduced the land cover data to

a single source that has been regularly updated for more than two decades (NLCD). The EVI

predictor is now calculated in google earth engine base on raw satellite imagery, so we can eas-

ily produce a comparable version for a different time. Other changes may be harder to track,

but less important in iterating, such as changes from data cleaning of anthropogenic features

that were indistinguishable from on-the-ground changes (see red colors in S3 Fig), as all data

sources likely have unknown errors. However, there is a trade-off between making models

directly comparable and including the best data available at the time. For example, the addition

of woody encroachment that was unavailable for the first iteration proved highly important in

understanding what changes may have occurred in land cover.

Despite these challenges, we were able to directly evaluate changes in land cover, which was

an important predictor of habitat suitability, using the NLCD 2016 product for 2011 and 2016.

While there was only a small net change in known/suspected used land cover classes, the

decrease in the grassland/herbaceous category for our study area and for the buffered esti-

mated occupied range could be important because lesser prairie-chicken rely on a high ratio of

grassland to agricultural land for resilience to stochastic events such as drought [55]. Excluding

woody encroachment from the percent known/used predictor due to the avoidance of grass-

lands with trees by lesser prairie-chickens [21] and other similar prairie grouse species resulted

in further reduced known/suspected used land cover in the NLCD 2016 derived predictor.

Even these spatial layers likely underestimate the influence of trees given the inability to cap-

ture small/low density stands of trees using this scale of imagery. Despite issues of direct com-

parability, we were able to provide information on changes in predictors including land cover

and to develop a second iteration model to provide updated lek habitat suitability.

The response curves illustrating the relationships found between predictors and lek habitat

suitability in the Jarnevich et al. [24] models followed similar patterns to those found in other

efforts [38,56,57], and these patterns remained consistent in this second iteration of modeling.

These relationships point to avoidance of anthropogenic features, which match studies of habi-

tat selection and space use [e.g., 58, 59]. Conservation reserve program lands were also impor-

tant in both lek suitability model iterations, matching others’ findings of their importance as

habitat for lesser prairie-chickens, at least in the northern part of their range [60–63].

The first iteration model included several more lek locations as training data (first iteration

n = 1,402; second iteration n = 1,012) with the greatest difference in Colorado and Texas lek

counts. We chose to restrict the period for lek occurrences to 2015 to 2019 to avoid issues in

pseudo-replication between years and match the rough time frame of predictors. Additionally,

the Southern High Plains experienced the worst drought on record in 2011, resulting in

reduced lesser prairie-chicken abundance in the region that had not recovered by 2015 [64].

This drought could have led to the reduced lek count range-wide [65], although abundances

have generally increased from the drought condition population [66]. The dampened suitabil-

ity in Texas with state as a predictor may also have been related to the response of the species’

population to drought. The Sand Sagebrush Ecoregion had the lowest amount of suitable habi-

tat among the ecoregions, matching the finding of a high likelihood of extirpation risk for the

region [66], though models predicted an increase in suitability between the iterations. For this

ecoregion, however, the land cover data source changed between the first and second iteration,

so increases do not necessarily reflect actual changes on the landscape, particularly since Sand

Sagebrush experienced a net loss in known/suspected used land cover between NLCD 2011

and NLCD 2016. The updated model provides an updated prediction of potential habitat

using recent lek survey data (2015–2019) and predictors from the same time frame. The pre-

dictor sources were chosen with iterative modeling in mind to facilitate future updates that

would allow direct comparisons of changes.
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The second iteration models were based on the same suite of predictors chosen for the first

iteration by a group including managers after testing various sets of predictors, and we did not

revisit alternative predictors. Both iterations were based on habitat suitability for a single habi-

tat use that is well-observed range-wide, lekking, to infer general habitat requirements for the

species. Lek occurrence has been used as a surrogate for other life stages that may be more lim-

iting to the population given lack of consistent range-wide data for other activities such as

nesting [38]. These models also do not capture spatial-temporal dynamics that have been

investigated at smaller scales within the range [55,67].

We evaluated our model following the assessment rubric provided by Sofaer et al. [1] to

communicate model quality to end users by rating categories related to species data, predic-

tors, modeling process, and model products as “interpret with caution”, “acceptable”, or

“ideal” for a particular model. This second iteration model had a ranking of either acceptable

or ideal in all categories of the model evaluation rubric [S2 Table; 1]. This table should provide

end users with information to determine if the model is appropriate for their intended use.

Conclusions

Predicted lek habitat suitability has changed across the study area in recent years, though

directly assessing changes proved impossible. We provide lessons learned for other iterative

modeling projects that rely on predictors that are not consistently updated, noting a need to

balance best-available data with temporal consistency. Products such as NLCD are useful in

that they provide consistent methodology to develop products for different time periods.

Accounting for woody encroachment produced an overall decrease in land cover types

known/suspected used for lekking, when compared to the first iteration model. There was an

overall increase in important land cover types when ignoring woody encroachment. Likely the

2011 NLCD overestimated known/suspected used land cover classes as some of these areas

were likely encroached by woody vegetation. The second iteration models generally predicted

more suitable habitat across both the study area and the buffered estimated occupied range

than the first iteration model predictions. Regardless of the underlying reason for changes in

predicted suitable habitat, these models provide updated information about lek habitat suit-

ability across the range. These predictions, based on more recent predictor data, can be used to

update decision support tools such as the Southern Great Plains Crucial Habitat Assessment

Tool where the predications could be used to help determine siting of development [such as

38] or where corridors may be needed between populations to facilitate connectivity between

ecoregions [66].

While species distribution models applied to future climate predictions or land use scenar-

ios are common, near-term iteration of models are not. Periodically iterating models with cur-

rent information about the landscape and other predictors allows the models and the tools

relying on them to remain current and useful for decision makers, despite issues in iteration

due to inconsistent updating of important predictors. Iterations also allow predictions to be

improved by incorporating newly available information and data sets such as the woody

encroachment information used in this example.

Supporting information

S1 Fig. Predictor response curves. Plots are ordered by permutation importance, showing rel-

ative lesser prairie-chicken lek habitat suitability (y-axis) across the range of values in the

occurrence data for each predictor (x-axis). The numbers in the top left of each graph repre-

sent the permutation importance (percent contribution) from Maxent for that predictor for

the model run with state and without state, respectively. The red lines along the x-axis

PLOS ONE Updating lesser prairie-chicken models

PLOS ONE | https://doi.org/10.1371/journal.pone.0256633 September 20, 2021 14 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0256633.s001
https://doi.org/10.1371/journal.pone.0256633


represent presence points with those values. (EVI = enhanced vegetation index; FAA = federal

aviation administration).

(JPG)

S2 Fig. Changes in habitat suitability predictions from the first to second modeling itera-

tion. The top row of figures (a-c) compares first and second iteration predictions for models

including state as a predictor, while the bottom row compares predictions from models that

do not include state as predictor (d-f). Comparisons were made for the three thresholds, mini-

mum training presence (MTP) threshold (a, d), fifth percentile (b, e), and tenth percentile (c,

f). Note that the change in land cover data source underlying the percent known/s/suspected

used predictor for Colorado, New Mexico, and Texas between the two iterations of the model

may account for some changes in suitability (Table 1). [Projected Coordinate System: Albers

Conic Equal Area].

(JPG)

S3 Fig. Comparison of predictor versions between first and second modeling iterations.

Sources for all data can be found in Table 1. S3A Fig. Comparison of features used to create

anthropogenic predictors in first and second modeling iterations. Purple denotes presence in

both iteration predictors; red denotes presence in the first iteration predictor but not the sec-

ond (likely the result of data cleaning); and blue indicates a new feature in the second iteration

predictor. Updated spatial data includes a) transmission lines, b) highways, c) secondary

roads, d) vertical structures over 50m, and e) active wells (see Table 1 for sources). [Projected

Coordinate System: Albers Conic Equal Area]. S3B Fig. Difference between used and updated

raster values in predictors used to model lesser prairie chicken habitat suitability. Values repre-

sent the original predictor subtracted from the updated predictor, so that red colors represent

an increase and the blue colors represent a decrease in value from the original predictor.

Updated data includes a) percent conservation reserve program (CRP) land area within a 5000

m neighborhood, b) average of the average Enhanced Vegetation Index (EVI) for 2000–2009

(recreated original predictor following updated protocol) and 2008–2017 (updated predictor),

and c) the percent area known/suspected used by lesser prairie-chickens in a 5000-m neigh-

borhood (note land cover data sources for Colorado, New Mexico, and Texas changed between

the two iterations and the change may account for many differences in those states). See

Table 1 for all sources. [Projected Coordinate System: Albers Conic Equal Area].

(PDF)

S1 Table. Comparison of area classified as suitable by threshold, predictor set, state, study

extent, and ecoregion.

(PDF)

S2 Table. Model assessment rubric. From Sofaer et al. [1] for first iteration model [24] and

the second iteration model.

(PDF)

S1 File. Prairie chicken lek survey methodology by state.

(PDF)
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