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Simple Summary: Olaparib is an oral medication typically used to treat certain advanced ovarian
and breast cancers with mutations in BRCA1 or BRCA2 genes. Mutations in these genes can increase
the risk of developing breast, ovarian, and other types of cancer. Olaparib is the first clinically
approved drug that specifically targets a vulnerability of cancers with these mutations. Genetic
alterations in cancer tumors can affect response to treatment in cancer patients. Cancer models such
as cell lines, which are cancer cells derived from patients and have been grown in the laboratory
over time, can be used to identify these alterations which may contribute to sensitivity or resistance
to treatment. We analyzed data from two independent groups of cancer cell lines and identified
alterations in additional genes (PUM3, EEF1A1 and ELP4) that potentially increase sensitivity to
olaparib. Further experimental and clinical investigations are required to validate our findings.

Abstract: The benefit of PARP inhibitor olaparib in relapsed and advanced high-grade serous ovarian
carcinoma (HGSOC) is well established especially in BRCA1/2 mutation carriers. Identification
of additional biomarkers can help expand the population of patients most likely to benefit from
olaparib treatment. To identify candidate markers of olaparib response we analyzed genomic and
in vitro olaparib response data from two independent groups of cancer cell lines. Using pan-cancer
cell lines (n = 896) from the Genomics of Drug Sensitivity in Cancer database, we applied linear
regression methods to identify statistically significant gene predictors of olaparib response based
on mRNA expression. We then analyzed whole exome sequencing and mRNA gene expression
data from our collection of 18 HGSOC cell lines previously classified as sensitive, intermediate, or
resistant based on in vitro olaparib response for mutations, copy number variation and differential
expression of candidate olaparib response genes. We identify genes previously associated with
olaparib response (SLFN11, ABCB1), and discover novel candidate olaparib sensitivity genes with
known functions including interaction with PARP1 (PUM3, EEF1A1) and involvement in homologous
recombination DNA repair (ELP4). Further investigations at experimental and clinical levels are
required to validate novel candidates, and ultimately determine their efficacy as potential biomarkers
of olaparib sensitivity.
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1. Introduction

Olaparib is the first poly(adenosine diphosphate[ADP]-ribose) polymerase (PARP)
inhibitor to be clinically approved as maintenance therapy for treatment of advanced or
recurrent ovarian cancer. It inhibits PARP1 and PARP2 which are involved in the base
excision repair (BER) pathway important for repair of damaged bases and single-strand
DNA breaks (SSB). The antitumor activity of olaparib is based on the synthetic lethality
relationship between PARP and BRCA1/2 where loss of BRCA1/2 function or PARP inhi-
bition alone is compatible with cell survival, but the combination of BRCA1/2 inactivation
and PARP inhibition leads to cell death [1]. Olaparib and other PARP inhibitors (PARPis)
are especially cytotoxic to BRCA1/2-mutated, homologous recombination (HR) DNA repair
deficient, tumor cells by blocking PARP-mediated DNA repair and promoting DNA replica-
tion stress through trapped PARP-DNA complexes leading to chromosomal instability, cell
cycle arrest and ultimately apoptosis [2–4]. Olaparib treatment has been most successful in
minimizing tumor growth and delaying tumor recurrence in high-grade serous ovarian car-
cinoma (HGSOC) [5,6], the most common and most lethal subtype of ovarian cancer, where
50% of cases are estimated to be HR-deficient primarily through genomic inactivation of
BRCA1/2 [7,8]. Pathogenic variants of BRCA1 and BRCA2, occurring at germline or somatic
levels, are major genetic risk factors for HGSOC and are associated with about 20–25% of
HGSOC cases [7,9–11]. While initial response rates to standard first-line chemotherapy,
consisting of cytoreductive surgery and platinum-based chemotherapy, for HGSOC are
high (>70%), disease recurrence is also correspondingly high [12]. PARP inhibitors have
emerged as promising maintenance therapy for patients with BRCA1/2-mutated HGSOC
who were initially sensitive to platinum-based chemotherapy (PBC). Indeed, BRCA1/2
mutations and alterations in other genes that sensitize tumors to PBC also sensitize tumors
to PARP inhibitors, as we have recently reviewed [13].

Genomic and molecular alterations in HR repair genes and genes of related pathways
such as the Fanconi anemia (FA) pathway [14], and genes in other DNA repair pathways
including BER [15,16], mismatch repair (MMR) and nucleotide excision repair (NER) [17],
DNA replication fork protection [18,19], and cell cycle regulation [20,21] have been associ-
ated with olaparib sensitivity and resistance mainly through in vitro analysis of human
cancer cell lines.

We sought to identify new genomic markers of olaparib response beyond these path-
ways given that PARP1, the most abundant and most active PARP enzyme, has been
reported to have other roles beyond DNA repair such as transcription [22], inflamma-
tion [23], and angiogenesis [24,25], suggesting that response to PARP inhibition may be
influenced by other factors involved in these additional roles. To discover new olaparib
response genes, we analyzed publicly available in vitro olaparib response and mRNA
gene expression data from pan-cancer cell lines in the Genomics of Drug Sensitivity in
Cancer (GDSC) [26] database to find genes whose expression significantly predicts ola-
parib sensitivity or resistance using multivariate and univariate linear regression methods.
Our analysis identified known olaparib response genes as well as novel candidate genes.
We then validated these candidate genes by identifying genomic alterations involving
these genes in 18 HGSOC cell lines that we previously classified into sensitive (n = 5),
intermediate (n = 9), and resistant (n = 4) groups based on in vitro olaparib response [17].
These cell lines are long-term passages derived from tumor or ascites of HGSOC cases
that were treatment-naïve or treated with PBC and have been extensively characterized at
genetic and molecular levels and reflect some of the features of HGSOC cases including
BRCA1/2 and TP53 mutations [27–30]. Candidate genes derived from analyses of GDSC
cell lines were investigated for protein-coding and splice site sequence variants, copy
number variations, and differential expression between sensitive and resistant HGSOC cell
lines. In this research article, we present our analyses, findings and hypotheses for how
key validated genes, including PARP1 interactors and emerging HR genes, may mediate
olaparib response and therefore warrant further investigations as potential biomarkers of
olaparib response.
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2. Results

Univariate and multivariate linear regression methods were used to estimate the rela-
tionships between basal mRNA gene expression and olaparib response (IC50) in 896 human-
derived cell lines from diverse types of cancer. This approach revealed 83 significant gene
predictors in common from 121 multivariate and 1176 univariate significant gene predictors.
The complete list of candidate genes from both analyses are in Table S1 (multivariate),
Table S2 (univariate), and Table S3 (common predictors). In total, there are 1214 unique,
significant gene predictors. These candidate olaparib response genes are either associated
with increased sensitivity or increased resistance. Among the candidate genes, 33 are
known to be involved in DNA repair or cell cycle regulation pathways (Table 1). These
include APTX which is involved in single strand break repair. Expression of APTX is asso-
ciated with increased sensitivity to olaparib. E2F1 expression was associated with olaparib
resistance from both multivariate and univariate analyses. E2F1 is a transcription factor
that promotes expression of several DNA repair genes including HR genes BRCA1 and
RAD51 [31,32]. Cyclin dependent kinase inhibitors CDKN2A, CDKN2B, and CDKN2C were
found to be associated with resistance. Expression of TP53—a key regulator of genomic
stability, cell proliferation and death—was associated with olaparib sensitivity. Expression
of FANCE, XRCC5, and PMS1 which are involved in FA, non-homologous end-joining, and
MMR pathways, respectively, was associated with increased sensitivity to olaparib.

Table 1. Candidate olaparib response genes derived from analyses of GDSC cell lines in known DNA
repair and cell cycle pathways.

Gene Ensembl ID Analysis Association

APTX ENSG00000137074 Multivariate, univariate sensitivity
AURKB ENSG00000178999 univariate sensitivity
CCNA1 ENSG00000133101 univariate sensitivity
CDC20 ENSG00000117399 univariate sensitivity

CDKN2A ENSG00000147889 univariate resistance
CDKN2B ENSG00000147883 multivariate resistance
CDKN2C ENSG00000123080 univariate resistance
CKAP5 ENSG00000175216 univariate sensitivity

E2F1 ENSG00000101412 Multivariate, univariate resistance
EBP ENSG00000147155 univariate resistance

FANCE ENSG00000112039 Multivariate, univariate sensitivity
FXYD5 ENSG00000089327 univariate sensitivity

GADD45G ENSG00000130222 univariate resistance
HMGA2 ENSG00000149948 univariate sensitivity

IPO7 ENSG00000205339 univariate sensitivity
KIF18A ENSG00000121621 univariate sensitivity
LLGL1 ENSG00000131899 univariate sensitivity
MELK ENSG00000165304 univariate sensitivity

MNAT1 ENSG00000020426 univariate sensitivity
ORC2 ENSG00000115942 univariate sensitivity
PER1 ENSG00000179094 multivariate sensitivity
PFN1 ENSG00000108518 univariate sensitivity
PLK3 ENSG00000173846 univariate sensitivity
PMS1 ENSG00000064933 univariate sensitivity

PSMB6 ENSG00000142507 univariate sensitivity
SLFN11 ENSG00000172716 Multivariate, univariate sensitivity
STAG1 ENSG00000118007 univariate sensitivity
TP53 ENSG00000141510 univariate sensitivity

TUBA1C ENSG00000167553 univariate sensitivity
TUBA4A ENSG00000127824 univariate resistance
VAMP8 ENSG00000118640 univariate resistance
XRCC5 ENSG00000079246 univariate sensitivity
YWHAE ENSG00000108953 Multivariate, univariate sensitivity
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The top 10 genes associated with sensitivity or resistance to olaparib among the
common predictors are shown in Figure 1.

Figure 1. Top 10 gene predictors of olaparib resistance and sensitivity from linear regression analyses
of GDSC pan-cancer cell lines. Coefficients from elastic net multivariate linear regression are shown
on the horizontal axis and gene symbols on the vertical axis. Genes associated with resistance
have coefficients greater than zero (increased IC50), while genes associated with sensitivity have
coefficients less than zero (decreased IC50).

2.1. Known Markers of Olaparib Response Are among Candidate Olaparib Sensitivity and
Resistance Genes

SLFN11 expression was most strongly associated with increased sensitivity to ola-
parib among common predictors. SLFN11 expression was found to be correlated to PARP
inhibitor response, especially talazoparib, in the NCI-60 panel of human cancer cell lines
and was experimentally shown to sensitize cancer cells to PARP inhibitors including ola-
parib [21]. Second among the top common predictors of sensitivity, TNFRSF10B also known
as Death Receptor 5 (DR5) has also been previously associated with PARPi response and
is highly expressed in sensitive cells [33]. On the other hand, among resistance candidate
genes, GSTA1 mRNA expression is the top predictor of resistance to olaparib among com-
mon predictors and has been found to be involved in cisplatin resistance [34]. Outside
of the top candidates above, other genes from these analyses have also been reported to
be associated with olaparib response. For example, ATP Binding Cassette Subfamily B
Member 1 (ABCB1), associated with resistance from univariate analysis, encodes MDR1
a P-glycoprotein drug efflux pump that has been linked to resistance to olaparib and
chemotherapeutic agent paclitaxel [35,36]. Additionally, Ubiquitin Conjugating Enzyme
E2 R2 (UBE2R2) was associated with sensitivity to olaparib from both univariate and
multivariate analyses and was previously identified as a candidate olaparib sensitivity
gene in complementary RNA interference screens [37].

2.2. Novel Candidate Markers of Olaparib Response

Although both analyses rediscover several known markers of olaparib response,
there are also many novel candidates that have not been previously linked, statistically or
experimentally, to olaparib response. Pumilio RNA Binding Family Member 3 (PUM3) is
one of these candidates. PUM3 is one of the top 10 predictors of olaparib sensitivity (3rd in
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Figure 1) and was identified by both multivariate and univariate analyses (Table 2). PUM3
mRNA expression is negatively correlated with olaparib IC50 in 20 cancer types (Figure 2)
with Pearson’s r ranging from −0.63 to −0.11. PUM3 is known to interact with PARP1 by
binding to its catalytic domain and inhibiting its poly ADP-ribosylation activity [38]. This
is relevant because olaparib also binds to the catalytic domain of PARP1 to inhibit PARP1
catalytic activity. Suggesting that PUM3 may act as a potential endogenous inhibitor of
PARP1, at least in some context.

Table 2. Summary results from univariate analysis of GDSC cell lines for key candidate olaparib
sensitivity genes.

Gene Coefficient 95% Confidence Interval FDR-Adjusted p Value

PUM3 −0.180 −0.247–−0.114 1.66 × 10−4

ELP4 −0.118 −0.191–−0.044 0.0311
ELP5 −0.131 −0.200–−0.063 0.00925

EEF1A1 −0.132 −0.210–−0.054 0.0211

Figure 2. Correlations between PUM3 mRNA expression and Olaparib IC50 in GDSC cell lines of
multiple cancer types. Each plot shows PUM3 z-score expression (horizontal axis) plotted against
natural log of olaparib IC50 (vertical axis) in a specific cancer type (in the title) based on TCGA classes.
Plots are arranged from top left (THCA: Thyroid carcinoma) to bottom right (MESO: Mesothelioma)
in order of increasing Pearson correlation coefficient. Cell lines of unknown cancer type are also
shown in the plot titled Unknown. Complete list of abbreviations in plot title and meaning is in
Table 3 of Materials and Methods. Notable cancer types where olaparib treatment is approved—OV
(Ovarian serous cystadenocarcinoma), BRCA (Breast invasive carcinoma) are shown. Blue lines in
each plot are linear regression lines. Shaded region around blue lines represent 95% confidence
region. Only cancer types with at least five cell lines are shown.
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Table 3. Frequency and types of GDSC cancer cell lines with mRNA gene expression data analysed
in this study.

Cancer Type
(TCGA Classification) Abbreviation Number of

Cell Lines

Adrenocortical carcinoma ACC 1
Acute lymphoblastic leukemia ALL 22
Bladder Urothelial Carcinoma BLCA 17

Breast invasive carcinoma BRCA 45
Cervical squamous cell carcinoma and endocervical

adenocarcinoma CESC 13

Chronic Lymphocytic Leukemia CLL 3
Colon adenocarcinoma and Rectum adenocarcinoma COAD/READ 46
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma DLBC 30

Esophageal carcinoma ESCA 32
Glioblastoma multiforme GBM 34

Head and Neck squamous cell carcinoma HNSC 39
Kidney renal clear cell carcinoma KIRC 30

Acute Myeloid Leukemia LAML 25
Chronic Myelogenous Leukemia LCML 10

Brain Lower Grade Glioma LGG 17
Liver hepatocellular carcinoma LIHC 16

Lung adenocarcinoma LUAD 57
Lung squamous cell carcinoma LUSC 15

Medulloblastoma MB 3
Mesothelioma MESO 19

Multiple Myeloma MM 16
Neuroblastoma NB 25

Ovarian serous cystadenocarcinoma OV 32
Pancreatic adenocarcinoma PAAD 25
Prostate adenocarcinoma PRAD 6
Small Cell Lung Cancer SCLC 51

Skin Cutaneous Melanoma SKCM 50
Stomach adenocarcinoma STAD 20

Thyroid carcinoma THCA 16
Uterine Corpus Endometrial Carcinoma UCEC 9

Unknown - 172

Like PUM3, EEF1A1, is another gene encoding a protein that interacts with PARP1
and emerged as a significant predictor of olaparib sensitivity. EEF1A1 encodes eukaryotic
translation elongation factor 1 alpha 1 which is a subunit of elongation factor complex 1 and
is involved in protein synthesis where it promotes binding of aminoacyl-tRNA to ribosomes
in a guanosine triphosphate (GTP)-dependent manner [39]. It also forms a complex with
PARP1 and tyrosine protein kinase TXK to function as a T-helper 1 (Th1) cell-specific
transcription factor, that binds to the promoter of interferon gamma (IFNG) and is therefore
involved in Th1 cytokine production [40]. From the univariate analysis, expression of
EEF1A1 was associated with increased sensitivity to olaparib (Table 2). Although EEF1A1
interacts with PARP1 it has also not been previously linked to PARP inhibitor response.
Upregulation of EEF1A1 has been reported to have pro-apoptotic effect [41]. EEF1A1 is also
known to be involved in cytoskeletal organization and cell morphology through interaction
with actin [42,43].

Elongator Acetyltransferase Complex Subunit 4, ELP4, is another interesting candidate
olaparib sensitivity gene that emerged as a significant predictor from the univariate analysis.
From this analysis, ELP4 and ELP5 mRNA expression were significantly associated with
increased sensitivity to olaparib (Table 2). ELP4 and ELP5 are subunits of the elongator
complex (comprised of ELP1, ELP2, ELP3, ELP4, ELP5, ELP6) whose functions include
transcriptional elongation [44], and tRNA modification [45]. Notably, ELP4 was reported
to be a novel HR repair pathway gene [46].
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2.3. Characterization of Sequence and Copy Number Variation from Whole Exome Sequencing and
Differential Gene Expression Analysis of HGSOC Cell Lines

HGSOC cell lines that we previously classified as sensitive, intermediate, resistant
to olaparib [17] were characterized in terms of sequence (SNVs, indels) and copy number
variation using whole exome sequencing (WES) data, and differentially expressed genes
using mRNA gene expression microarray data (Figure 3). CNVs were found to be prevalent
in the HGSOC cell lines. On average, 989 genes are amplified, and 201 genes are deleted
per cell line (Figure 3A). The total number of unique genes that are amplified or deleted
across the cell lines are 4581 (67%) and 2258 (33%), respectively. Similarly, more genes
are amplified than deleted among epithelial ovarian cancer (EOC) cases (n = 572) in the
TCGA PanCancer Atlas 2018—22,235 (58%) and 16,419 (42%), respectively. Copy number
amplification of CCNE1 locus was observed in two HGSOC cell lines, OV866(2) (resistant)
and TOV3291G (intermediate), as previously reported (Figure S1) [29]. CCNE1 is amplified
in approximately 20% of HGSOC cases [7]. MYC is amplified in intermediate cell lines
TOV2295(R) and TOV2978G. Other oncogenes, MECOM and KRAS were also found to be
amplified in intermediate [OV2295(R2), OV3133(R), TOV223G, TOV3133D, TOV3133G]
and resistant [OV866(2), OV1369(R2), TOV1369] cell lines, respectively. Similarly, MYC
(33.2%), MECOM (27.8%), and KRAS (9.4%) are amplified in EOC cases of the TCGA
PanCancer Atlas [47,48] dataset.

Figure 3. Sequence variants, copy number variation, and differential gene expression analysis of HGSOC cell lines.
(A). Number of genes involved in copy number amplifications and deletions per HGSOC cell line. From left to right, cell
lines are arranged from most sensitive (OV2295) to most resistant [OV1369(R2)] to olaparib. (B). Heatmap of significant
differentially expressed genes between sensitive and resistant HGSOC cell lines. (C). Frequency of rare protein-coding
or splice-site, heterozygous (top) and homozygous (bottom), sequence variants predicted to be functionally damaging or
deleterious using in silico tools. Cell lines arranged, left to right, in order of increasing olaparib resistance. OV2295 and
OV1369(R2) are most sensitive and resistant cell lines, respectively.
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In total 162 genes were significantly differentially expressed (Figure 3B) between
resistant and sensitive cell lines, with 45 (27.8%) of these genes involved in CNVs through
amplifications and deletions. Protein-coding and splice-site sequence variants were investi-
gated for all HGSOC cell lines. The frequency of rare (less than 0.1% minor allele frequency
in gnomAD database) variants predicted to be functionally damaging or deleterious using
in silico prediction tools are presented for each HGSOC cell line in Figure 3C. On average,
there are 498 functionally relevant homozygous and heterozygous sequence variants per
cell line with range from 453 to 567. Correspondingly, the average number of mutated
genes per cell line is 424 with range from 375 to 484. Notable mutations in TP53 and
BRCA1/2 in these cell lines were rediscovered [28–30,49]. All but one (TOV3041G) of the
cell lines is mutated in TP53. OV4485 and OV4453 harbor pathogenic variants in BRCA1
(c.4548-1G>T, splice acceptor) and BRCA2 (p.Glu1953 *, stop-gained) of germline origin
(Figure S2).

Finally, analysis of single base substitution (SBS) mutational signatures in the 18 HG-
SOC cell lines revealed that cell lines exhibit multiple COSMIC (catalogue of somatic
mutations in cancer) mutational signatures. The dominant signatures are 1 and 3, which
are associated with aging and HR repair deficiency, respectively (Figure S3). These are
also the dominant signatures that have been reported in EOC cases [50] and show that cell
lines are similar to EOC cases based on mutational signatures. BRCA1/2-mutated cell lines
(OV4485, OV4453) were found to have mutational signature 3.

2.4. Novel Candidate Olaparib Response Genes Linked to Genomic Alterations in Independent
HGSOC Cell Lines

To validate the findings from GDSC pan-cancer cell lines in HGSOC cell lines, all
1214 candidate genes, from univariate and multivariate analyses, were investigated for
mutations, CNVs, or whether they were differentially expressed between sensitive and
resistant HGSOC cell lines (Figure 4). A total of 431 (35.5%) unique genes were altered in at
least one of these ways.

Figure 4. Candidate olaparib response genes derived from GDSC cell lines that are validated in
HGSOC cell lines. Number of candidate olaparib sensitivity and resistance genes identified from
multivariate and univariate linear regression analyses that are (A) Heterozygous or homozygous for
rare functionally relevant sequence variants, (B) Involved in CNVs (amplifications and deletions),
and (C) Significantly differentially expressed between resistant and sensitive HGSOC cell lines.

Some validated genes were found to have relevant known functions, such as inter-
actions with PARP1 and involvement in HR, and were prioritized. Genomic alterations
involving candidate olaparib response genes identified in olaparib-sensitive or -resistant
HGSOC cell lines suggests a role for these candidate genes in olaparib response. Known
functions of these validated candidate genes could provide clues for plausible mechanisms
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by which they mediate olaparib sensitivity or resistance. Key candidate genes with relevant
functions and altered in the HGSOC cell lines are presented below.

Copy number deletions of PUM3 were found in 2 resistant and 1 intermediate HGSOC
cell lines (Figure 5A(i)). Consistent with these copy number deletions, these resistant
[TOV1369, OV1369(R2)] and intermediate (TOV3133D) cell lines were also found to express
low levels of PUM3 mRNA compared to sensitive and intermediate cell lines (Figure 5A(ii)).
Taken together these findings implicate PUM3 mRNA expression in olaparib response
with high expression associated with increased sensitivity (from GDSC cell lines) and low
expression associated with resistance (from HGSOC cell lines). However, some sensitive
cell lines also have low expression of PUM3 suggesting that PUM3 expression alone is not
the single predictor of olaparib response. Investigating the HGSOC cell lines for genomic
alterations involving ELP4 revealed rare potentially deleterious, heterozygous, missense
variants of ELP4 (p.Arg317Cys) as well as ELP6 (p.Gln151Arg) in TOV2978G (Figure 5C).
This cell line is in the intermediate response group, it is on the boundary of sensitive and
intermediate groups (Table 4) and is reported to be sensitive to carboplatin in vitro [29].
It was not found to have a BRCA1/2 mutation, or mutations in other canonical HR repair
genes but has mutational signature 3. However, our previous work has shown that this
cell line does not express BRCA1 mRNA or protein [29]. While ELP4 and ELP5 mRNA
expression are associated with olaparib sensitivity from univariate analysis of GDSC pan-
cancer cell lines, ELP4 and ELP6 missense variants may contribute to sensitivity to olaparib
in the HGSOC cell line TOV2978G.

Figure 5. Genomic alterations of PUM3, EEF1A1, ELP4, and ELP5 in HGSOC cell lines. A. PUM3 copy number profile
and mRNA expression in HGSOC cell lines. (A(i)). Log2 copy number ratio for copy number segments spanning PUM3
gene locus for 18 HGSOC cell lines. (A(ii)). Boxplots of z-score PUM3 mRNA expression in sensitive, intermediate, and
resistant HGSOC cell line groups. (B). EEF1A1 mRNA expression in HGSOC cell lines in sensitive, intermediate, and
resistant olaparib response groups. (C). Integrative Genomics Viewer (IGV) screenshots of missense variants in ELP4
and ELP5 genes in intermediate HGSOC cell line TOV2978G. Left, ELP4 missense variant (p.Arg317Cys, rs764805051,
11:g.31669307C>T), read depth—310, VAF—59% (T). Right, ELP6 missense variant (p.Gln151Arg, 3:g.47539777C>T), read
depth—45, VAF—44% (C).
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Table 4. Features of 18 HGSOC cell lines. The cell lines were derived from 12 HGSOC patients—14 from primary cases and
4 from recurrent (R) cases. All cases were of advanced stage (III-IV). Cell lines beginning with “TOV” are derived from
tumor (n = 9) while those beginning with “OV” are derived from ascites (n = 9). “Pre-chemo” cell lines are derived from
primary HGSOC cases that are completely naïve to any chemotherapy. “Post-chemo” cell lines are derived from primary
HGSOC cases at the end of platinum-based chemotherapy, HGSOC cases at first recurrence [OV3133(R), TOV2295(R)], or
HGSOC cases at second recurrence [OV866(2), OV1369(R2)].

Cell Line Passage
Number * Response Olaparib IC50 (µM) ± Standard

Error of Mean (SEM)
Chemotherapy

Status
Cellosaurus
Number **

OV2295 P61

Sensitive

0.0003 ± 0.0004 Pre-chemo CVCL_9T13
OV4453 P63 0.01 ± 0.0009 Pre-chemo CVCL_9T20

TOV1946 P49 0.02 ± 0.007 Pre-chemo CVCL_4062
TOV3041G P52 0.02 ± 0.01 Post-chemo CVCL_9T24

OV1946 P49 0.07 ± 0.05 Pre-chemo CVCL_4375

TOV2978G P67

Intermediate

0.45 ± 0.30 Pre-chemo CVCL_9U73
TOV3133G P65 0.58 ± 0.44 Pre-chemo CVCL_4064
OV3133(R) P71 0.75 ± 0.04 Post-chemo CVCL_9T15

OV4485 P60 0.90 ± 0.58 Post-chemo CVCL_9T21
TOV2295(R) P57 1.52 ± 1.14 Post-chemo CVCL_9T18
TOV3291G P65 1.58 ± 0.23 Pre-chemo CVCL_9T25
OV2295(R2) P70 1.66 ± 0.99 Post-chemo CVCL_9T14
TOV3133D P66 2.00 ± 1.15 Post-chemo CVCL_9T19
TOV2223G P69 2.99 ± 1.20 Post-chemo CVCL_4063

OV90 P63

Resistant

7.04 ± 2.33 Pre-chemo CVCL_3768
OV866(2) P108 8.11 ± 1.27 Post-chemo CVCL_9T22
TOV1369 P65 9.02 ± 3.66 Pre-chemo CVCL_9T17

OV1369(R2) P66 21.71 ± 10.33 Post-chemo CVCL_9T12

* Passage number at which each cell line was subjected to WES, SNP and gene expression arrays [17,29]. ** Expasy online knowledge
resource on cell lines, web.expasy.org/cellosaurus (accessed on 29 January 2021).

ELP4 is the only subunit of the elongator complex that has been implicated in HR
repair [46]. However, ELP5, and ELP6 may also have roles in HR repair since all three pro-
teins (ELP4, ELP5, and ELP6) share a RecA ATPase-like protein domain, that is also found
in RAD51 [51] which plays an important role in homology search and strand exchange
in HR and form a discrete subcomplex by dimerization of ELP4/5/6 heterotrimer into a
hexameric ring [52,53].

EEF1A1 is a significant differentially expressed gene between olaparib-sensitive and -
resistant HGSOC cell lines (Figure 5B). It is highly expressed in sensitive cell lines compared
to resistant cell lines. This is consistent with the observation that increased expression of
EEF1A1 is associated with sensitivity to olaparib in the independent GDSC pan-cancer
cell lines.

2.5. Frequency of Genomic Alterations Involving Candidate Olaparib Response Genes in the
Cancer Genome Atlas (TCGA) EOC Cases

The key candidate genes described above were investigated for mutations, copy
number variation, and mRNA expression in patient tumor samples where data for these
types of alterations were available (Figure 6). In total, 201 samples from EOC cases in the
TCGA PanCancer Atlas dataset were investigated using cBioPortal [47,48]. Notably, high
mRNA expression is the most common alteration of PUM3 in EOC cases and is supported
by amplification of PUM3 in some cases. PUM3 alterations are almost mutually exclusive
of pathogenic variants in BRCA1 and BRCA2 (except for one BRCA1 mutated case). This
suggests that a subset of PUM3-expressing EOC cases, distinct from BRCA1/2 mutation
carriers, may benefit from olaparib treatment.
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Figure 6. Frequency and types of alterations of key candidate olaparib response genes in TCGA ovarian cancer cases.
Mutations, CNVs, and gene expression variation in PUM3, EEF1A1, ELP4, ELP5, ELP6 compared to BRCA1 and BRCA2
in tumor samples (n = 201) with complete data from EOC cases in the TCGA PanCancer Atlas study derived from
cBioPortal [47,48].

3. Discussion

The analyses of pan-cancer cell lines in the GDSC database to identify genes whose
mRNA expression was significantly associated with sensitivity or resistance to olaparib
revealed novel candidate genes with relevant functions. The major findings from this
analysis that were successfully validated in the HGSOC cell lines can be classified into
two groups of genes: PARP1 interactors (PUM3, EEF1A1) and emerging HR genes (ELP4,
ELP5, ELP6).

PARP1 is the most active target of olaparib [54]. Therefore, any underlying factors that
influence PARP1 levels or activity can also affect PARP inhibitor response. PUM3 mRNA
expression was ranked the third strongest predictor of olaparib sensitivity, among com-
mon significant predictors from the multivariate and univariate analyses, with increased
expression correlated with increased sensitivity in multiple cancer types (Figure 2). PUM3
(KIAA0020 or human Puf-A, hPuf-A) binds to mRNA and regulates translation using its
highly conserved PuF domains. A Puf domain consists of 35 to 39 amino acids capable of as-
sociating with the 3′-untranslated region (3′-UTR) of target mRNAs and interacts with other
regulatory proteins to promote mRNA degradation and repression of translation [55,56].
Puf proteins are highly conserved among most eukaryotic organisms and are involved
in stem cell maintenance, cell development and differentiation. Deletion of PUF-8 in the
roundworm, Caenorhabditis elegans, led to the development of germ cell tumors [57]. PUM3
is one of the newly discovered members of the human Puf protein family [58]. It shares
63% amino acid homology with zebrafish Puf-A. Unlike classical PUF proteins, which are
localized to the cytoplasm PUM3 is predominantly found in the nucleolus. PUM3 has been
linked with tumor development. PUM3 expression has been reported to be positively asso-
ciated with breast cancer progression. High expression of PUM3 was observed in 70% of
breast cancer biopsies comprising diverse histological subtypes compared to normal breast
tissues, ductal carcinoma in situ, and adjacent noncancerous tissues [59]. Downregulation
of PUM3 by siRNA sensitizes cells to the DNA topoisomerase I (TOP1) inhibitor camp-
tothecin and UV treatment, while cells constitutively overexpressing PUM3 are rendered
resistant to genotoxic exposure [38]. However, neither of these DNA damage-inducing
agents specifically binds to PARP1 to inhibit PARylation. Cytotoxicity of TOP1 inhibitors is
based on interference of DNA replication and transcription by trapped TOP1-DNA cleav-
age complexes [60–62]. UV light can also generate TOP1-DNA cleavage complexes and
pyrimidine dimers that impede DNA replication [63,64]. PUM3 interacts with the catalytic
domain of PARP1 and inhibits poly(ADP-ribosyl)ation activity of PARP1 in vitro [38]. The
effect of PUM3 gene silencing or deletion on in vitro response to PARPi treatment has not
been reported. Our results show that PUM3 mRNA expression is associated with increased
sensitivity to olaparib. This supports the hypothesis that PUM3-mediated inhibition of
PARylation by PARP1 may support olaparib-mediated catalytic inhibition of PARP1 and
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sensitize cells. However, it is not known if PUM3 can contribute to PARP trapping which
is considered the major part of PARPi cytotoxicity.

EEF1A1 mRNA expression was associated with increased sensitivity to olaparib in
the GDSC pan-cancer cell lines and found to be highly expressed in olaparib-sensitive
HGSOC cell lines, including BRCA2-mutated cell line OV4453, compared to resistant cell
lines (Figure 5B). The interaction of EEF1A1 with PARP1 is different from that of PUM3
as it does not involve inhibition of PARylation. EEF1A1 is a subunit of a complex also
comprised of PARP1 and tyrosine kinase TXK that functions as a transcription factor
for IFNG in T-helper 1 cells [40]. IFNG expression has been found to be a predictive
marker of sensitivity to immune checkpoint inhibitors nivolumab and pembrolizumab
in non-small cell lung cancer and melanoma cases, respectively [65]. While it is unclear
how EEF1A1 expression may contribute to olaparib sensitivity, through its interaction
with PARP1, EEF1A1 could link PARP inhibition to immunotherapy and may also be a
potential marker of sensitivity to immunotherapy or combination of immunotherapy and
PARPi. There is interest to combine immunotherapy with PARPis. A phase 2 clinical
trial (NCT02734004) of olaparib and programmed cell death ligand 1 (PDL-1) inhibitor
durvalumab (Imfinzi) in platinum-sensitive relapsed germline BRCA1/2-mutated ovarian
cancer is an example [66]. BRCA1/2-mutated, HR-deficient HGSOC is associated with
increased neoantigens, tumor-infiltrating lymphocytes (TILs) and favorable prognosis than
HR-proficient HGSOC [67].

Expression of ELP4 and ELP5 at mRNA level is associated with increased sensitivity
to olaparib in GDSC pan-cancer cell lines. An HGSOC cell line (TOV2978G) with inter-
mediate response to olaparib has rare, potentially damaging heterozygous variants in
ELP4 (p.Arg317Cys) and ELP6 (p.Gln151Arg). ELP4, ELP5, and ELP6 are subunits of the
RNA polymerase II elongator complex [68]. TOV2978G does not have BRCA1/2 mutations
although it does not express BRCA1 mRNA or protein [29] and we found that it exhibits
COSMIC mutational signature 3, associated with HR deficiency. Furthermore, it has been
previously shown to be sensitive to carboplatin [29]. ELP4 was discovered as a novel HR
repair gene through coevolution analysis of 600 species and functional experiments, and
was found to have coevolved with BRCA1 and BARD1 in plants and mammals [46]. ELP4
was experimentally associated with the HR repair pathway using two systems. Knock-
down of ELP4 function led to a significant reduction in brood size of C. elegans following
exposure to ionizing radiation. Defective HR repair pathway can cause germline radiation
sensitivity [69]. Using the Direct Repeat-Green Fluorescence Protein (DR-GFP) assay, knock-
down of ELP4 significantly reduced HR efficiency in the osteosarcoma cell line U2OS [46].
However, the specific role of ELP4 in HR is not known. Since ELP4/5/6 form a discrete
subcomplex and share a RecA ATPase-like protein domain [52,53] that is also found in key
HR protein RAD51, ELP5 and ELP6 may cooperate with ELP4 in a HR repair role.

Despite the utility of cell lines for drug development and biomarker discovery there
are some limitations of these models. These may include selection of cells in vitro that
harbor molecular genetic abnormalities that may not recapitulate the microenvironment
and exposure to chemotherapeutic drugs of in vivo settings. Our collection of HGSOC cell
lines, derived from long-term passages of ovarian cancer specimens, have been extensively
characterized demonstrating that their molecular genetic features are consistent with those
found in the original cancer specimens and some have retained the capacity to propagate
as three-dimensional structures in vitro and in vivo [28–30,49]. Notably PUM3, EEF1A1,
and ELP4, identified from our bioinformatics analysis of cell lines could be considered
top priorities for further investigations based on support of their molecular functions as
reported in the literature. Biological assessment of these candidates using more recently
developed preclinical ovarian cancer cell models such as patient-derived organoids and
patient-derived xenografts, may yield more accurate information regarding their role in
conferring PARPi sensitivity as these models mimic the three-dimensional environment of
patient tumor samples.
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Chemotherapy can drive genomic alterations and gene expression in tumor cells
that could lead to resistance, and the cell lines derived from these tumors retain these
alterations. Information about the chemotherapy status of the GDSC cell lines is not
available via the GDSC database. Therefore, we could not systematically investigate
whether alterations in our candidate genes were enriched in cell lines derived from cases
that had chemotherapy compared to cell lines derived from cases without prior exposure to
chemotherapy. However, this information is available for the HGSOC cell lines and mRNA
expression of EEF1A1 in olaparib-sensitive HGSOC cell lines provides a clue that expression
of at least one of our key candidate genes may be influenced by chemotherapy. EEF1A1
expression is lower in TOV3041G, derived from a post-chemo case (Table 4), as compared
to expression in the remaining four cell lines derived from pre-chemo cases suggesting that
EEF1A1 expression is reduced following chemotherapy. It is not clear whether alterations
in our candidates can explain response to PBC agents such as carboplatin. As PUM3 and
EEF1A1 both interact with PARP1, loss-of-function alterations in these genes may only
effect PARPi response. ELP4 has been shown to be involved in HR repair [46] and in
this capacity could also affect sensitivity to carboplatin. The potentially damaging ELP4
missense variant (p.Arg317Cys) in the HGSOC cell line TOV2978G likely contributes to its
sensitivity to carboplatin even though TOV2978G was not found to express BRCA1 mRNA
or protein [29]. Functional assays in appropriate HGSOC-derived model systems focusing
on our candidates would be required to demonstrate their role in affecting alterations in
sensitivity to PARPi and PBC.

Our findings associate several genes with olaparib response. We identify known
olaparib response genes in relevant pathways such as DNA repair and cell cycle control but
also discover novel genes that have not been previously associated with olaparib response
such as PUM3 and EEF1A1 which are known to interact with PARP1, and ELP4 a recently
discovered HR gene.

4. Materials and Methods
4.1. Data Description and Linear Regression Analyses

GDSC is a pharmacogenomic database (cancerrxgene.org) providing genomic data
for over 1000 cell lines derived from diverse human cancers, and drug response (IC50)
data for over 300 drugs and compounds [26]. Olaparib response data is derived from
GDSC1 release 7.0 (March 2018). Cell line in vitro drug response was measured using
fluorescence-based cell viability assays after 72 h of drug treatment. Cell viability reduction
in response to olaparib treatment was expressed in terms of IC50. Dose response curves
were fitted to fluorescence signal intensities using a non-linear mixed effects model [70].
Olaparib response data was downloaded from ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/
releases/release-7.0/v17.3_fitted_dose_response.xlsx, accessed on 8 July 2018. GDSC cell
lines analysed in this study are presented in Table 3.

Gene expression data is merged RNAseq data for these cell lines derived from GDSC,
Cancer Cell Line Encyclopedia (CCLE) [71], and Genentech [72] which was previously
used to investigate transcription factor-drug interactions and reported by Garcia-Alonso
et al., 2018 [73]. Data is preprocessed, normalized, batch-corrected, and filtered to remove
low expressed genes and samples. This data is available at the following link: https:
//www.synapse.org/#!Synapse:syn10463688/wiki/463140, accessed on 7 June 2018. In
total, 896 Olaparib-screened cell lines with mRNA expression data for 15,379 genes was
available for analysis (Figure S4). This formed the working dataset and was analysed using
multivariate (all genes analyzed simultaneously) and univariate (genes analyzed one at a
time) linear regression method.

In the multivariate approach, data was randomly partitioned into training (60%) and
test (40%) sets, ensuring that these partitions were balanced to have similar proportions of
cell lines from each tissue type. A linear regression model with elastic net regularization
was fit using natural log IC50 as response and z-score expression for all genes as predictors
with tissue of origin, microsatellite instability (MSI) status (MSI-high: MSI-H, microsatellite

ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-7.0/v17.3_fitted_dose_response.xlsx
ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-7.0/v17.3_fitted_dose_response.xlsx
https://www.synapse.org/#!Synapse:syn10463688/wiki/463140
https://www.synapse.org/#!Synapse:syn10463688/wiki/463140
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stable: MSS), BRCA1/2 mutation status (encoded as 1 for mutation in either BRCA1 or
BRCA2, and 0 for cell line without mutation in either BRCA1 or BRCA2), first two principal
components (Figure S5) of gene expression principal component analysis (PCA), and
culture medium (RPMI [Roswell Park Memorial Institute] or DMEM/F12 [Dulbecco’s
Modified Eagle Medium F-12]) as additional predictor variables. Five-fold cross-validation
was performed on the training set over a range of tuning parameters (alpha ranges from
0, 0.5 or 1 and lambda ranges from 0 to 1 with 0.01 increment). The optimum model
(alpha = 0.5, lambda = 0.14) was selected based on lowest root mean-squared error (RMSE).

The performance of the elastic net multivariate model was evaluated on the test data
partition (Figure S6). This model explained 25.2% (R2) of the variation in natural log IC50
with RMSE = 0.898 and mean absolute error (MAE) = 0.734. Genes with coefficients greater
or equal to zero were considered significant gene predictors. Data partitioning, model
fitting and evaluation, and visualization were done in R using caret [74], glmnet, and
ggplot2 packages.

Multiple ordinary least squares (OLS) linear regression models, for one gene at a
time, were also done with natural log IC50 as response and z-score of gene expression as a
predictor, keeping the same additional predictor variables as the multivariate approach.
Correction for multiple testing was done using False Discovery Rate (FDR), genes with
FDR-adjusted p-values less than 0.05 were considered significant gene predictors. This was
done in R using functions lm and p.adjust from stats package.

4.2. Exome Characterization and Differential Gene Expression Analysis of 18 HGSOC Cell Lines
Previously Screened for In Vitro Olaparib Response

In vitro olaparib response of 18 spontaneously immortalized human HGSOC cell lines
(Table 4), derived from chemo-naïve and chemo-treated patient’s tumors and ascites was
determined by clonogenic survival assay and expressed as IC50 as previously described [17].
Briefly, cells were incubated with the drug for 24 h. Cell viability was measured by forma-
tion of colonies as observed under a stereomicroscope and reported as percent of control.
Experiments were done in triplicate and repeated three times. Cell lines were classified as
olaparib sensitive (0.0003 ± 0.0004–0.07 ± 0.05), intermediate (0.45 ± 0.30–2.99 ± 1.20) or
resistant (7.04 ± 2.33–21.71 ± 10.33) based on statistical groupings of IC50.

These cell lines have been previously characterized at genetic and molecular
levels [28–30,49]. All but one (TOV3041G) of the 18 cell lines harbor somatic mutations in
TP53, which is the most common somatically mutated gene in HGSOC cases. However,
TOV3041G does not express TP53 at protein level. Two cell lines were derived from patients
that carry germline pathogenic variants in BRCA1 (OV4485) or BRCA2 (OV4453) [29].

4.3. Exome Sequencing, Read Mapping and Variant Calling

Exome sequencing of the cell lines was done using the Illumina HiSeq 2000 platform,
following target enrichment with the Roche Nimblegen SeqCap EZ exome v3 kit, at the
McGill University and Genome Quebec Innovation Centre (now called McGill Genome
Centre). Sequencing was paired-end with average read length of 100 bases. Sequencing
adapters were trimmed and trailing low quality (Phred33 score >= Q30) bases were re-
moved using Trimmomatic [75] (version 0.36). Reads were then aligned to human reference
genome build GRCh37 using BWA (Burrows Wheeler Aligner) [76]. Picard [77] (version
2.9.0) was used to mark duplicate reads. Local realignment around indels, and base quality
score recalibration was done using GATK (Genome Analysis Toolkit) [78] (version 3.5).
SAMtools/BCFtools [79] (version 1.3.1) was used for variant calling. Variant effects were
then predicted with SnpEff [80] and annotated with dbSNP [81] and COSMIC (Catalogue of
Somatic Mutations in Cancer) [82] identifiers using SnpSift [83]. Variant scores and predic-
tions from variant effect prediction algorithms were obtained from the dbNSFP (database
of non-synonymous functional predictions) [84] and dbscSNV (database of splice-altering
SNVs) [85] databases. These scores and predictions were also annotated using SnpSift.
Annotated variants were then exported into R [86] for further filtering and prioritization.



Cancers 2021, 13, 1296 15 of 21

4.4. Filtering and Prioritization of SNVs and Indels

Read depth of 10 or greater and variant allele frequency of at least 30% were used
as confidence filtering criteria for variants. Cell lines were investigated for mutations in
DNA repair and cell cycle genes (n = 533, Table S4). DNA repair genes were derived from
a curated list of genes reported in a pan-cancer survey of DNA damage repair deficiency
in TCGA (The Cancer Genome Atlas) [87], and cell cycle genes were derived from KEGG
(Kyoto Encyclopedia of Genes and Genomes) database [88] and Qiagen’s cell cycle gene
expression array [89]. Nonsynonymous SNVs were considered damaging or deleterious
based on the consensus prediction of at least four (out of seven) variant effect predic-
tion algorithms; SIFT (Sorting Intolerant from Tolerant) [90], PolyPhen2 (Polymorphism
Phenotyping v2) [91], FATHMM-MKL [92], Mutation Assessor [93], Mutation Taster [94],
REVEL [95], and MetaSVM [96]. Since damaging variants are rare in the general population
an additional criterion for selecting potentially damaging SNVs is that they must be present
at 0.1% minor allele frequency (MAF) or lower in the Genome Aggregation Database
(gnomAD) [97] database version 2.1, or not reported in this database. Potential splice
altering variants were selected based on consensus scores (0.6 or greater) of ADA (adaptive
boost) and RF (random forest) in the database of single nucleotide variants within splicing
consensus regions (dbscSNV) [85]. Indels called by SAMtools that overlap repeats were
filtered out using repeatmasker [98] in rtracklayer [99] package in R. Sequence variants that
met filtering and prioritization criteria were manually verified using Integrative Genomics
Viewer (IGV) [100].

4.5. Copy Number Variation Analysis

CNVkit [101] version 0.9 was used to call CNVs using GRCh37-aligned sequence
reads in BAM (Binary Alignment Map) format, genomic coordinates of exome capture
target regions in a BED (Browser Extensible Data) file, and GRCh37 reference sequence
in FASTA format as inputs. Regions of poor mapping based on GRCh37, containing cen-
tromeres, telomeres, and highly repetitive sequences were excluded from the analysis using
precomputed BED file included in the software package (https://github.com/etal/cnvkit/
blob/master/data/access-5k-mappable.grch37.bed, accessed on 11 March 2018). Target
regions were grouped into bins of 267 bp size, on average, according to default settings
and read depth for these bins were computed. Off-target coverage was also determined for
each cell line. Read depth for each sample is median-centered, across bins, and corrected
for GC content and repetitive sequence biases. Corrected bin-level coverage was compared
to a neutral (or flat) reference which assumes all target and off-target regions are equally
covered and diploid. Bin-level copy number ratios were aggregated into segments using
the default circular binary segmentation algorithm with low-coverage and outlier bins fil-
tered out. Genes involved in CNV segments were selected using the genemetrics command
with minimum absolute log2 copy ratio threshold (−t) of 0.4 (gain ≥ 0.4, loss ≤ −0.4) and
minimum number of bins (−m) per gene of 5. Amplifications and deletions were defined
by log2 copy ratio thresholds of 1 and −1, respectively.

4.6. Differential Gene Expression Analysis

Gene expression profiling was done for all 18 HGSOC cell lines using the Clariom™ S
human array. Normalization was done using Signal Space Transformation-Robust Multi
array Average (SST-RMA) method. Normalized expression values per gene were converted
to z-scores (mean-centred expression divided by standard deviation). Differential gene
expression analysis was done using the linear models for microarray data (LIMMA [102])
package in R. In total, 17,403 protein coding genes were analysed. For each gene, mean
expression level in the sensitive cell lines (n = 5) was compared to the mean expression
level in resistant cell lines (n = 4). The lmFit function was used to fit robust linear models
to the data and calculate mean expression. A moderated t-test was used to compare the
expression between resistant and sensitive groups using the eBayes function. Resulting
p-values were adjusted for multiple testing using false discovery rate (FDR). Significant

https://github.com/etal/cnvkit/blob/master/data/access-5k-mappable.grch37.bed
https://github.com/etal/cnvkit/blob/master/data/access-5k-mappable.grch37.bed
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differentially expressed genes were defined by FDR-adjusted p-value < = 0.05, and absolute
log2 fold change >= 1.5.

4.7. Mutational Signature Analysis

SNVs that pass confidence filtering and are present at MAF of 0.1% or less in gnomAD
database, or confirmed somatic in COSMIC were considered somatic variants and selected
for mutational signature analysis. Mutational signatures [103] were derived from the
frequencies of all six types of single-base somatic substitutions of pyrimindine bases within
a trinucleotide context (including the bases 5′ and 3′ of the mutated base). The R package
deconstructSigs [104] was used to determine the contributions of known mutational sig-
natures within individual cell lines using COSMIC SBS mutational signatures version 2
as reference.

5. Conclusions

These results implicate new genes as potential biomarkers of olaparib response from
genomic data analyses of two independent groups of cancer cell lines. Using statistical
methods we identify significant predictors of olaparib response based on gene expression,
successfully validate some of these candidate genes by identifying genomic alterations
(including sequence variants, copy number variants and differential expression) in olaparib-
sensitive, -intermediate or -resistant HGSOC cell lines, and further highlight that promising
validated genes have known relevant functions including interaction with PARP1 (PUM3,
EEF1A1) or involvement in HR (ELP4). We present these results to encourage further
experimental and clinical research into olaparib, and other PARPi, focusing on PUM3,
EEF1A1 and ELP4 to investigate whether genomic and molecular alterations in these genes
affect olaparib response in vitro, elucidate molecular mechanisms by which these genes
contribute to olaparib response, and assess the potential utility of genomic alterations in
these genes, in relation to BRCA1/2 mutations and HR deficiency, for identifying patients
most likely to benefit from olaparib treatment.
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-6694/13/6/1296/s1, Figure S1: Amplification of CCNE1 locus in resistant OV866(2) (left) and
intermediate TOV3291G (right) cell lines., Figure S2: Rare, potentially deleterious, homozygous
variants in DNA repair and cell cycle genes for 18 HGSOC cell lines, Figure S3: Hierarchical clustering
of cell lines by COSMIC single base substitution mutational signatures based on Euclidean distance
and complete linkage, Figure S4: Distribution of in vitro olaparib response (IC50) across cell lines of
multiple cancer types using TCGA classifications. Figure S5: Principal component analysis plot of
GDSC cell lines based on gene expression. First two principal components (PC1 and PC2) are shown,
Figure S6: Performance of elastic net multivariate linear regression model on prediction of IC50 in test
data, Table S1: Candidate genes derived from multivariate analysis of GDSC pan-cancer cell lines,
Table S2: Candidate genes derived from univariate analysis of GDSC pan-cancer cell lines, Table S3:
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Table S4: List of DNA repair and cell cycle control genes investigated for genomic variations in
HGSOC cell lines.
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