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Recently, increasing data show that immunotherapy could be a powerful weapon against cancers. Comparing to the traditional
surgery, chemotherapy or radiotherapy, immunotherapy more specifically targets cancer cells, giving rise to the opportunities to
the patients to have higher response rates and better quality of life and even to cure the disease. Cancer vaccines could be
designed to target tumor-associated antigens (TAAs), cancer germline antigens, virus-associated antigens, or tumor-specific
antigens (TSAs), which are also called neoantigens. The cancer vaccines could be cell-based (e.g., dendritic cell vaccine provenge
(sipuleucel-T) targeting prostatic acid phosphatase for metastatic prostate cancer), peptide/protein-based, or gene- (DNA/RNA)
based, with the different kinds of adjuvants. Neoantigens are tumor-specific and could be presented by MHC molecules and
recognized by T lymphocytes, serving the ideal immune targets to increase the therapeutic specificity and decrease the risk of
nonspecific autoimmunity. By targeting the shared antigens and private epitopes, the cancer vaccine has potential to treat the
disease. Accordingly, personalized neoantigen-based immunotherapies are emerging. In this article, we review the literature and
evidence of the advantage and application of cancer vaccine. We summarize the recent clinical trials of neoantigen cancer
vaccines which were designed according to the patients’ personal mutanome. With the rapid development of personalized
immunotherapy, it is believed that tumors could be efficiently controlled and become curable in the new era of precision medicine.

1. Introduction

Cancer cells have characteristics of genetic instabilities and
accumulate somatic mutations rapidly (1–4). The genome
sequencing of cancer cells revealed heterogeneity, and tens
to hundreds to thousands of somatic mutations amassed in
individual patients. The high intertumoral heterogeneity is
evidenced by The Cancer Genome Atlas (TCGA) database,
which stores the genomic data of thousands of tumor

specimens [1–3]. There are various types of mutations, such
as point mutations, insertion/deletions, gene amplification,
and translocations in cancer cells. Some of them may lead
to nonsynonymous somatic mutations altering the amino
acid coding sequences and creating uncontrollable and
abnormal proteins to promote cell proliferation. These aber-
rant peptide sequences could be seen by our immune system.
Tumor-specific antigens (TSAs), called as neoantigens, are
created by the genomic codon alternations, editing, usage,
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antigen processing, and presentation [4, 5]. Neoantigens
could be presented by the major histocompatibility complex
(MHC; also known as human leukocyte antigen (HLA)
in humans) on the cell surface and recognized by the T
lymphocytes. As neoantigens are tumor-specific and not
expressed by normal cells [4, 5], they are ideal therapeutic
targets and have great potential to maximize the therapeu-
tic specificity, overcome the immune tolerance, and mini-
mize the risk of autoimmunity. In this article, we review
the literature of tumor antigens and cancer vaccines and
also discuss the applications and values of this approach
towards precision medicine.

2. Emerging Immunotherapies for
Cancer Treatments

In recent years, immunotherapies rapidly develop and open a
new era of cancer treatment. In 2011, the FDA first approved
an immune checkpoint inhibitor (ICI), ipilimumab, a CTLA-
4 blockage, which prolonged the overall survival rate of
patients with metastatic melanoma [6, 7]. Following this line,
there are increasing ICI, such as anti-PD1 and anti-PD-L1
antibodies, proven to be effective and durable therapies in
subsets of patients with a variety of tumor types: metastatic
melanoma, nonsmall cell lung cancer (NSCLC), prostate can-
cer, renal cell carcinoma, and so on [8]. The response rates of
ICI, however, are correlated with the mutation load of
tumors of individuals and the presence of microsatellite
instability (MSI) or DNA repair enzyme deficiency [9–11].
Nevertheless, the use of ICI carries a risk to develop irAE
(immune-related adverse events), which occur via nonspe-
cific activation of the patient’s immune system, leading to
serious and even fatal adverse reactions [12, 13]. More efforts
are needed to improve the response rates and tumor antigen
specificity of ICI and to decrease the incidence of irAE. More
recently, the first chimeric antigen receptor- (CAR-) T cell
immunotherapy, anti-CD19 CAR-T for B cell lymphoma,
was approved by the FDA in Aug 2017 [14, 15]. After that,
there are increasing clinical trials using CAR-T therapy to
treat cancers [16, 17]. CAR-T cells target the tumor-
associated antigens (TAAs), such as CD19 on B cell malig-
nancies [18, 19] and ERBB2 on breast cancers [20], which
are also expressed on the normal cells. CAR-T therapy has
the on-target but off-tumor side effect. Although CAR-T
therapies have shown considerable promise in some acute
lymphoid leukemia [18, 19], it is still a big challenge to treat
solid cancers with CAR-T cells due to the lack of suitable
TAAs. The reported overall objective response rates (ORR)
of CAR-T therapy for solid tumors are still low [21, 22].

Targeting tumor-specific antigens (TSAs) has been con-
sidered an important therapeutic approach. As TSAs are
exempt from central tolerance [23], these neoantigens could
be presented by HLA and recognized by T lymphocytes of
the immune system. Effective antitumor immunity in
humans has been associated with the presence of T cells rec-
ognizing cancer neoantigens. The studies of adoptive cell
transfer (ACT) of autologous tumor-infiltrating lymphocytes
(TILs) revealed that neoantigen-specific T cells are crucial for
clinical responses [24–27]. The isolated T cell clones or T cell

receptor- (TCR-) engineered T lymphocytes demonstrated
the epitope patterns of neoantigens recognized by T cells
[28–30]. There are increasing neoantigen-based cancer vac-
cines designed to target the unique immunogenic mutations
arising in each patient’s tumor [31]. Recently, two groups
showed glimmers of the success of personalized cancer vac-
cines [32, 33]. Both the personalized RNA mutanome vac-
cines and peptide-based vaccines induced poly-specific
therapeutic immunity against cancer [32, 33]. These neoanti-
gen cancer vaccines demonstrated to be relatively safe, feasi-
ble, and capable of eliciting strong T cell responses to
neoepitopes in patients with melanoma [32, 33]. Treatments
tailored to a person’s individual cancer mutations cause the
strong immune response to attack tumors.

3. Tumor Antigens for Immunotherapy

Regarding the targets of immunotherapy, there are different
types of tumor antigens, including tumor-associated antigens
(TAAs), cancer germline antigens (CGAs), virus-associated
antigens, and tumor-specific antigens (TSAs) (Table 1).

Tumor-associated antigens (TAAs) are present in normal
cells with low levels of expression but overexpressed on
tumor cells in different patients. There are different kinds of
TAAs, e.g., carcinoembryonic antigen (CEA) for GI cancer
and PAP for prostate cancer. Using the universal antigens,
various cancer vaccines have been designed for patients with
tumor expressing the specific TAA. For example, stimuvax

Table 1: Categories of tumor antigens.

Different antigen types, descriptions, and examples

Tumor-associated antigens (TAAs)

Low levels of expression on normal host cells

Disproportionately expressed on tumor cells

Often result from genetic amplification or posttranslational
modifications

Example: CD19 on B cell malignancies

Cancer germline antigens (CGAs)/cancer testis antigens (CTA)

Absent on the normal adult cells, except in reproductive tissues
such as testes, fetal ovaries, and trophoblast

Selectively expressed by various tumor types by epigenetic
dysregulation

Example: NY-ESO-1 in various tumors

Virus-associated antigens

Arise in cancer cells from oncogenic viral proteins

Viral oncoproteins integrate into host cell genome, causing cell
transformation and tumorigenesis

Carried by virally associated malignancies

Example: HPV E6/E7 oncoproteins

Tumor-specific antigens (TSAs)/neoantigens

Arise in cancer cells from nonsynonymous somatic mutations
that result in the formation of new peptide sequences during
tumorigenesis

Completely absent from normal host cells

Example: individual KRAS G12D somatic mutation
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(BLP25 liposome vaccine) targeting MUC1 for NSCLC is in
the phase III trial [34].

However, most attempts targeting TAAs in the cancer
vaccination have met with limited success, as TAAs are nor-
mal host proteins and therefore subject to both central and
peripheral tolerance mechanisms [35]. Due to the positive
and negative selection, the high-affinity TCRs for TAAs are
preferentially depleted, and the affinities of the remaining
TCRs for TAAs are lower than that of the TCRs for foreign
antigens [36, 37]. In addition, targeting TAAs may cause
autoimmune toxicities, such as colitis, severe hepatitis,
renal impairment, rapid respiratory failure, and even death
[38]. For example, targeting “carbonic anhydrase 9” caused
severe liver toxicity, as this TAA is expressed in bile duct
epithelial cells. Nevertheless, using TAAs as immunother-
apy targets still has its clinical value. CAR-T therapy tar-
geting CD19 in patients with acute lymphoblastic
leukemia (ALL) showed complete remission in high pro-
portion of patients, though life-long administration of
IVIG is needed for the patients [14, 15].

Cancer germline antigens (CGAs), also called cancer/tes-
tis antigens (CTAs), are present in reproductive tissues,
such as testes, fetal ovaries, and trophoblasts, but have
limited expression on other normal tissues in adults and
are generally not present on normal reproductive cells
(Table 1) [35, 39]. CGAs, such as melanoma-associated
antigen 3 (MAGE-A3) and NY-ESO-1 antigen, are
selectively expressed by various cancers [40, 41]. However,
attempts to target CGAs have met hurdles. For example,
targeting MAGE-A3 resulted in severe neurological
toxicity and death [42].

Some cancers have been associated with virus infection,
and the viral-encoded antigens comprising the viral open
reading frames are present in the tumors only but not the
normal cells (Table 1). The viral oncogenes encode oncopro-
teins and cause cell transformation and tumorigenesis, such
as Merkel cell polyomavirus- (MCPyV-) associated Merkel
cell carcinoma (MCC) and human papillomavirus- (HPV-)
associated cervical cancer or oropharyngeal cancer [43–45].
Targeting virus-associated antigens has been considered to
be one of the effective methods for treating cancers [46–48].
Nevertheless, some virus-associated antigens showed ability
to escape from the immune detection of the host [49, 50].

Tumor-specific antigens (TSAs; neoantigens) arise from
nonsynonymous mutations and other genetic alterations in
cancer cells (Table 1). Neoantigens are mutated peptides
been presented by HLA on the cell surface and subsequently
recognized by the immune system. TSAs are theoretically
more attractive therapeutic targets because they are different
from the germline and seen as nonself by the immune sys-
tem. Because normal cells do not express TSAs, neoantigen-
specific immune reactions are not subject to central and
peripheral tolerance. In addition, targeting TSAs should be
less likely to induce autoimmunity. As a result, neoantigens
appear to represent the ideal targets for therapeutic cancer
vaccine and T cell-based cancer immunotherapy. Several
neoantigens have been identified from different types of
cancers, including melanoma, lung cancer, hepatoma, and
renal cancers [51, 52].

4. Categories of Cancer Vaccines

With the development of technologies of next-generation
sequencing (NGS), it becomes apparent that human cancers
are very complex, bearing thousands of mutations. By the
application of platforms of immune repertoire, increasing
evidence reveals that some of the tumor antigens could be
recognized by the immune repertoire. Now, there are differ-
ent prediction algorithms and software for the epitope map-
ping andMHC/neoantigen binding [5, 53]. Different kinds of
cancer vaccines could be designed to target diverse tumor
antigens, including shared antigens or private epitopes.

There are three broad types of cancer vaccines, designed
in the forms of cells, proteins/peptides, and genes
(Figure 1). Regarding cell-based cancer vaccines, there are
(1) autologous or allogeneic whole tumor cell vaccine and
(2) autologous dendritic cells (DC), pulsed or transfected
with tumor antigens in different forms, such as tumor lysates,
purified proteins, peptides, DNA, or RNA [54]. When using
the whole tumor cells as the antigens, the cells could be inac-
tivated by heat, chemicals, or radiation. There are different
kinds of cancer vaccines using whole tumor cells, e.g.,
OncoVAX (Vaccinogen) for colon cancer, Reniale (Lipo-
Nova) for renal cancer, and GVAX for prostate cancer [55–
57]. The autologous or allogenic whole tumor cells can be
genetically modified to produce immune molecules, e.g.,
Lucanix (belagenpumatucel-L from NovaRx) for NSCLC
[58]. The phase III study of Lucanix (belagenpumatucel-L
from NovaRx), however, failed to meet the endpoint in
NSCLC [58]. Since the main disadvantage of whole tumor
cell-cancer vaccine is nonspecificity, targeting TAA as the
component of the cell-based vaccine may improve the anti-
cancer effect. For example, the dendritic cell vaccine, pro-
venge (sipuleucel-T), targeting PAP for metastatic
castration-resistant prostate cancer, was the first FDA-
approved cell-based cancer vaccine in 2010 [59]. Neverthe-
less, cell-based vaccines also have the limitations of the
high-cost, time-consuming, and large-scale manufacturing
production for individual patients [60, 61].

Protein/peptide-based vaccines could be composed of
TAAs, CGAs, virus-associated antigens, or TSAs, with differ-
ent adjuvants. The synthetic peptide vaccines are usually
composed of 20–30 amino acids targeting the specific epi-
topes of tumor antigens. Furthermore, the tumor antigens
could be modified to fuse or mix with cytokines, antibodies,
or immunogenic peptides in the protein/peptide-based can-
cer vaccines, e.g., Oncophage for kidney cancer, melanoma,
and brain cancer and Stimuvax (BLP25 liposome vaccine)
targeting MUC1 for NSCLC and breast cancer [34, 62, 63].
Peptide vaccines have several advantages, such as easy syn-
thesis with low cost, increased stability, and relative safety.
Peptide vaccines have been generally demonstrated in
numerous preclinical and clinical studies. However, there
are obstacles of peptide vaccines needed to be overcome,
which include the limitation of well-known peptide epi-
topes as vaccine candidates, immune evasion, weak immu-
nogenicity of tumor antigens, and high cost for cGMP
manufacturing and production of a fully personalized
cancer vaccine [64–66].
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Gene-based cancer vaccines apply DNA (as plasmids) or
RNA (as mRNA), which could be taken up by antigen-
presenting cells (APC) and translated into peptides or pro-
teins as cancer-specific antigens to stimulate the immune
response. There are different kinds of DNA cancer vaccines,
such as mammaglobin-A for breast cancer, PAP for prostate
cancer, gp100 and gp75 DNA for melanoma, and VXM01 for
pancreatic cancer [59, 67–70]. The major obstacle of gene-
based vaccination is the DNA/RNA delivery method and
uptake efficiency, consequently limiting the antigen tran-
scription and presentation by APC [71]. Although electropo-
ration or viral vectors showed higher efficiency to deliver the
DNA or RNA into cells, both methods are difficult to be
applied in clinical practice [72–75]. For example, the clin-
ically approved devices for electroporation are available;
however, patients’ compliance has limited the use [73].
Regarding the virus-mediated delivery, it should be care-
fully considered for the potential side effects related to
the administration of live virus together with the decreased
efficiency of the presence of antiviral neutralizing antibod-
ies in patients [72].

5. Preclinical and Clinical Trials Applying
Neoantigen-Based Cancer Vaccines

The number of somatic mutations ranges from a few dozens
to several tens of thousands in an individual tumor. With the
development of NGS technologies, the highly heterogeneous
neoantigens of tumor cells could be characterized. The can-
cer vaccine is a relatively safe and effective therapy compared
to other methods of cancer treatments. To generate the per-
sonalized cancer vaccine, the somatic mutations of cancer

cells could be identified by the whole exome sequencing via
the comparison of the genomic DNA data of excised tumor
tissue and peripheral blood mononuclear cells (PBMC) of
an individual. According to the profile of detected tumor
mutations, the personalized cancer vaccine could be designed
to target the specific epitopes of neoantigens against cancers.
The personalized cancer vaccine may consist of the synthetic
peptides or genes encoding the shared tumor antigens, or pri-
vate neoantigens, with the presence of adjuvants such as
poly-ICLC, GM-CSF, and BCG (Figure 2). Personalized can-
cer may be used with the combination of other therapeutics,
e.g., ICI, chemotherapy, or radiation therapy.

Based on the theory of tumor-immune cell interaction,
the personalized cancer vaccination works to activate the
immune system and kill cancers (Figure 2) [76]. First, the
neoantigens from the cancer vaccine or died cancer cells are
captured by APCs. Next, the activated APCs migrate to the
lymph nodes and the MHC molecules present the neoanti-
gens to T lymphocytes. The specific TCR recognizes the
neoantigens, resulting in the priming and activation of T cell
immunity. Neoantigen-specific T cells are then expanded,
traffic and infiltrate to the tumor microenvironment. These
expanded T cells specifically bind to the neoantigens of can-
cer cells via the interaction of the TCR/neoantigen/MHC
complex. The CD4-positive T cells augment the immune
response against cancers, and CD8-positive cytotoxic T
lymphocytes (CTL) directly kill the cancer cells through
the degranulation of granzyme, granulysin, or perforin.
The lysed tumor cells release more neoantigens, which
elicit the adaptive immune memory response and lead to
the expansion of molecularly heterogeneous T cells against
cancers (Figure 2).

�erapeutic cancer vaccines

Bacterial vector

DNA and RNA vaccines

Cell-based vaccines

Generic material
Activated autologous dendritic cells

Tumor amtigens or peptides

Autologous dendritic cells acquire tumor antigens, peptides or generic materials, and then expand ex vivo or in vivo

DNA encoding tumor antigens

RNA encoding tumor antigens
Viral vector

Protein/peptide vaccines
Synthetic peptidesTumor antigenes

Figure 1: Schematic representation of different types of therapeutic cancer vaccines, which could be designed according to the forms of cells,
proteins/peptides, and genes.
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In the preclinical studies of the tumor vaccination using a
mouse model, Castle et al. explored the mutanome and iden-
tified candidate mutated epitopes by whole exome sequenc-
ing of the B16F10 murine melanoma (46). Fifty selected
mutated gene coding peptides were vaccinated to mice, and
11 of 50 peptides demonstrated immunogenicity and
induced immune responses (46). The mutated Kif18b
(K739 N) was the dominant mutated antigen, and mice
immunized with mutated Kif18b peptide showed decreased
tumor progression and improved survival [77]. Yadav et al.
predicted the immunogenic tumor mutations by combining
mass spectrometry and exome sequencing (47). MC-38
tumor-bearing mice, which were injected with the mutated
peptide vaccine (Adpgk, Reps1, and Dpagt1), showed the
suppression of tumor growth [78]. Castle et al. developed a
synthetic RNA pentatope vaccine (36). Each pentatope con-
tained five 27-mer minigenes, including the mutated amino
acids in the center, and each pentatope was fused to another
by 10-mer glycine-serine linker (36). The CT26 tumor-
bearing mice were vaccinated with the RNA pentatope, and
slow disease progression and improved survival were
observed (36). This study suggests that mutant MHC class
II epitopes are more immunogenic and drive therapeutic
immune response to cancer than that of class I epitopes.

There are clinical trials evaluating the safety and efficacy
of personalized cancer vaccines. Some of the clinical trials
have shown encouraging results. For example, Carreno
et al. identified somatic mutations in tumors from 3 patients
with melanoma by whole exome sequencing (48). The
authors used an HLA binding prediction algorithm to
initially filter the candidate HLA-A∗02 : 01 epitopes contain-
ing residues arising from mutations and then evaluated the
MHC-epitope binding using competitive assays. The three
patients received autologous dendritic cells pulsed with the
top 7 neoantigen peptides, which showed higher binding
affinity to the HLA-A∗02 : 01. They found that dendritic cell
neoantigen vaccine increased the diversity of melanoma
neoantigen-specific T cells (48). These neoantigens could be
endogenously processed and presented to T cells, and the T
lymphocytes elicited by vaccination could recognize the tar-
get cells transfected with the corresponding tandem mini-
gene constructs [79]. Recently, Ott et al. enrolled 6 patients
with melanoma and identified the tumor-specific mutations
by NGS [33]. To make the personalized peptide vaccines,
the authors predicted the neoantigens which could bind to
the individual MHC proteins by algorithms. Each patient
was vaccinated using the synthetic long peptides representing
up to 20 predicted personal tumor neoantigens. The

Adjuvant

Synthethic
neoantigen-specific

peptides

Whole exome sequencing
identify non-synonymous mutations

DNA extraction from excised
tumor tissue or PBMC

Tumor cell

Tumor cell

Tumor cells with neoantigens
are killed by specific T cells,

leading to more tumore
atigens release

Synthetic neoantigen-specific
peptides/tumor antigens

Immature
APCs

APCs uptake the neoantigen-
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and then become active

Activated APCs migrate to lymph nodes and present the
neoantigens to T lymphocytes

MHCI
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Neoantigen-specific T cells
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Figure 2: The designing strategies and immunology of personalized neoantigen cancer vaccine. (I–III) The tumor neoantigens of an
individual are identified using the whole exome sequencing, and the personalized neoantigen cancer vaccine is introduced. (1) The APCs
uptake the neoantigen peptides in the vaccination sites and then migrate to the lymph nodes. (2) The activated APCs present the
neoantigens by MHC class I or MHC class II molecules to T cells. (3) The neoantigen-specific TCR recognizes the specific neoantigen
presented by the MHC molecules of APCs. (4) The neoantigen-specific CD4+ helper or CD8+ cytotoxic T cells are activated and clonally
expanded and then migrate to the tumor microenvironment. (5) The tumor cells are killed directly by neoantigen-specific CD8+ cytotoxic
T cells, leading to the release of more of tumor neoantigens. APC: antigen-presenting cell; MHC: major histocompatibility complex; TCR:
T cell receptor.
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vaccination induced polyfunctional CD4+ and CD8+ T cells
targeting 58 (60%) and 15 (16%) of the 97 unique neoanti-
gens used across patients [33]. These T cells could discrimi-
nate mutated and wild-type antigens, and some of them
could directly recognize autologous tumor [33]. Four of 6
patients had no recurrence at 25 months after vaccination,
and the other two patients with recurrent disease were subse-
quently treated with anti-PD-1 therapy and experienced
complete tumor regression [33]. In addition, Sahin et al.
showed that personalized RNA mutanome vaccines elicited
poly-specific therapeutic immunity against melanoma [32].
This study applied a process comprising the comprehensive
identification of individual mutations, computational predic-
tion of neoantigens with high binding affinity to MHC pro-
teins, and designing and manufacturing of an RNA-based
vaccine unique for each patient [32]. All patients developed
T cell response against multiple vaccine neoantigens [32].
The cumulative rate of metastatic events was significantly
reduced after the injection of vaccine, resulting in a sustained
progression-free survival [32]. Two of 5 patients with meta-
static disease had vaccine-related objective response, and a
patient developed a complete response to vaccination in
combination with PD-1 blockade therapy [32]. These prom-
ising results demonstrate that personalized neoantigen can-
cer vaccine opens a new path to cure the disease.

6. Conclusion and Future Perspectives

Cancer vaccine composed of unique tumor antigens specifi-
cally forces the immune system to recognize the malignan-
cies, which could be used alone or in combination with
other therapies. Among the different kinds of tumor anti-
gens, neoantigens are ideal therapeutic targets for the design
of cancer vaccine as they are tumor-specific and have the
lowest risks of autoimmunity. The neoantigen-based cancer
vaccines showed the induction of de novo T cell clones that
detected multiple individual-specific neoantigens and recog-
nized endogenously processed antigens and autologous
tumor cells [32, 33]. When the encouraging results of person-
alized cancer vaccines are accumulating, there are some
obstacles needing to overcome. Some cancers are “cold
tumors,” e.g., pancreatic cancers and colorectal cancers,
showing low response rates to immunotherapies. How to
use personalized cancer vaccines to increase the reactive T
cells in the microenvironment and combine with other ther-
apies to have synergy effects on “cold tumors” needs further
investigation. Another concern is the heterogeneity of tumor
and immune escape. In an individual patient, the same types
of neoantigens may be expressed on some, but not all tumor
cells, which may cause cancers to escape from immunother-
apy. One potential approach to solve this problem is to target
multiple neoantigens of a diversity of malignant clones per
patient, as demonstrated in the previous studies [32, 33].
Therefore, all tumor cells could be destroyed at the same time
of the treatment course, and the cancer vaccine minimizes
the chance of tumor escape by the loss of antigens [32, 33].
Lastly, the pharmacoeconomics is also an important issue
for implementing personalized neoantigen cancer vaccine
into clinic practice. The individualized vaccine is still

expensive due to the cost for genome sequencing and
manufacturing of small and personalized-specific GMP drug
product batches. However, the expense for personalized can-
cer vaccine may reduce following the development of
improved methods for predicting antigen presentation, the
process of commercialization, full automation, and optimiza-
tion of manufacturing processes. After having more under-
standings of the cancer immunology, the cancer vaccine
may be designed to target the driver mutations or shared
antigens of different tumor types or individuals, to increase
the therapeutic efficiency, and to reduce the expense of
manufacturing [80]. In conclusion, there are increasing evi-
dence demonstrating the feasibility, safety, and immunoge-
nicity of the personalized cancer vaccine in the treatment of
cancer patients. The personalized cancer vaccine could work
alone or in combination with other therapies to enhance the
strength and persistence of antitumor effects, increase the
survival rates and quality of life, and ultimately improve the
efficacy of cancer treatments in the patients. It is anticipated
that personalized cancer vaccine will make precision medi-
cine to be available and affordable for most of patient popu-
lation in the near future.
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