
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3230  | https://doi.org/10.1038/s41598-021-82562-0

www.nature.com/scientificreports

Variable selection methods 
for predicting clinical outcomes 
following allogeneic hematopoietic 
cell transplantation
Chloé Pasin1, Ryan H. Moy2, Ran Reshef3 & Andrew J. Yates1*

Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative procedure for a large 
number of diseases. However, the greatest barriers to the success of allo-HCT are relapse and graft-
versus-host-disease (GVHD). Many studies have examined the reconstitution of the immune system 
after allo-HCT and searched for factors associated with clinical outcome. Serum biomarkers have also 
been studied to predict the incidence and prognosis of GVHD. However, the use of multiparametric 
immunophenotyping has been less extensively explored: studies usually focus on preselected and 
predefined cell phenotypes and so do not fully exploit the richness of flow cytometry data. Here we 
aimed to identify cell phenotypes present 30 days after allo-HCT that are associated with clinical 
outcomes in 37 patients participating in a trial relating to the prevention of GVHD, derived from 82 
flow cytometry markers and 13 clinical variables. To do this we applied variable selection methods in 
a competing risks modeling framework, and identified specific subsets of T, B, and NK cells associated 
with relapse. Our study demonstrates the value of variable selection methods for mining rich, high 
dimensional clinical data and identifying potentially unexplored cell subpopulations of interest.

Allogeneic hematopoietic cell transplantation (allo-HCT) is used as a curative treatment for many blood cancers 
and non-malignant conditions. It involves transferring hematopoietic cells, including stem cells, from a healthy 
donor to induce a complete or partial replacement of the recipient’s hematopoietic system. The success of the 
procedure relies on the effective reconstitution of the immune system and the eradication of tumor cells by the 
donor cells (the graft-versus-tumor effect)1. However, the success of allo-HCT can be compromised by a number 
of clinical events: opportunistic infections, relapse, or graft-versus-host-disease (GVHD). GVHD occurs when 
cells from the graft recognize minor histocompatibility antigens expressed on non-hematopoietic cells, and cause 
damage in tissues—typically gut, liver, and  skin2. There are two forms; acute (aGVHD) or chronic (cGVHD). 
Historically, the differential diagnosis is made based on the time since allo-HCT (before or after 100 days), but 
recent recommendations classify GVHD by its clinical  manifestation3. Preclinical models and clinical studies 
have advanced our understanding of the pathogenesis of  GVHD4 and identified factors influencing its risk of 
occurrence, such as the genetic distance between donor and recipient (unrelated versus sibling), conditioning 
 intensity5, and cytomegalovirus (CMV)  seropositivity6. Graft source, patient age, and the donor/recipient gender 
combination are also some of the factors included in the European Bone and Marrow Transplant group risk 
score, which is used to predict HCT  outcomes7. Events soon after transplant may set the stage for later outcomes, 
and identification of immunological variables associated with phenotypes could help in understanding GVHD 
 pathogenesis8.

Advances in biotechnology, and in particular methods based on single-cell characterization such as flow or 
mass cytometry, have given many insights into the trajectories of the immune response to self and tumor anti-
gens following allo-HCT9–11 and led to the identification of associations between some cell subsets and clinical 
 outcomes12. For example, the risk of aGVHD was increased in patients with lower CD56bright NK cells within 
two months after allo-HCT13 and NK cell numbers 30 days after HCT were also negatively associated with the 
risk of aGVHD and  death14. Studies focusing on T cells revealed that higher numbers of CD38bright effector 
memory CD8+ T  cells15 and lower frequencies of regulatory T cells within CD4+ T  cells16 were predictive of the 
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occurrence of aGVHD. Further, aGVHD and cGVHD patients were found to exhibit lower numbers of IgM+ 
memory B  cells17, and some evidence of B cell exhaustion was found in cGVHD  patients18. In addition, levels of 
CXCL9 100 days after transplant and levels of CXCL10 measured pre-transplant were found, in separate studies, 
to predict cGVHD up to 1  year19,20. Importantly, variables measured 30 days after transplant can also predict 
clinical outcome: multiple biomarkers are predictive of non-relapse mortality up to 12 months post-transplant21 
and donor chimerism levels predict relapse and overall  survival22. However, most studies aiming to predict a 
patient’s clinical evolution focus on preselected and predefined cell subsets, and do not explore the full potential 
of multiparametric immunophenotyping, which can enumerate tens or even hundreds of phenotypes at once.

Here, we perform unbiased identification of clinical and immunological variables (specifically, cell subpopu-
lations present 30 days after allo-HCT) that are associated with 3 clinical outcomes experienced by allo-HCT 
recipients: relapse, acute GVHD grade 2 to 4 (aGVHD24), and chronic GVHD (cGVHD). We use sophisticated 
and complementary statistical tools to analyze flow cytometry data and select relevant cell subpopulations. We 
do this within a competing risk framework, studying the time to the first event experienced by patients following 
allo-HCT. Competing risk models are widely used in transplant studies, and are usually implemented to study 
the effect of a small number of clinical factors on outcome. Here we examine a dataset in which the number of 
potential covariates of interest far exceeds the number of patients, a scenario that has become ubiquitous as high-
throughput assays are now widely used in the biomedical sciences. To deal with these high-dimensional data we 
explore variable selection methods, which are well-developed in the context of classification or regression, but 
have only recently been adapted to the setting of competing risk  analysis23–25.

Results
Patient characteristics. We studied data generated during a previously reported phase 1/2 clinical 
 trial26,27, which assessed the safety and efficacy of the addition of a CCR5 antagonist (maraviroc) to standard 
GVHD prophylaxis. Immunophenotyping was performed by flow cytometry 30, 60 and 90 days after allo-HCT 
on a subset of patients in the trial. Given the small number of measures at days 60 and 90, we focused on a subset 
of 37 patients for which the measures of 82 cell subpopulations at day 30 were complete. Their clinical charac-
teristics are detailed in Table 1, and the cell subpopulations are listed in Supplementary Text S1 online. Among 

Table 1.  Characteristics of the subset of patients used in the analysis. DLI Donor lymphocyte infusion.

Controls Maraviroc Total

n=19 n=18 n=37

Donor age, mean (sd), years 42 (17) 40 (15) 41 (16)

Recipient age, mean (sd), years 59 (10) 61 (6.9) 60 (8.5)

Recipient sex, n

Male 14 12 26

Female 5 6 11

Cytomegalovirus status, n

Recipient positive 9 5 14

Donor positive 7 7 14

Diagnosis, n

Acute Myeloid Leukemia 9 8 17

Myelodysplastic Syndrome 4 4 8

Other 6 6 12

Donor matching, n

Matched related donor 8 6 14

Matched unrelated donor 11 12 23

Time to neutrophil engraftment, median [range], days 14.5 [10;23] 17 [7;27] 16 [7;27]

Time to platelet engraftment, median [range], days 17 [5;35] 22 [11;84] 18 [5;84]

Number of infections prior to day 100

0 13 12 25

One or more (1, 2 or 3) 6 6 12

First event experienced, n

aGVHD24 13 4 17

cGVHD 3 5 8

Relapse 3 7 10

Censored by DLI 0 2 2

Time to first event, median [range], days

aGVHD24 169 [32;271] 84 [32;202] 165 [32;271]

cGVHD 431 [227;1415] 224 [208;315] 226 [208;1415]

Relapse 89 [57;414] 126 [85;331] 115 [57;414]
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these patients, 17 experienced aGVHD24 as a first event after allo-HCT, 10 relapsed and 8 experienced cGVHD. 
Two patients received a donor lymphocyte infusion (DLI) before experiencing any of these three events. Figure 1 
summarizes the raw time-to-event data, yielding the estimated probabilities of occurrence of each event over 
time in the study sample.

The cell subset frequency data are summarized in Supplementary Figure S1 online and available in full in 
Supplementary Data S1 online.

Immunological and clinical factors associated with clinical outcome. We aimed to identify cel-
lular phenotypes present 30 days after allo-HCT that were associated with any of the three clinical outcomes 
under consideration. To do this we performed variable selection within a competing risks framework. We sought 
to identify variables associated with either the cause-specific hazard (CSH), which is the instantaneous rate of 
occurrence of a given event among the patients still event-free; or the subdistribution hazard (SH), from which 
one can derive the cumulative incidence function (CIF). This yields the probability of occurrence of a given event 
over time, in the presence of competing events. The CSH and the SH approaches provide complementary infor-
mation. In practice, variables associated with the CSH give insights into the mechanisms inducing that event: the 
corresponding hazard ratio quantifies the impact of the covariate on the event without considering the effect of 
competing events. On the other hand, variables associated with CIF are more relevant for prognostic research as 
they can be used in clinical prediction models and the development of risk  scores28–32. A side-by-side analysis of 
the CSH and SH is recommended in order to achieve a complete understanding of the event  dynamics33.

Theoretical and computational details are given in the Methods section.

Cause-specific hazard model. We assumed that the effects of covariates on the time-dependent CSH of each 
event could be described with a Cox  model34. We present our results as time-independent hazard ratios (HR), 
which measure the effect size of a covariate from the vector Z = (Z1, . . .Zm) of all covariates—if covariate Zp is 
continuous, the HR is the relative change in the CSH for event k, at any time t, between two imaginary patients 
j, j′ still event-free, who differ only in the covariate Zp,j′ = Zp,j + 1 . If Zp is binary, the HR is the change in the 
CSH between the two categories, with all other variables held constant. We performed variable selection on the 
CSH using elastic-net penalization (see Methods, and ref.35). Table 2 summarizes the models obtained for each 
event, as selected by the Bayesian information criterion (BIC)36, and the corresponding HR estimates.

There were 4 patients whose neutrophil count remained > 500/µ L and/or whose platelet count remained > 
20K/µ L. For these individuals, the time to engraftment could not be properly defined. We first analyzed all 37 
patients, excluding these two variables. We then analyzed the subset of 33 patients with complete data; time to 
neutrophil engraftment and time to platelet engraftment were transformed into binary variables ( ≤ or >15 days 
for time to neutrophil engraftment; ≤ or >20 days for time to platelet engraftment). Adding these variables did 
not improve on any of the final models selected. Therefore, the analyses presented below were performed on the 
the full set of 37 patients, excluding these two engraftment measures.

Our analysis showed that treatment with maraviroc decreased the instantaneous risk of developing aGVHD24 
by 77% (HR = 0.23, 95% CI 0.07–0.80) and had no significant association with relapse or cGVHD. A higher 
instantaneous risk of aGVHD24 was also associated with lower numbers of effector memory CD8+ T cells 
expressing the chemokine receptor CCR5 (HR = 0.67, 95% CI 0.52–0.86), and higher numbers of naive CD4+ 
T cells expressing CCR5 (HR = 1.39, 95% CI 1.08–1.80), suggesting a higher inflammatory activation status in 
circulating GVHD-causing naive T cells, that generally do not express CCR5 at steady state. This finding was 
independent of receiving maraviroc: the model without interactions between the cell subsets was favoured over 
the model with no interactions ( �BIC = 4.6). Additionally, there was no statistical difference in the frequencies 
of effector memory CD8+ T cells and naive CD4+ T cells expressing the chemokine receptor CCR5 between 
patients receiving maraviroc and the controls (t test, p= 0.25 and 0.33 respectively). Following estimation by 
cross-validation, we found that the time-dependent AUC of the selected model was higher than the AUC from 
a model containing only the maraviroc treatment variable, although confidence intervals were overlapping; at 
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Figure 1.  Probabilities of occurrence of each event over time in the studied sample.
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t = 100 , the AUC of the selected model was 0.74 (0.47–0.96) versus 0.63 (0.28–0.84) for the model with mara-
viroc treatment only, and at t = 200 , these measures were 0.76 (0.50–0.88) versus 0.72 (0.52–0.84). Although 
the selected model was clearly favoured using the BIC, no individual marker was significantly associated with 
the instantaneous risk of cGVHD at the 0.05 threshold, reflecting the relatively small size of the patient sample.

A 10-year increase in donor age substantially increased the cause-specific hazard of relapse (HR = 4.46 (95% 
CI 1.66–12.0)). We also identified some cellular phenotypic associations. A higher instantaneous risk of relapse 
was associated with lower numbers of CD16hi NK cells and differentiated effector memory (CD27−CD28− ) CD8+ 
T cells (HR = 0.24, 0.07–0.83), and HR = 0.58, 0.37–0.89, respectively). Relapse was also associated with higher 
numbers of memory (CD27+ IgD− ) B cells (HR = 2.87, 1.13–7.32) and CCR5+ effector memory CD8+ T cells, 
although the latter only in the patients receiving maraviroc treatment (HR = 1.73, 1.08–2.78). The model with 
an interaction between CCR5+ effector memory CD8+ T cells and maraviroc variables had marginally greater 
support than the model without the interaction ( �BIC = 2.2).

Subdistribution hazard model. We performed variable selection on the subdistribution hazards (SH) using 
a likelihood-based boosting approach (see Methods, and ref.  23). The SH model was initially defined by Fine 
and  Gray37 to allow a direct interpretation of the effects of variables on the probability of an event. The model 
assumes that the subdistribution hazards follow a Cox model. Although the formulation of the SH model is 
similar to that of the CSH model, a subdistribution hazard ratio (SHR) cannot be interpreted as an epidemiologi-
cal HR or a modification of an apparent risk. A time-independent SHR for covariate p corresponds only to the 
change in the SH between two hypothetical patients j, j′ still event-free and with with identical covariates except 
for covariate p, with Zp,j′ = Zp,j + 1 . The signs of the selected variables’ coefficients ( βk,p = log(HR) < or > 0, 
equivalent to a HR < or > 1) indicate the direction of their effect the probability of outcome, but their absolute 
values HR do not have a straightforward  interpretation28–30. However, the advantage of the SH model compared 
to the CSH model is that a variable having a statistically significant effect on the SHR has also a statistically sig-
nificant effect on the CIF, which is not the case in the CSH  model38. Additionally, variables found to be associated 
with a clinical outcome in the SH model can be used to develop individual prognostic  scores32, which can assist 
with clinical decisions such as treatment adaptation.

In Fig. 2, we present the variables selected for each clinical outcome and their associated coefficients. We found 
that higher numbers of CD27+ IgD− memory B cells and increased donor age increased the probability of relapse 
(SHR = 2.19, 95% CI 1.18–4.06 and SHR = 1.09, 95% CI 1.03–1.16 respectively). The role of B cells in the early 
recovery phase after transplant has not been extensively studied but murine studies show that B cells participate 
in alloantigen presentation, thus have a role in both the graft-versus-tumor and graft-versus-host  responses39. 
CD16hi NK cells were negatively associated with relapse (SHR = 0.39, 0.20–0.77) which supports an important 
role of CD16hi NK cells (a mature and highly cytotoxic subset) in the graft-versus-tumor response, which has 
been previously suggested in human  studies40. As with the CSH model, we found that the time-dependent AUC of 
the selected model was higher that the AUC from a model containing only the maraviroc treatment variable, but 
confidence intervals overlapped; at t = 100 , the selected model’s AUC was 0.78 (0.43–1.0) versus 0.60 (0.36–0.80); 
and at t = 200 , 0.84 (0.58–1.0) versus 0.72 (0.56–0.84). We also found that patients treated with maraviroc were 
less likely to experience aGVHD24 than controls, consistent with previous  studies41. We estimated a SHR of 0.25 
(0.08–0.78), considering relapse and cGVHD as competing risks; the earlier point estimate of 0.42 was derived 
with only death as a competing  risk27.

Table 2.  Variable selected in final CSHMs for aGVHD24, relapse and cGVHD, with their hazard ratios (HRs), 
confidence intervals (CI) and p values. All models were adjusted on the treatment variable (maraviroc).

Variable HR 95% CI p value

aGVHD24

CD8+ EM CCR5+ 0.70 (0.56–0.89) 0.003

CD4+ Naive CCR5+ 1.37 (1.06–1.77) 0.02

Maraviroc 0.23 (0.067–0.78) 0.02

cGVHD

CD4+ EMRA CCR5+ 2.02 (0.93–4.39) 0.08

Recipient sex (ref=male) 0.09 (0.008–1.2) 0.07

Maraviroc 2.92 (0.24–36) 0.4

Relapse

B cell CD27+ IgD− 2.87 (1.13–7.32) 0.03

NK CD16hi 0.24 (0.067–0.83) 0.02

CD8+ EM CD27 CD28 0.58 (0.37–0.89) 0.01

CD8+ EM CCR5+ in maraviroc recipients 1.73 (1.08–1.28) 0.02

Age donor 1.16 (1.05–1.28) 0.02

Maraviroc 1.20 (0.17–8.2) 0.9
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An association between a variable and the CIF could either be explained by direct effect of that variable, 
or arise because the variable is associated with an opposing change in the risk of occurrence of a competing 
 event42. In our analysis, this ambiguity could be found in the association of higher numbers of effector memory 
(CD27−CD28− ) CD8+ T cells with a higher probability of cGVHD; this could be an indirect effect, because this 
cell subpopulation is associated with a lower instantaneous risk of relapse. On the other hand, the CSH and SH 
analyses are consistent regarding the effect of maraviroc in reducing the cumulative incidence of aGVHD24, as 
well as CD27+ IgD− memory B cells and increased donor age in increasing the cumulative incidence of relapse 
and CD16hi NK cells in decreasing it. For that reason, these variables can be interpreted as directly influencing 
the event  probabilities33. Absolute frequencies of the CD27+ IgD− memory B and CD16hi NK cell populations 
in serum in the different groups are shown in Fig. 3.

Discussion
We show here that variable selection methods adapted to the context of high dimensional data and a competing 
risk model allow us to identify variables associated with the clinical outcome of patients following allo-HCT. 
Both statistical methods we considered revealed an association of relapse with NK and B cell populations, sug-
gesting that these subsets could be investigated as prognostic factors. We also found associations between the 
incidence of acute GVHD grade 2–4 and several subpopulations expressing the chemokine receptor CCR5. In 
summary, this approach is valuable for identifying variables associated with clinical outcome in an unbiased 
way, exploiting the richness of information provided by gated flow cytometry data. However, here we analyzed 
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Figure 2.  Selected variables and their coefficients (the logarithm of the subdistribution hazard ratio). Positive 
coefficients (red) are associated with increased event probabilities; negative coefficients (blue) with decreased 
probabilities.

Figure 3.  Blood counts (cells/µ l) of CD27+ IgD− memory B cells (A) and CD16hi NK cells (B) in patients, 
stratified by relapse and maraviroc treatment.
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a small sample of patients as a proof-of-concept, and the predictive potential of the selected cell subpopulations 
should be verified using bigger datasets.

The statistical models used in this study also come with strong assumptions that could limit the analysis. In 
particular, the Cox model assumes that the contribution of each variable to the logarithm of the hazard is linear, 
but the relationship may be more complex. Moreover, the effect of each variable is adjusted on the others, but 
we did not explore interactions between covariates: including these would dramatically increase the number of 
variables in the initial model and would make selection more challenging. In an attempt to address these issues 
we also explored random forests, which require no assumptions regarding the form of the relationships between 
the variables and the outcome. However, likely due our relatively small sample of patients, we were not able to 
obtain any conclusive results with this method. Moreover, the interpretation of results obtained with random 
forests is harder to express in clinical terms than the one provided by the Cox models, and random forests have 
been found to perform similarly to the likelihood boosting approach in term of predictive  performance24.

Additionally, the numbers of cells in the studied subpopulations are very likely correlated. The elastic-net 
method was preferred here in the case of the cause-specific hazard model, as it has been shown to perform bet-
ter than the lasso method in the case of correlated covariates. However, another way of handling the specific 
structure of the data generated by flow cytometry would be to consider predefined groups of cell subpopulations, 
as is commonly done with groups of  genes43 and to apply the extended methods of group-lasso44, sparse group-
lasso45,46 or even random forests with grouped variable  importance47.

Here, we focused on identifying immunological variables measured 30 days after allo-HCT that were associ-
ated with three clinical outcomes, using a competing risks model. However, patients can experience multiple 
events, and to deal with this the analysis could be extended with a multistate  model48,49. Such models yield the 
transition hazards between each pair of clinical states i and j, and have already been applied within the setting 
of allo-HCT50–52, although without the variable selection methods we present here. The transitions are typically 
between aGVHD24, relapse, cGVHD, and/or infectious disease, that can occur sequentially before the end states 
of of recovery, death, or a new transplant. However, we were not able to implement a multistate model here, for 
two reasons. First, a number of medical interventions such as DLI can modify the clinical trajectory followed 
by a patient. We assumed that the immunophenotyping data available 30 days after the allo-HCT would not be 
predictive of clinical outcome after a medical intervention performed sometimes months after the allo-HCT. 
Second, our sample was too small to estimate the effect of the variables on all possible transition rates between 
clinical states.

After identifying cell subpopulations associated with clinical outcome, a natural extension would be to exam-
ine whether their subsequent dynamics within an individual are predictive of the time to a clinical event. This 
type of analysis can be realized using joint  models53, in which an underlying random effects structure links the 
survival model (time to event of interest) and the model describing the time-variation of the relevant variables. 
This approach allows for individual-specific  predictions54.

The statistical methods presented in this article allow an unbiased identification of cell phenotypes associated 
with clinical outcomes following allo-HCT. However, another source of bias arises from the data itself. Typically, 
in flow cytometric data cell subsets are defined by manual gating, which introduces a potential bias; the gating 
strategy is fixed in advance, and only the subpopulations of cells assumed to be biologically relevant are meas-
ured, as the total number of marker combinations cannot reasonably be explored by hand. A non-parametric 
method for unbiased cell population discovery, FAUST (Full Annotation Using Shape-constrained Trees) has 
recently been developed and applied to cancer immmunotherapy clinical  trials55. This approach could be used 
to discover new cell subpopulations associated with different clinical outcomes in the framework of allo-HCT.

Our study shows the relevance of sophisticated statistical methods to analyze single-cell data in the framework 
of allo-HCT to identify immunological variables predictive of clinical outcomes. Such analyses may boost our 
understanding of the mechanisms underpinning these outcomes.

Methods
Data. We analyzed data from a subset of patients who participated in a phase 1-2 clinical trial (NCT0094875) 
evaluating the safety and efficacy of adding a CCR5 blockage (maraviroc) to standard GVHD prophylaxis (tac-
rolimus, methotrexate) in reduced-intensity allo-HCT recipients and controls who were contemporary patients 
with similar characteristics that were treated with standard of care transplant. All patients were recruited 
between 2009 and  201326,27. For all 37 patients included in the analysis, we had access to the following data: 13 
clinical characteristics (recipient age, donor age, sex of donor and recipient, gender match, donor and recipient 
cytomegalovirus status, diagnosis, matching status, treatment, time to neutrophil engraftment, time to platelet 
engraftment, number of infections before day 100), time and type of event following HCT (aGVHD24, relapse, 
cGVHD, DLI, death), and flow cytometric immunophenotyping of samples taken 30 days after allo-HCT (82 cell 
subpopulations; see ref. 27 for details). We focused on identifying variables associated with the time to first event 
after allo-HCT, censored by follow-up or DLI.

Clinical trial patients and contemporary control patients signed informed consent for the collection and 
analysis of blood samples on protocols that were performed according to relevant guidelines and approved by 
the institutional review board at the University of Pennsylvania. The analysis of deidentified data presented 
here was approved by the institutional review board at Columbia University. All data used for these analyses are 
provided in Supplementary Data S1 online.

Competing risks: general framework. After allo-HCT, patients can experience a number of different 
events. The appropriate statistical framework is a competing risks  model48, which allows one to estimate the 
probability of occurrence of each event (by accounting for the possibility of the others occurring). Assuming that 
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K different events can occur, we define T̃k to be the time to event k and k = 1 . . .K the index variable indicating 
which event happens first. If no censoring occurs, we observe T = min{T̃k} and k; otherwise the observation is 
the censoring time C. In our case, events after allo-HCT are relapse, aGVHD24, or cGVHD. We censored the 
observations by the time to DLI, rather than death; none of the patients died without experiencing one of the 
three clinical events. We focused on the associations between cell subpopulations 30 days after allo-HCT and the 
first clinical outcome experienced.

The effect of covariates can be assessed on the two following quantities of interest:

• The cause-specific hazard (CSH), which is the instantaneous rate of occurrence of a given event k among the 
patients still event-free. It is the hazard of experiencing event k in the presence of the other events: 

• The cumulative incidence function (CIF), corresponding to the probability of occurrence of a given event k 
by time t. It is the expected proportion of patients that have experienced event k by a time t: 

An important point here is that the effect of a variable on the CSH can differ from its effect on the CIF. Indeed, 
the survival function S(u) at the core of the definition of the CIF in equation (2) is the probability of not having 
experienced any event by time u: it therefore depends on the CSHs of all events.

Selection methods in the competing risks framework. All analyses were performed with R version 
3.6.156. Specific packages are referenced below.

Cause-specific hazard model. The CSH is modeled by using a Cox  model34, which can be specified as:

for k = 1 . . .K  with βk the vector of coefficients associated with the vector of covariates Z = (Z1, . . .Zm) , 
HRk,p = exp(βk,p) the hazard ratio (HR) corresponding to covariate Zp and hk0(t) the baseline hazard for event 
k. The cause-specific hazard model (CSHM) corresponds to regular Cox model for one event at a time, by treating 
all other events as censored. When the number p of covariates is much high than the number n of individuals, the 
classical methods of estimation and selection (e.g., backward/forward selection) perform poorly. In this case, we 
realize the variable selection by using regularization methods already existing for regression models, including 
the Cox model. In particular, we focused on the Elastic Net (EN)  method35, which combines the  LASSO57 and 
 Ridge58 penalizations: these methods rely on adding a penalty on the non-zero coefficients, which shrink them 
toward zero. In practice, if we note Lk(βk) the partial log likelihood for event k = 1..K , we estimate β̂kEN as:

where � is the penalization penalty, usually determined by cross-validation, and α is the mixing parameter 
between Ridge ( α = 0 ) and LASSO ( α = 1 ). The EN method has been shown to perform better than the LASSO 
when the covariates are strongly  correlated35. Analyses were performed using the function cv.glmnet from the 
glmnet R  package59.

Fine and Gray subdistribution hazard model. The cumulative incidence functions (CIFs) for the three compet-
ing events were computed and plotted using the cuminc function from the cmprsk R  package60. To estimate the 
effect of covariates on each CIF, we applied the Fine and Gray model, which relates the subdistribution hazard 
for event k ( hk(t) ) to the CIF ( Ik(t) )  with37:

One then assumes that the influence of covariates on this subdistribution hazard is described with a Cox model:

A covariate’s estimated effect on the subdistribution hazard can then be related directly to the CIF. We performed 
variable selection on the subdistribution hazard using a likelihood-based boosting approach, first developed on 
survival  models61 and later extended to the competing risks  framework23. One feature of this approach is that it 
does not require variance estimation, which can be problematic in high-dimensional settings. The estimation 
of the vector of parameters relies on updating its coefficients one-by-one over the course of number of so-called 
“boosting” steps. At each step, the minimization of a loss function determines which element of the parameter 
vector is updated. The loss function is based on the partial likelihood of the Cox model. This method has been 

(1)hk(t) = lim
�t→0

P(t ≤ T < t +�t, ǫ = k|T ≥ t)

�t

(2)Ik(t) = Pr(T ≤ t, ǫ = k) =

∫ t

0
hk(u)S(u)du

(3)hk(t|Z) = hk0(t) exp(β
T
k Z)

(4)β̂kEN = argmaxβk∈Rp

[

L(βk)− α�

p
∑

j=1

|βk,j| − (1− α)�

p
∑

j=1

β2
k,j

]

(5)hk(t) = −
d log(1− Ik(t))

dt
.

(6)hk(t|Z) = hk0(t) exp(β
T
k Z).
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applied in other settings, such as bladder  cancer62 and prostate  cancer63. Our analyses were performed using the 
function CoxBoost from the CoxBoost R  package64.

Random forests. The two methods described above are based on the Cox model, which comes at the price 
of assuming proportional hazards and linearity in the contributions of variables to the outcome. Fully non-
parametric methods can be used to analyze the data without making any assumptions regarding the form of 
the relation between the covariates and the outcome. In particular, random  forests65, a tree-based approach, 
have been very popular in classification and regression problems in high-dimensional settings. In this approach 
one aggregates a number of trees that are grown on a bootstrap sample of the data and by randomly sampling a 
subset of variables for the splitting of each node. Optimization of a given criterion allows the splitting of the data 
at each node. Random forests have been extended to the case of survival data and competing risk  frameworks25, 
by modifying the splitting rules used and the quantities of interest that are estimated in each terminal node. We 
tested two survival splitting rules. One was based on the generalized log-rank test for event k, which tests the 
equality of the cause-specific hazard function in the left and right nodes. In this case we ranked the variables 
based on variable  importance66. This rule is useful for determining variables affecting the CSH. The other rule 
was based on Gray’s test, which compares the subdistribution hazard functions and allows selection of variables 
on the basis of their influence on the CIF. For this rule, we ranked the variables based on their minimum depth, 
which is not event-specific. We performed the analyses using the functions rfsrc, opt.rf (which optimizes the 
parameters of the random forest), vimp (to compute the variable importance) and max.subtree (to obtain the 
minimal depth of variables) from the randomForestSRC  R  package67.

Pipeline for variable selection. Subpopulation numbers were log-transformed, using a threshold of half the 
minimum number observed in the data. High variance in the selection is already handled in random forests 
by “bagging” (bootstrap aggregating) a given number of trees, trained on bootstrap samples of the data and 
randomly sampling a new set of variables for the splitting of each node. We used the following pipeline for the 
elastic net on the CSHM and the boosting on the SH. First, we performed variable selection for each compet-
ing event (relapse, aGVHD24, cGVHD) on 500 bootstrap samples to ensure robustness of the selection. Then, 
based on the selected variables for all competing events, we ran a final backward/forward selection (based on the 
Bayesian Information Criterion) to determine the best model and estimate the hazard ratios associated with the 
selected variable for each event. This selection was made with the function crrstep from the crrstep R  package68. 
All models were adjusted on treatment with maraviroc, and if any variable selected in the final model was a sub-
population expressing the chemokine receptor CCR5, interactions between that variable and the treatment vari-
able were tested. Finally, we checked the validity of the model assumptions, and in particular the proportional 
hazards for Cox model, with the function cox.zph from the survival R  package69. Validation was performed by 
comparing a model’s time-dependent AUC to that obtained with a model containing only the maraviroc treat-
ment variable: this was done by cross-validation using the function Score from the riskRegression R  package70. 
Only the models for aGVHD24 and relapse were considered for validation, due to the small number of patients 
experiencing cGVHD as a first outcome.
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