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INTRODUCTION

Accumulating clinical evidence suggests significant inter-individual variations in the efficacy
of standard treatment protocols followed for several diseases, such as diabetes, hypertension,
depression, cancer and epilepsy, as well as variations in drug-related side effects and toxicity
(Zhou et al., 2009; Konstandi et al., 2014; Thummel and Lin, 2014). The problem often
becomes more pronounced when multi-drug therapeutic schemes are followed (Konstandi, 2013;
Konstandi et al., 2014; Thummel and Lin, 2014; Roughead, 2015). The reasons of this diversity
appear to be related to the multi-factorial regulation of the machinery controlling the fate and
biological activity of drugs in the body. Cell-signaling, metabolic and transport systems, which
are encoded by their respective genes, participate in this machinery and in turn, are regulated
by various factors including age, gender, race, lipidemic and endocrinological state (Ingelman-
Sundberg, 2004a; Pelkonen et al., 2008; Waxman and Holloway, 2009). The functional integrity
of the respiratory, immune, cardiovascular, gastrointestinal, endocrinological and central nervous
systems also hold crucial modulatory roles in the machinery controlling drug activity (Ingelman-
Sundberg, 2004b; Konstandi, 2013; Konstandi et al., 2014). External modifying factors such as stress
stimuli, diet, environmental chemicals, toxicants and drugs, as well as infectious diseases can also
modify the outcome and toxicity of pharmacotherapy by influencing the pharmacokinetic and
pharmacodynamic profile of drugs (Zhou et al., 2009; Konstandi et al., 2014; Thummel and Lin,
2014; Roughead, 2015). This is attributed to the fact that they can affect the absorption, distribution,
metabolism, elimination and activity of drugs (Zhou et al., 2009; Konstandi, 2013; Konstandi et al.,
2013, 2014, 2020). In this context, stress plays a central role in themulti-factorial regulation of drugs
in the body and in determining a drug’s pharmacokinetic profile, as it regulates various enzymes
that catalyze the metabolism of the majority of prescribed drugs (Konstandi et al., 2000, 2004, 2005,
2008, 2014; Daskalopoulos et al., 2012; Konstandi, 2013).

DRUG METABOLISM

When a drug enters the body, it is recognized as a potential threat to homeostasis and the
detoxifying mechanisms are activated (Handschin and Meyer, 2003; Konstandi et al., 2014), aimed
at its metabolic conversion to usually inactive, water soluble metabolites, which can be readily
excreted via urine or bile. The liver serves as the major site of drug metabolism, where enzymatic
reactions catalyze the metabolic biotransformation of a drug typically in two phases: In Phase I,
drugs are metabolized through various oxidation reactions to metabolites with increased water
solubility. In Phase II, these metabolic products are conjugated with endogenous molecules, such
as glucuronic acid, glutathione or sulfate groups, to form complexes with high water solubility
(Gonzalez, 2005). The main families of enzymes that are involved in the metabolism of drugs
during Phase I include cytochrome P450s (CYPs), flavin-containing monoxygenases (FMO)
and epoxide hydrolases (EH). Enzymes of Phase II include glutathione S-transferases (GST),
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UDP-glucuronosyltransferases (UGT), N-acetyltransferases
(NAT) and sulfotransferases (SULT) (Gonzalez, 2005).
Depending on the structure of the drug, one or more of
these enzymes catalyze its metabolism leading to modification of
the drug’s pharmacokinetic, pharmacodynamic and potentially
toxicity profiles.

In several cases these enzymatic reactions can result in the
formation of biologically active or toxic metabolites that can
induce oxidative stress, cell death, carcinogenicity, teratogenesis
or other toxic manifestations (Gonzalez and Gelboin, 1994;
Guengerich, 2003; Ingelman-Sundberg, 2004a; Cribb et al., 2005;
Gonzalez, 2005; Gonzalez and Yu, 2006).

Utilizing the metabolic activation, numerous pro-drugs
have been developed over the past few decades, aiming at
increased levels of biologically active molecules in the target
tissues and less generalized toxic manifestations. Accordingly,
pro-drugs are converted into pharmacologically active forms
through metabolic activation that is mainly catalyzed by
cytochromes (Chen et al., 2004; Gonzalez, 2005). This category
of clinically important drugs include levodopa, talampicillin,
cyclophosphamide, ftorafur, diazepam, prednisone, protonsil
and enalapril, which are converted to dopamine, ampicillin,
phosphoramide mustard, fluorouracil, oxazepam, prednisolone,
sulfanilamide and enalaprilat, respectively (Sjovall et al., 1981;
Chen et al., 2004; Rooseboom et al., 2004; Sozio et al., 2012;
Konstandi, 2013).

CYP-Dependent Drug Metabolism
Cytochrome (CYP) P450s are heme-containing proteins that
are widely considered as the most important drug-metabolizing
enzymes in humans and other animal species. They are
able to collectively recognize and metabolize most structures,
due to their broad and overlapping substrate specificities
and are expressed virtually in all tissues, with generally
highest concentrations and capacity in the liver for the
main CYP isozymes. The main CYP isozymes catalyzing
the metabolism of the majority of drugs presently in the
market and other xenobiotics are arranged into three gene
families (CYP1, CYP2, and CYP3) based on their amino acid
sequence homology (Nebert, 2000; Nebert and Russell, 2002;
Gonzalez, 2005). The most important human CYP isoforms
are CYP1A1/2, CYP2A6, CYP2C8/9/19, CYP2D6, CYP2E1, and
CYP3A4 (Wormhoudt et al., 1999; Lin et al., 2001; Nebert
and Russell, 2002) that catalyze diverse oxidation reactions,
including hydroxylations, heteroatom oxidations, heteroatom
dealkylations, epoxidations, oxidative group transfer, cleavage
of esters, and dehydrogenations (Hollenberg, 1992; Guengerich,
2008). They are also involved in the biosynthesis or catabolism
of steroid hormones, neurotransmitters, bile acids, fat-soluble
vitamins, fatty acids, and eicosanoids (Spatzenegger and Jaeger,
1995; Guengerich, 2003).

Inter-individual and inter-ethnic variability in drug response
and adverse reactions, has been attributed in part, to the
polymorphism of CYP genes, including CYP1A1, CYP2A6,
CYP2A13, CYP2C8, CYP2D6, CYP3A4, and CYP3A5 (Gonzalez,
2005), and to variations in the distribution of the common

allelic variants of CYP genes among different ethnic populations
(Ingelman-Sundberg et al., 2007).

STRESS IMPACT ON CYP-DEPENDENT
DRUG METABOLISM

The majority of the CYP genes are inducible and regulated
by several external and internal factors, which, as a result,
may also influence the fate and effects of drugs through
modified enzymatic activity. Some of the emerging factors
with increasing clinical significance, as demonstrated by
various research groups, are psychophysiological stress and
stress-related disorders, which appear to have a major impact
on the expression and activity of several CYPs that catalyze
the metabolism of widely prescribed drugs (Daskalopoulos
et al., 2012; Konstandi, 2013; Konstandi et al., 2014). Our
studies indicated that stress can affect constitutive and
induced expression levels of CYP isoforms in ways that may
critically modify the pharmacokinetic profile of drug-substrates
(Konstandi, 2013; Konstandi et al., 2014) (https://www.fda.gov/
drugs/drug-interactions-labeling/drug-development-and-drug-int
eractions-table-substrates-inhibitors-and-inducers). In particular,
preclinical studies employing either early in life maternal
deprivation stress, a neurodevelopmental model of stress, which
is associated with various psychopathological states during
adulthood (Rentesi et al., 2010, 2013) or repeated restraint
stress, modified the hepatic drug-metabolizing profile of the
animals in a stress-specific manner (Daskalopoulos et al., 2012).
The stress-mediated regulation of CYP genes is a complex
process involving several mechanisms, including transcriptional
regulation through ligand-activated nuclear receptors, such as
CAR, PXR and AhR (Nebert and Gonzalez, 1987; Gonzalez,
2005; Daskalopoulos et al., 2012; Konstandi, 2013; Konstandi
et al., 2014). It also appears that stress activates major hepatic
signal transduction pathways involved in CYP regulation,
whereas long-term disturbances of these pathways can promote
the accumulation of free radicals and other toxic metabolites in
the body with potentially detrimental effects on health (Gonzalez,
2005; Konstandi et al., 2014).

The majority of studies focus on the impact of stress on the
CYP-dependent drug metabolism during Phase I. It should be
noted though, that stress could affect drug metabolism during
Phase II, as it markedly reduces the glutathione content in tissues,
when the body is exposed simultaneously to stress and in various
toxic factors (Konstandi et al., 1998). This is a condition favoring
the development of toxic manifestations, which usually lead to
increased morbidity (Konstandi et al., 2014).

It is well documented that exposure to stress triggers various
biological events in the body including primarily, activation of
hypothalamo-pituitary-adrenal (HPA) axis followed by release of
glucocorticoids and epinephrine from adrenal glands (Chrousos
and Gold, 1992; Johnson et al., 1992; Chrousos, 2009; Chrousos
and Kino, 2009; Figure 1). In the stress-induced cascade of
events, oxidative stress, increased release of cytokines/NF-k and
modifications in the secretion profiles of hormones, such as
growth hormone, thyroid hormones and insulin (Dvorak and
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FIGURE 1 | Schematic of the stress-induced neuroendocrine responses that presumably affect the regulation of the main drug-metabolizing cytochromes (CYP).

Epinephrine and norepinephrine bind to adrenergic receptors (AR) in the periphery including hepatocytes, immune cells (stimulate release of cytokines), hepatic blood

vessels (modify liver hemodynamics) and on pancreatic beta-cells (control insulin release positively via β2-ARs or negatively via α2-AR). Stress stimulates the secretion

of norepinephrine in the hypothalamus that controls the release of several releasing factors regulating the secretion of hormones from the pituitary (Konstandi, 2013;

Konstandi et al., 2014). The left side of the scheme indicates the effect of hypothalamic-pituitary-adrenal axis stimulation by stress on hepatic CYP regulation. CRH,

corticotropin releasing hormone; GHRH, growth hormone releasing hormone; TRH, thyrotropin releasing hormone; PIF, prolactin inhibiting factor; GnRH,

gonadotrophin releasing hormone; TSH, thyrotropin stimulating hormone; GH, growth hormone; T3, T4, thyroid hormones; ACTH, adrenocorticotropin hormone; PRL,

prolactin; IR, insulin receptor; CytR, cytokine receptor; GHR, growth hormone receptor; TR, thyroid hormone receptor; GR, glucocorticoid receptor; SHR, steroid

hormone receptor.

Pavek, 2010) hold critical roles in CYP regulation (Waxman
et al., 1991; Woodcroft et al., 2002; Waxman and Holloway, 2009;
Konstandi, 2013; Konstandi et al., 2014; Figure 1).

Although several studies clearly indicated that stress disrupts
normal hepatic drug metabolism (Konstandi et al., 1998,
2000, 2004, 2005, 2014; Daskalopoulos et al., 2012; Konstandi,
2013) it is important to note that stress functioning as
a modifying factor of drug metabolism is unique, with
properties disparate to those of drugs, which usually have dose-
and time-dependent specificities (Daskalopoulos et al., 2012;
Konstandi, 2013; Konstandi et al., 2014). Usually, stress up-
regulates the constitutive expression of most CYP enzymes,
with the exception of CYP2E1 and CYP2B, which are down-
regulated. The stress-induced repression of these isozymes could
decrease the metabolism of their drugs-substrates, thus resulting
in elevated plasma levels of these drugs and consequently,

increased possibility of toxic manifestations (Lang et al., 2001;
Arinc et al., 2005; Gonzalez, 2005). On the other hand, it
should be noted that psychophysiological stress up-regulates
several CYP isozymes belonging to CYP1A, CYP2A, CYP2C,
CYP2D, and CYP3A subfamilies that metabolize over 70%
of the drugs in the market (Guengerich, 2008; Rendic and
Guengerich, 2010; Konstandi, 2013; Konstandi et al., 2014). This
induction could result in increased metabolism of their drugs-
substrates, and consequently, in reduction of their efficacy. Of
particular significance is the fact that stress upregulates CYP2D,
which alternatively catalyzes the synthesis of neurosteroids and
neurotransmitters, such as dopamine and serotonin, in the
brain (Anna Haduch et al., 2013) and the hepatic and brain
metabolism of the majority of antidepressant, antipsychotic,
antiepileptic and anxiolytic drugs (Niwa et al., 2008; Rendic
and Guengerich, 2010; Wang et al., 2014). CYP2D expression
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is also modified by these drugs and their effects are brain
structure-dependent (Anna Haduch et al., 2013). The role of
CYP2D in the pathophysiology of neurodegenerative disorders,
such as Parkinson’s disease, is currently under investigation
(Tsuneoka et al., 1998; Mann et al., 2012; Ur Rasheed et al.,
2017). From a clinical perspective, the impact of stress on CYP-
catalyzed pro-drugmetabolism is also very important. The stress-
induced up-regulation of CYPs will result in increased pro-drug
activation, whereas theCYP repression will result in reduced pro-
drug activation, with respective consequences in drug efficacy
(Konstandi, 2013; Konstandi et al., 2014).

The assessment of the effect of stress on drug metabolism,
should not overlook the fact that chronic uncontrolled stress
is considered as a causative factor in the pathogenesis of
several disease states including cancer, depression, inflammatory
diseases and those of metabolic syndrome, such as diabetes
mellitus, obesity and hypertension (Gold et al., 1988; McEwen,
2000; Kloet et al., 2005). Patients suffering from these diseases
have modified hormonal, immune and nutritional profiles
compared to normal population (Chrousos and Gold, 1992;
Tsigos and Chrousos, 2002), condition that could decisively
affect their hepatic drug-metabolizing capacity (Konstandi, 2013;
Konstandi et al., 2014). However, it remains to be determined
whether the disease-related alterations in drug metabolism
can be attributed to the disease itself, or they are associated
with deregulation of the stress response system, which usually
underlies the pathophysiology of the afore-mentioned diseases.

It is well established that the major effectors of the stress
response, glucocorticoids and epinephrine, play primary, and
partly distinct roles in the stress-induced regulation of CYPs
by employing distinctive signaling pathways. Accordingly,
drugs with sympathomimetic properties, or those acting as
adrenergic receptor-blockers, or modifying the glucocorticoid,
growth hormone, thyroid and insulin status, may influence
the CYP-catalyzed drug metabolism, and therefore, the
pharmacokinetics and pharmacodynamics of co-administered
drugs and xenobiotics (Konstandi, 2013; Konstandi et al., 2014).
The available evidence suggests that clinically applied drug
dosing-regimes should be designed by taking into account
possible drug-stress, drug-glucocorticoid and drug-adrenergic
receptor interactions, which are known to modify drug efficacy
and toxicity. Moreover, in addition to the pharmacologic profile
of a drug, clinicians may consider the stress profile of the

patient when determining the optimal dosing regime to ensure
the highest possible drug efficacy and the minimum adverse
reactions (Konstandi, 2013; Konstandi et al., 2014).

DISCUSSION

Increasing evidence suggests that psychophysiological stress
plays a critical role in modifying the pharmacological and
toxicological potency of many clinically used drugs by affecting
the activity of CYP isozymes that catalyze their metabolism.
Stress can affect the CYP-catalyzed drug metabolism in
an enzyme- and stress-specific manner thus modifying the
pharmacokinetic and pharmacodynamic profile of a drug and
subsequently, the outcomes of drug therapy and toxicity. It is
well documented that AR-linked pathways and glucocorticoids
play major and partly, distinct roles in the stress-mediated
regulation of CYPs. Although the mechanistic data have been
obtained largely from preclinical studies, they provide solid
evidence for the potential consequences of psychophysiological
stress on drug metabolism in humans. This hypothesis is
based primarily on the high similarity of the stress system
functioning between mammals. It is therefore suggested that
when designing a therapeutic scheme, particularly when it is
based on multiple drugs, or on drugs with small therapeutic
windows or with significant adverse effects, the patient’s
stress profile should be considered. In order to optimize the
therapeutic efficacy of the drugs included in the prescribed
scheme and minimize their side effects, elimination of stress
is a prerequisite. Furthermore, when the treatment regimen
includes drugs that affect the AR-linked pathways or the
stress-related hormonal signaling, the drug dosing algorithms
potentially need to be adjusted accordingly. Finally, the studies
indicating the multi-faced and multi-level interplay between
drug and stress system response, underscore the need of
pharmacogenetic testing in the implementation of personalized
medicine (Rostami-Hodjegan and Tucker, 2007; Zanger and
Schwab, 2013).
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