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Background: Sepsis is one of the leading causes of morbidity and mortality worldwide

in the intensive care unit (ICU). The prognosis of the disease strongly depends on

rapid diagnosis and appropriate treatment. Thus, some new and accurate sepsis-related

biomarkers are pressing needed and their efficiency should be carefully demonstrated.

Methods: Differential expression analysis and weighted gene co-expression network

analysis (WGCNA) were applied to detect sepsis and monocyte/macrophage-related

genes. Least absolute shrinkage and selection operator (LASSO) and random forest

regression analyses were used in combination to screen out prognostic genes. Single-

cell RNA sequence profiling was utilized to further verify the expression of these genes

on a single cell level. Receiver operating characteristic (ROC) curve and decision curve

analysis (DCA) were also applied to verify the diagnostic value of the target biomarkers.

Results: The intersections of the genes detected by differential expression and WGCNA

analyses identified 141 overlapping candidate genes that were closely related to sepsis

and macrophages. The LASSO and random forest regression analyses further screened

out 17 prognostic genes. Single-cell RNA sequencing analysis detected that FCGR1A

and BCL2A1 might be potential biomarkers for sepsis diagnosis and the diagnostic

efficacy of BCL2A1 was further validated by ROC curve and DCA.

Conclusions: It was revealed that BCL2A1 had good diagnostic and prognostic

value for sepsis, and that it can be applied as a potential and novel biomarker for the

management of the disease.
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INTRODUCTION

Sepsis, which is defined as “life-threatening organ dysfunction
caused by a dysregulated host response to infection,” is one
of the leading causes of morbidity and mortality worldwide in
the intensive care unit (ICU) (1). As a disease of heterogenous
and imprecise syndromes, it also has multiple phenotypes.
Based on some phenotypic identification methods of sepsis,
most of the patients are grouped according to the degree
of inflammatory response, the stability of hemodynamic, the
severity of coagulopathy and by using the clinical or genomic
variables (2).

Regardless of the subtypes and phenotypic of the disease,
the prognosis of sepsis strongly depends on rapid diagnosis
and appropriate treatment (1, 3). Therefore, it is particularly
important to find accurate, sensitive, and early biomarkers
for diagnosing sepsis. To date, multiple biomarkers have
been identified and applied for the diagnosis of the disease,
including several classic biomarkers [C-reactive protein (CRP)
and procalcitonin (PCT)], and some novel ones (decoy receptor-
3 and hepcidin) (4, 5). However, classical biomarkers such as
CRP and PCT lack specificity, which makes diagnosing sepsis in
its early stages extremely difficult. At the same time, the precise
roles of newly identified biomarkers such as decoy receptor-3 and
hepcidin in the management of patients with septic shock have
not been well defined.Moreover, among the biomarkers that have
been studied, only a few have been properly evaluated in large
cohort studies (6).

Previous studies have shown that monocytes and
macrophages play an important role in the pathogenesis of
sepsis (7). Recent studies have also demonstrated that monocytes
can facilitate the proliferation and exhaustion of T cells via
interleukin-1B (IL-1B) signaling pathways and finally lead to
monocyte-dependent suppression of T cell function in sepsis (7).
Furthermore, monocytes can be activated through aggregation
with platelets and release multiple proinflammatory cytokines
[e.g., IL-6, IL-1β, and tumor necrosis factor-α (TNF-α)]. Platelet-
monocyte aggregates can also facilitate polarization of CD14+
monocytes toward a proinflammatory M1 phenotype (8).
Moreover, macrophage polarization has been found to be closely
related to the pathogenesis of sepsis (9). Macrophages can mainly
polarize into two distinct phenotypes with opposite influences on
immune function: M1-like macrophages with proinflammatory
function and M2-like macrophages with anti-inflammatory
function. In patients with sepsis, elevated levels of multiple
cytokines [TNF-α and interferon-γ (IFN-γ)] and pathogen-
related molecular patterns [e.g., lipopolysaccharide (LPS)]
can activate inflammatory pathways, especially the nuclear
factor-κB (NF-κB) pathway, and eventually trigger macrophage
polarization toward the M1 phenotype. A continuous M1-like
macrophage polarization can further induce an inflammatory
response and cause organ, tissue, and immune cell damage (9).

Considering the key roles of monocytes and macrophages

in the pathogenesis of sepsis, our study aims to screen some

novel diagnostic and prognostic biomarkers that are related to

monocytes andmacrophages by using bulk RNA sequencing with
integrated single-cell RNA sequencing. We hypothesis that the

identified novel sepsis-related biomarkers might provide new
ideals and research directions for the diagnosis and treatment
of sepsis.

METHODS

Bulk RNA-Sequencing Data Downloading
and Processing
The datasets GSE65682, GSE28750, GSE69528, and GSE100159
were downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) using the
GEOquery R package (version 2.60.0, The R Foundation for
Statistical Computing, Vienna, Austria) (10). We designated
GSE65682 as the training set for the downstream analysis,
and GSE28750, GSE69528, and GSE100159 were designated
as the validation sets to confirm the results. The GSE65682
dataset included data on 760 ICU patients and 42 healthy cases.
Differentially expressed genes (DEGs) were detected using the
“limma” R package which had been recognized as a classic
algorithm in bioinformatics analysis (11). The DEGs with an
adjusted P-value (adj. P. val.) of <0.05 and |log FC| ≥1.5 were
considered statistically significant.

WGCNA Network Construction
Clusters of highly correlated genes were screened and a weighted
gene co-expression network was constructed using the WGCNA
algorithm which is a widely used approach to identify potential
biomarkers of interest (12). The soft-threshold β was set to eight
to ensure the network followed a scale-free distribution. Next,
the adjacency matrix was transformed into a topological overlap
matrix (TOM). Subsequently, hierarchical clustering was applied
to generate modules and every module consisted of at least 30
genes (min Module Size = 30). Finally, the module eigengene
(ME) was calculated, and cluster analysis was performed on
the modules. Modules that were similar were merged into a
new module.

Identification of Clinically Significant and
Immune Cell Infiltration-Related Module
We performed immune infiltration profiling on the samples
of the GSE65682 dataset using the Cell-type Identification by
Estimating Relative Subsets of RNA Transcripts (CIBERSORT)
deconvolution algorithm (13). The algorithm can count the
immune cell infiltration score and quantify the degree of
infiltration of 22 types of immune cells on target samples.
Next, gene significance (GS) and module membership (MM)
were calculated to evaluate the association between the modules
and sample traits (including immune cell infiltration score and
clinical data). Finally, clinical significance and immune cell
infiltration-relatedmodules were identified, and hub genes of this
module were extracted for subsequent analysis.

LASSO and Random Forest Regression
LASSO and random forest regression has been widely applied to
screen prognosis-related genes in the previous studies (14, 15).
Thus, they were utilized in combination to identify the genes
that were correlated with the prognosis of sepsis. The LASSO
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regression analysis was conducted using the “glmnet” R package,
and random forest regression analysis was performed using the
“randomForest” R package.

ROC Curve and DCA Analysis
The receiver operating characteristic (ROC) curve analysis was
performed using the “pROC” R package and was visualized using
the “ggplot2” R package. The decision curve analysis (DCA) was
conducted using the “DecisionCurve” R package.

Single-Cell RNA Sequencing Data
Bacterial sepsis data were downloaded from the SCP548 of
the Broad Institute Single Cell Portal (SCP) (https://singlecell.
broadinstitute.org/single_cell). The single-cell data includes 19
healthy control samples from Research Blood Components
(Watertown, MA, USA) and 46 infected samples from three
different medical services (an emergency department, a medical
department and an ICU) (16). As our study was focusing on
patients with sepsis, we extracted the data from Bac-Sep (defined
as having bacteremia and sepsis but not requiring ICU admission,
n = 4), ICU-Sep (defined as patients with sepsis requiring ICU
care, n = 8), and healthy controls (n = 19) for subsequent
analysis. The data of coronavirus disease of 2019 (COVID-19)
was also downloaded from the GSE150728 of the GEO database.
This data was extracted from seven hospitalized patients due to
COVID-19 and six healthy controls.

Single-Cell RNA Sequencing Data
Processing and Analysis
The bacterial sepsis datasets were based on the 10x Genomics
platform (https://www.10xgenomics.com). We used the Seurat
pipeline to analyze the single-cell RNA (scRNA) data. The
original data matrix downloaded from SCP was inputted into R
(version 4.1.1) and processed with the Seurat R package (version
4.0.4) (17). The “Create Seurat Object” function was utilized to
transform the dataset into a “Seurat object.”

Quality control was conducted through filtering out cells with

<200 genes,>2,500 genes, or>10%mitochondrial genes. A total

of 60,543 filtered cells were included in the subsequent analysis.

Data normalization was performed using the “LogNormalize”
method, and 2,000 highly variable genes (HVGs) were identified
using the “vst” method. Subsequently, the “Harmony” R package
(version 0.1.0) was utilized to remove the batch effect of
the sample identity (18). Cell cycle scores for every cell
were calculated using the “CellCycleScoring” function, and the
cell cycle effect was removed using the “Scaledata” function.
Subsequently, we applied principal component analysis (PCA)
to identify significant principal components (PCs) and to choose
30 PCs for t-distributed stochastic neighbor embedding (t-SNE)
analysis. Moreover, 15 different clusters were identified using
the “FindClusters” function with a parameter resolution of 0.6.
Finally, we used a published list of marker genes to annotate
the cell type of each cluster. The GSE150728 scRNA sequencing
dataset was processed as described above. In all, 72,849 cells were
included in the analysis. Cluster analysis was performed through
the “FindNeighbors” and “FindClusters” functions at a resolution
of 0.8.

Immunity-Related Genes Score
The DEGs of each cluster between the control group and the
disease group were screened using the “FindMarkers” function.
Then, we used the ImmPort database (https://www.immport.
org/shared/home) (19) to screen the DEGs of each cluster
and identified immunity-related genes (IRGs). The IRGs were
considered as a gene set to calculate the IRG scores in every
cell using the AUCell R package (version 1.14.0) (20). The IRGs
scores were calculated based on gene set enrichment analysis
(GSEA). The cell which expresses more genes within the IRGs
revealed a higher area under the curve (AUC) value. The
threshold to distinguish gene set active cells was determined
using the “AUCell explore Thresholds” function. Finally, we used
the “ggplot2” R package (version 3.3.5) to visualize the active
clusters by mapping the IRGs score in every cell relative to
the t-SNE.

Gene Ontology and/or GSEA
The Metascape website (https://metascape.org/gp/index.html)
was used for functional enrichment analysis upon the hub
genes of target module in bulk-sequencing profiling. The
ClusterProfiler package (21) was utilized for performing Gene
Ontology (GO) and GSEA on the marker genes of cell clusters
in scRNA-sequencing profiling, where p < 0.05 indicated
statistically significant enrichment.

RESULTS

Our study integrated four bulk-seq datasets and two scRNA-
seq datasets. All the datasets included in our study were shown
in detail in Table 1. The flowchart of our study was shown in
Figure 1.

Identification of DEGs in the GSE65682
Dataset
The “limma” R package was used to detect DEGs between the
ICU samples and healthy samples of the GSE65682 dataset.
The DEGs were screened according to an adj. P. val. of <0.05
and |log FC| ≥1.5. After screening the dataset, a total of 524
DEGs were obtained, of which 270 genes were upregulated and
254 genes were downregulated (Supplementary Table 1). These
results were visualized using a volcano map (Figure 2A) and a
heatmap (Figure 2B).

Weighted Co-expression Network
Construction and Identification of key
Modules
Next, WGCNA analysis was conducted to detect the co-
expression genes and modules based on 720 samples from the
GSE65682 dataset. To ensure the network followed a scale-free
distribution, a soft threshold power of eight was chosen as the
most appropriate one for network construction (Figure 3A).
Hierarchical clustering analysis was then performed to generate
modules, and similar modules were merged. The cut height for
merging modules was 0.25, which meant that modules whose
eigengenes were correlated above 0.75 were merged (Figure 3B).
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TABLE 1 | Information for selected datasets in this study.

Datasets Type Platform Sample size (Disease/Control) Cells (Disease/Control)

GSE65682 (Training set) Microarray GPL13667 720/42 (ICU/health) NA

SCP548 (Validation set) scRNA sequencing Illumina Novaseq S2 (Homo sapiens) 12/19 (sepsis/health) 13438/47105 (sepsis/health)

GSE150728 (Validation set) scRNA sequencing Illumina NovaSeq 6000 (Homo sapiens) 7/6 (COVID-19/health) 45105/27744 (COVID-19/health)

GSE28750 (Validation set) Microarray GPL570 10/20 (sepsis/health) NA

GSE69528 (Validation set) Microarray GPL10558 83/55 (sepsis/health) NA

GSE100159 (Validation set) Microarray GPL6884 35/11 (sepsis/health) NA

FIGURE 1 | Flowchart of study.

Finally, 22 distinct gene co-expressionmodules were constructed,
and these are shown in different colors in Figure 3C.

To identify the clinical significance and immune cell
infiltration-related modules, the CIBERSORT deconvolution
algorithm was used first to calculate the immune cell scores.

Subsequently, GS and MM were calculated to evaluate the
correlation between the modules and sample characteristics
(including immune cell infiltration score and clinical data)
(Figures 3D,E). Finally, the Darked module was chosen as the
target modules. This module showed the strongest significant
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FIGURE 2 | Identification of DEGs in the GSE65682 dataset. (A) Volcano plot of the DEGs (|logFC| > 1.5 and adjusted P-value l < 0.05) in GSE65682. Upregulated

genes are in red, and downregulated genes are in blue. (B) Heatmap of the DEGs in GSE65682. DEGs, differentially expressed genes.

correlation with both admission to ICU (r = 0.46, p = 2e-
43) and occurrence of abdominal sepsis (r = 0.57, p =

1e-69). Furthermore, the Darked module showed a positive
association with macrophages M0 (r = 0.44, p = 1e-39)
(Figures 3D,E). To further explore the function of the Darked
module, Kyoto Encyclopedia of Genes and Genomes (KEGG)
and GO enrichment analyses were performed on the hub genes of
this module. It was apparent that the Darked module was mostly
enriched in the inflammatory and infection-related pathway
(Figure 3F). Furthermore, the function of the Darked module
was also closely related to monocytes/macrophages, which is
consistent with the results of the WGCNA analysis (Figure 3G).
These results indicated that the patients with sepsis might show
predominately a monocyte/macrophage infiltration.

Identification of Prognosis-Related Genes
As the Darked module revealed a tight correlation with the status
of sepsis, we extracted the hub genes of the Darked module for
the following analysis (Figure 4A). The Darkedmodule consisted
of 463 genes. The intersection of hub genes among the Darked
module and DEGs in the GSE65682 dataset were taken, and 141
genes were obtained, as shown in Figure 4B.

Subsequently, LASSO regression analysis in conjunction with
random forest regression analysis was used to identify the
prognostic genes (Figures 4C–E). Taking the intersections of the
target genes screened out by the two algorithms, a Venn diagram
was constructed (Figure 4F). A total of 32 genes in LASSO
regression algorithms and 30 genes in random forest algorithms
were retained. More importantly, 17 genes were obtained in both
LASSO regression analysis and random forest analysis. The list of
these 17 genes is shown in Supplementary Table 2.

ScRNA Profiling of PBMCs in Bacterial
Sepsis
To confirm the result of bulk-RNA sequencing profiling, bacterial
scRNA-sequencing data were analyzed. After data processing,
60,543 cells comprising 13,438 cells from patients with sepsis and
47,105 cells from healthy controls were retained. Subsequently,
15 clusters were identified via the t-SNE analysis of unsupervised
clustering. These clusters were then annotated into six cell types
based on the marker genes reported in the previous study. The
six cell types were visualized using t-SNE analysis (Figure 5A).
The expression of cell type marker genes was shown in a dot plot
(Figure 5B).

Next, the expression level of the 17 genes, which
had been screened out by the bulk RNA-sequencing
profiling, was then examined at the single-cell level
(Figure 5C). Finally, FCGR1A and BCL2A1 were found
to be considerably increased in the sepsis group. More
importantly, both of them were predominantly expressed in
the monocyte/macrophage cluster, which indicated that the two
genes might be closely related to the function of this cluster
(Figures 5D,E).

To further investigate the role played by
monocyte/macrophage clusters in the pathology of sepsis,
IRG scores were first calculated using the AUCell R package.
The dendric and monocyte/macrophage clusters (in yellow
color) were found to exhibit higher IRG scores (Figures 6A,B),
suggesting these clusters were in an active state. In addition,
when compared with the healthy control group, the number
of monocyte/macrophage cells was considerably elevated
in the sepsis group (Figures 6C,D). It was indicated that
a prominent monocyte/macrophage infiltration could be
found in patients with sepsis. We then performed GO and
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FIGURE 3 | Weighted co-expression network construction and identification of key modules. (A) Correlation between the modules in the network topology analysis

for various soft-thresholding powers. (B) Cut height for merging modules. (C) Gene dendrogram and related module colors. (D) Correlation between the 22 modules

and sample traits. (E) Correlation between the 22 modules and immune cell scores. (F,G) Functional enrichment analysis of the Darked module genes.
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FIGURE 4 | Identification of prognostic genes in patients with sepsis. (A) Extraction of the hub genes of the Darked module. (B) 141 overlapping candidates in the

intersection of the DEGs and the Darked module genes. (C,D) LASSO Cox analysis identified 32 prognostic genes. (E) The top 30 prognostic genes in the random

forest regression analysis. (F) Venn diagram showed the genes identified by LASSO Cox and random forest regression analyses. A total of 17 prognostic genes were

found in the intersection of the results of from LASSO Cox and random forest regressions.

GSEA on the monocyte/macrophage cluster. The results
demonstrated that the cluster was mostly enriched in the
proinflammatory and infection-related pathways, especially

the NF-κB pathway, which was consistent with the functional
enrichment analysis result of the Darked module in theWGCNA
analysis (Figures 6E–G).
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FIGURE 5 | Differential expression of target genes on a single-cell level. (A) t-SNE plot of 60,543 cells from SCP548 datasets. Distinct cell types are shown in different

colors. (B) Dot plot showing the respective marker genes of different cell types. (C) A dot plot showing that the expression levels of 17 genes differ between the sepsis

and healthy samples. (D,E) Expression of FCGR1A and BCL2A1 shown using a t-SNE plot. t-SNE, t-distributed stochastic neighbor embedding.

ScRNA Profiling of Peripheral Blood
Mononuclear Cells in COVID-19 Infection
As the above scRNA dataset was focusing on bacterial infection,
another virus infection scRNA dataset was also needed to
verify our result. Previous studies have revealed that severe
COVID-19 infection shares similar clinical symptoms and

laboratory characteristics with sepsis (22). The GSE150728
dataset comprising seven in patients with COVID-19 and six
healthy volunteers was selected for subsequent analysis. The
clusters were annotated into nine types of cells and visualized
using t-SNE analysis (Figure 7A), and their respective marker
genes are shown in a dotplot (Figure 7B). The 17 genes were also
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FIGURE 6 | Single-cell analysis revealed a prominent monocyte/macrophage infiltration in sepsis patients. (A) The threshold for distinguishing gene set active cells

was set at 0.42. (B) t-SNE plot of the immune-related genes score (IRGs score) in all of the cell types. The dendric and monocyte/macrophage cells (in yellow color)

exhibited a higher IRGs Score. (C,D) Sankey diagram and histogram showed the proportion of monocyte/macrophage cells was significantly increased in the patients

with sepsis. (E–G) GO and/or GSEA showed that the monocyte/macrophage clusters were mostly enriched in the proinflammatory and infection-related pathway.

t-SNE, t-distributed stochastic neighbor embedding; GO, Gene Ontology; GSEA, gene set enrichment analysis.
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examined at a single-cell level (Figure 7C). As expected, FCGR1A
and BCL2A1 were significantly upregulated in the disease
group and were primarily expressed in the monocyte and/or
macrophage cluster and the neutrophil cluster (Figure 7D).
Moreover, the monocyte/macrophage cluster revealed a high
IRG score (Figures 7E,F). Taken together, these results were
consistent with that of bacterial sepsis in the scRNA dataset.

Comparing the Diagnostic Performance of
BCL2A1 and FCGR1A as Biomarkers for
Sepsis
The gene FCGR1A, which is also called CD64, is a classic sepsis-
related biomarker which has been well studied and applied in the
diagnosis of sepsis (23). On the other hand, BCL2A1 has rarely
been reported in the pathogenesis of sepsis. To further verify
BCL2A1 as a novel diagnostic biomarker for patients with sepsis,
we selected three other sepsis datasets (GSE28750, GSE69528,
and GSE100159) to compare the diagnostic accuracy of BCL2A1
and FCGR1A in the disease. The ROC curve analysis revealed that
both BCL2A1 and FCGR1A had a high AUC for the diagnosis
of sepsis in all three datasets (Figures 8A–C). We used DCA to
evaluate the clinical utility of BCL2A1 and FCGR1A by qualifying
the net benefit at a distinct threshold. As expected, the DCA
results showed that BCL2A1 and FCGR1A yielded similar clinical
values in the diagnosis of sepsis. In GSE69528 and GSE100159,
BCL2A1 exhibited an even higher clinical value when compared
with FCGR1A (Figures 8D–F).

DISCUSSION

Sepsis, as a prevalent and severe disease, is one of the major
causes of death worldwide in the ICU (1). An early and
accurate diagnosis of sepsis is crucial, as delays in prescribing
appropriate therapy can greatly influence the outcome of this
disease (3). Although a variety of treatment and laboratory testing
technologies have been gradually applied to clinical practice,
the prognosis of sepsis is still not satisfactory (24, 25). In
addition, multiple sepsis-related diagnostic biomarkers have been
identified, and most of them have not been clearly demonstrated
as effective (26). A novel biomarker is still needed in the
management of patients with sepsis. Taking the important role
of monocytes and macrophages in the pathogenesis of sepsis
into account, we attempted to explore sepsis-related biomarkers
from the viewpoint of monocyte/macrophages. In this study,
we integrated bulk-RNA sequencing data and scRNA data and
identified two biomarkers (FCGR1A and BCL2A1), which were
closely related to sepsis and monocyte/macrophage.

The gene FCGR1A, also called CD64, is a classic sepsis-related
biomarker. Neutrophil CD64 was considered as a marker of
neutrophil activation in acute inflammatory reaction. Multiple
studies have demonstrated that neutrophil CD64 expression
as a candidate biomarker for diagnosing sepsis (27, 28). Our
study also found that CD64 was up-regulated in neutrophil cells
at the single-cell level. In addition, it also demonstrated that
CD64 was significantly elevated in monocyte/macrophage cells,
which was consistent with previously published studies (29, 30).

However, controversy remains about whether CD64 expression
on monocytes can be a diagnostic and prognostic biomarker
for sepsis (31). Some researchers found that simultaneously
analyzing CD64 expression for both types of cells can improve
the accuracy of diagnosis (32). It was also revealed from our
study that the level of FCGR1A was considerably elevated in
sepsis, and this gene was also correlated to the prognosis of sepsis.
Nonetheless, further research is still needed to verify the results of
our study in clinical practice.

The gene BCL2A1 is a member of the B-cell lymphoma
2 (BCL2) protein family and is also an important cell
death regulator. The gene exerts its antiapoptotic function by
sequestering proapoptotic BCL2 proteins (33). It has been well
studied in the tumor setting and has been identified as a potential
target for cancer therapy (34). However, its role in the pathology
of sepsis is still uncertain. Our study showed that BCL2A1
was significantly upregulated in patients with sepsis at both the
tissue- and single-cell levels. The LASSO Cox and random forest
regression algorithms demonstrated that BCL2A1 was closely
related to the prognosis of sepsis.

With the development of monitoring techniques and
treatment, the mortality rate of sepsis declines to 15–25%, while
the in-hospital mortality rate of septic shock is still as high as 30–
50% (1). BCL2A1 was identified as a prognostic biomarker for
sepsis patients in our study through LASSO and Random Forest
regression analysis. However, due to the lack of demographic and
clinical data, some clinical studies are needed to further analysis
the efficacy of the novel marker in identification of sepsis and
prognostic prediction.

In addition, to further verify BCL2A1 as a novel biomarker
for diagnosing sepsis, we selected three other sepsis datasets
to perform ROC curve analysis and DCA. The results showed
that BCL2A1 had a good diagnostic value in all datasets, which
indicated that it might be considered as a potential biomarker
for sepsis. Most importantly, scRNA profiling showed that this
gene was primarily expressed with monocyte/macrophage and
neutrophil cells, which indicated that the function of BCL2A1was
closely related to these two types of cells.

Our study also found that patients with sepsis mainly
manifested a monocyte/macrophage cell infiltration. Moreover,
the monocyte/macrophage cluster showed a higher IRG score,
suggesting that these types of cells were in an active state
during the acute stage of sepsis. The GO analysis and GSEA
revealed that these types of cells were strongly correlated with
inflammation activation, especially the NF-κB pathway. The
activation of NF-κB can not only lead to monocyte/macrophage
polarizing into an M1-like macrophage (9) but can be an
important inducer of BCL2A1 expression as well (30). This
could explain partly why BCL2A1 was significantly increased
in patients with sepsis and was primarily expressed in terms
of monocytes/macrophages. The effect of increasing BCL2A1
expression on monocyte/macrophage cells appears to exert its
antiapoptotic function and further exacerbate the imbalance
between M1-and M2-like macrophages and eventually worsen
the status of sepsis. In addition, over-expression of BCL2A1 on
neutrophils might be correlated to delayed neutrophil apoptosis
(35) and can lead to immune dysfunction and persistent
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FIGURE 7 | Further validation of above results in a COVID-19 scRNA dataset. (A) t-SNE plot visualization of nine clusters. (B) The respective marker genes of nine

clusters in a dot plot. (C) Dot plot shows the expression level of target genes in the COVID-19 and healthy samples. (D) Expression of FCGR1A and BCL2A1 using a

t-SNE plot. (E) A threshold of 0.38 for immunity-related genes (IRGs) score calculation was selected. (F) t-SNE plot of IRGs score in nine clusters. t-SNE, T-distributed

stochastic neighbor embedding; COVID-19, coronavirus of 2019; scRNA, single-cell RNA.
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FIGURE 8 | ROC curve analysis and decision curve analysis of BCL2A1 and FCGR1A in three sepsis datasets. (A–C) BCL2A1 revealed a high AUC value in all three

datasets, suggesting its diagnostic value in sepsis. (D–F) DCA of BCL2A1 and FCGR1A in the three datasets. ROC, receiver operating characteristic; AUC, area

under the curve; DCA, decision curve analysis.

inflammation. Thus, further study is also needed to explore the
possible mechanisms.

BCL2A1 was identified as a promising and novel biomarker
for sepsis diagnosis in our study, limitation still exists. The
data of our study was downloaded from public databases, the
effectiveness of clinical application is uncertain due to the lack
of demographic and clinical information of patients with sepsis.
Thus, further clinical studies are needed to verify the efficacy of
the novel marker.

In conclusion, our study found that BCL2A1 revealed good
diagnostic and prognostic value for sepsis. The BCL2A1 gene
can be applied as a potential and novel biomarker for the
management of sepsis.
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