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Peripheral vision comprises most of our visual field, and
is essential in guiding visual behavior. Its characteristic
capabilities and limitations, which distinguish it from
foveal vision, have been explained by the most
influential theory of peripheral vision as the product of
representing the visual input using summary statistics.
Despite its success, this account may provide a limited
understanding of peripheral vision, because it neglects
processes of perceptual grouping and segmentation. To
test this hypothesis, we studied how contextual
modulation, namely the modulation of the perception of
a stimulus by its surrounds, interacts with segmentation
in human peripheral vision. We used naturalistic
textures, which are directly related to summary-statistics
representations. We show that segmentation cues affect
contextual modulation, and that this is not captured by
our implementation of the summary-statistics model.
We then characterize the effects of different texture
statistics on contextual modulation, providing guidance
for extending the model, as well as for probing neural
mechanisms of peripheral vision.

Introduction

Central and peripheral vision fulfill different roles
in visual perception, as reflected by their different
information processing capabilities. The most
influential model of peripheral visual processing is
the summary statistics (SS) model (Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001; Balas, Nakano,
& Rosenholtz, 2009; Freeman & Simoncelli, 2011;
Rosenholtz, 2016), which proposes that the peripheral
visual input is represented using SS of the activations of
feature detectors (Figure 1), computed over prespecified
regions of the visual field (termed pooling windows)

whose size scales linearly with eccentricity. This
model fits in the descriptive paradigm of vision as
a hierarchical feedforward cascade of visual feature
detectors (Riesenhuber & Poggio, 1999; Doerig et
al., 2019), and it is theoretically appealing because
replacing a detailed representation of the visual input
with a SS results in a significant compression of the
visual input. Furthermore, this compression results
in a loss of information that could parsimoniously
explain the limitations of peripheral vision (Rosenholtz,
2016), including the impairment of target identification
by surrounding stimuli (visual crowding (Balas et al.,
2009), often regarded as the most important factor
in peripheral vision), as well as phenomena related to
visual search (Rosenholtz, Huang, Raj, Balas, & Ilie,
2012), scene perception (Freeman & Simoncelli, 2011;
Ehinger & Rosenholtz, 2016), and subjective aspects
of visual experience (Cohen, Dennett, & Kanwisher,
2016). The SS framework has also been used to explain
auditory perception of sound texture (McDermott &
Simoncelli, 2011), suggesting a more general role of SS
representations.

Despite providing a solid foundation, it has been
hypothesized that phenomena involving segmentation
and grouping in peripheral vision escape the standard
SS model, and therefore more accurate models of
peripheral vision should include recurrent processes
of grouping and segmentation (Manassi, Sayim, &
Herzog, 2013; Manassi, Lonchampt, Clarke, & Herzog,
2016; Doerig et al., 2019). Grouping different elements
into objects or ensembles, or conversely segmenting the
scene into different segments, is an essential aspect of
human vision. Segmentation processes have been shown
to affect several contextual modulation phenomena (i.e.
phenomena in which perception of an image region is
affected by its surrounds), such as backward contrast
masking (Saarela & Herzog, 2009), the tilt-illusion
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Figure 1. Summary-statistics representation model. Illustration
of the main features of the standard SS model, and its relation
to physiology and image properties. An input image is first
filtered with a bank of oriented V1-like filters, whose activation
power is determined by the Fourier amplitude spectrum (FAS)
of the image in the pooling region. Then SS are computed over
the activations of these filters in fixed pooling windows that tile
the visual field. The SS in the second stage are referred to as
higher-order statistics (HOS; in contrast to the statistics
contained in the FAS).

(Qiu, Kersten, & Olman, 2013), filling-in (Paradiso
& Nakayama, 1991; Stürzel & Spillmann, 2001),
perceptual fading (Vergeer & van Lier, 2007) and
crowding (see Herzog, Sayim, Chicherov, & Manassi,
2015 for a review). Similar effects have been reported
in audition (Oberfeld & Stahn, 2012; McWalter &
McDermott, 2018) and touch (Overvliet & Sayim,
2016). In particular, much work with vernier and letter
stimuli showed that even small changes to the contextual
stimuli, or changes far away from the target, can lead
to target-surround ungrouping and a considerable
reduction in crowding (Kooi, Toet, Tripathy, & Levi,
1994; Saarela, Sayim, Westheimer, & Herzog, 2009;
Manassi, Sayim, & Herzog, 2012; Manassi et al., 2013;
Manassi, Hermens, Francis, & Herzog, 2015; Manassi
et al., 2016), a phenomenon known as “uncrowding.”
It has been argued that these results show a failure of
feedforward pooling models, such as the SS model,
and that this failure is due to their lack of recurrent
processes of grouping and segmentation (Herzog et
al., 2015; Francis, Manassi, & Herzog, 2017; Doerig et
al., 2019; Doerig, Bornet, Choung, & Herzog, 2020).
Furthermore, current SS model implementations also
fail to capture the peripheral appearance of natural
scenes that contain strong grouping and segmentation
cues (Wallis et al., 2019). However, it has been proposed
that the SS model may be able to account for these
results, without recurrent segmentation or grouping
mechanisms that modify the encoding of SS, because
segmentation cues could be directly decoded from
the fixed SS representation (Rosenholtz, Yu, &
Keshvari, 2019). One challenge in exploring these

alternatives is that commonly used crowding tasks,
such as discriminating the offset of a crowded vernier
stimulus (Manassi et al., 2013; Doerig et al., 2019), or
the more recent task of discriminating complex scene
distortions (Wallis et al., 2019) depend on perceiving a
given feature from a specific target object in an array,
or complex arrangements of features, which are not
easy to link intuitively or computationally to the more
distributed and texture-like representations of the SS
model (Rosenholtz et al., 2019).

Here, we test more directly the hypothesis that
the SS model does not fully capture segmentation
effects on contextual modulation, using naturalistic
visual textures, which are more easily linked to SS
representations. SS representations have long been
studied in relation to texture perception, because
textures are statistically defined stimuli to texture
perception (Julesz, 1962; Julesz & Caelli, 1979; Victor,
1994; the SSmodel is also referred to as the texture-tiling
model of vision; Doerig et al., 2019). We use naturalistic
Portilla-Simoncelli (PS) textures (Portilla & Simoncelli,
2000), which have been instrumental to the recent
success of the SS model (Balas et al., 2009; Freeman &
Simoncelli, 2011; Rosenholtz et al., 2012; Ehinger &
Rosenholtz, 2016) and are a useful experimental tool
for probing the model. PS textures are defined by a set
of SS that are inspired in natural image statistics and
early human vision, and which are the basis of the main
implementation of the SS model of peripheral vision.
This makes it possible to compare directly perception
of PS textures to SS model predictions. Furthermore,
it has been shown that, different from primary visual
cortex (V1), neurons in higher cortical areas V2 and V4
are selective for PS statistics (Freeman, Ziemba, Heeger,
Simoncelli, & Movshon, 2013; Okazawa, Tajima,
& Komatsu, 2015; Ziemba, Freeman, Movshon, &
Simoncelli, 2016; Okazawa, Tajima, & Komatsu,
2017), offering a framework to relate the SS model
and peripheral vision to neural mechanisms. However,
no studies have addressed how peripheral naturalistic
texture perception is affected by contextual modulation
and by segmentation cues (see Meinecke and Kehrer,
1994; Morikawa, 2000; Schade and Meinecke, 2009;
Schade and Meinecke, 2011; Victor, Thengone, &
Conte, 2013 for examples with artificial stimuli, and
Wallis & Bex, 2012 for a study with natural images that
does not explore segmentation).

Therefore, we use a PS texture discrimination task
to study contextual modulation and segmentation
in peripheral vision within the framework of the SS
model. We evaluate how different texture surrounds
affect texture perception, and study the influences
of grouping and segmentation cues and of surround
structure, as well as the relation between this contextual
modulation and crowding.

Our results reveal an important role of segmentation
processes in peripheral perception of naturalistic texture
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and highlight limitations of the feedforward framework
of visual processing. Furthermore, we link our results
to existing versions of the SS model and to previous
work on the physiology of the early visual system,
pointing to possible computational processes that may
underlie the results. Our work can provide guidance for
implementing and testing extensions of the standard SS
model that include segmentation and grouping.

Methods

Participants

A total of 98 adult individual participants (including
the authors D.H. and L.G., denoted in the figures by
colors blue and green, respectively), participated in the
experiments, of which 34 were women. All participants
had normal or corrected to normal vision.

This study was conducted in accordance with
the Declaration of Helsinki and was approved by
the Research Ethics Committee of the Faculty of
Psychology of the Universidad de la República.
Participants gave signed consent to participate in the
experiment, and to have the anonymized data from the
experiments made available online. Participants were
given no economic or course credit reward for their
participation in the experiment.

Texture synthesis

We synthesized grayscale naturalistic textures
using the PS texture synthesis algorithm (Portilla
& Simoncelli, 2000) in Octave (Eaton, Bateman,
Hauberg, & Wehbring, 2015). The algorithm first
computes a set of statistics over an input image,
including mean luminance, contrast, and higher-order
moments of the pixel histogram; and the means and
pairwise correlations of the activations of multiscale,
multi-orientation filters (steerable pyramid Simoncelli,
Freeman, Adelson, & Heeger, 1992) analogous to V1
cells. Then it iteratively modifies a white noise image
until its statistics match those of the input image.
We used as input images natural textures from the
Brodatz texture database, the Amsterdam Library of
Textures (Burghouts & Geusebroek, 2009) and from
the database presented in Lazebnik, Schmid, & Ponce,
2005. We refer to an image synthesized this way as a
naturalistic texture or PS texture. We used filters with
four scales and four orientations, and nine by nine
pixels neighborhood (corresponding to a 0.3 degrees
× 0.3 degrees neighborhood with the viewing distance
used) for computing the spatial correlations of the filter
responses. We synthesized two 1024 × 1024 PS textures
for each input image.

For each PS texture, we also synthesized a
phase-scrambled texture. This was achieved by first
generating a uniform noise image and then replacing
its Fourier amplitude spectrum (FAS) for the FAS of
the naturalistic texture. Thus, this procedure produces
a pair of PS textures and a pair of phase-scrambled
textures that are used in the experiments.

Phase-scrambling a naturalistic image can change
the histogram of pixel activations (e.g. changing
the minimum and maximum intensities). To prevent
participants from using aspects of the pixel histogram
(e.g. brightness) as cues to solve the task, we matched
the pixel histograms of the naturalistic and phase-
scrambled images to an average of the two, using the
SHINE package for Octave (Willenbockel et al., 2010)
with 30 iterations. In each iteration, their FAS was
also matched to the original FAS, and the structural
similarity index (SSIM) with respect to the original
image was also optimized in order to reduce alterations
to image structure (Wang, Bovik, Sheikh, & Simoncelli,
2004; Willenbockel et al., 2010). Images produced
by this method appeared very similar to the starting
textures (besides changes in pixel intensities), suggesting
it did not produce noticeable structural alterations.

In experiment 3, to generate the surround image
that was dissimilar to the target only in higher order
statistics (HOS), we started by generating a new PS
texture using a different input image than the one used
for the target. Then we matched its FAS and pixel
histogram to those of the target PS texture with the
SHINE package, using 30 iterations. In each iteration,
the SSIM with respect to the original surround PS
texture was also optimized. For the surround texture
that was dissimilar in both FAS and HOS, the same
procedure was used but without matching the FAS to
the target PS texture.

Texture selection

Because there is considerable variation in the
discriminability of different PS textures from their
phase-scrambled counterparts (Freeman et al.,
2013), we synthesized a large set of pairs of PS and
phase-scrambled textures and selected those that
subjectively appeared to have high discriminability, to
make the task easier. We also selected textures that had
different kinds of structures, in order to better probe the
texture space (e.g. strongly oriented, weakly oriented,
regular, and irregular).

In addition, in experiment 3, most textures to which
we applied the FAS matching procedure acquired a
phase-scrambled appearance, so we selected for further
use those that maintained a naturalistic appearance
after this procedure.

Due to resource constraints and design choices,
we did not use the same number of textures for each
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experiment. The textures used in each experiment are
those shown in the corresponding figure.

Organization of experimental sessions

An experimental session consists of one participant
performing an experiment with a given texture. When
a participant performed an experiment with more than
one texture, these were used separately in different
experimental sessions. Participants were allowed to
perform as many experimental sessions as they were
willing to complete. Nonetheless, no participant
performed more than two experimental sessions in
the same day, and no participant performed the same
experiment twice with the same texture. Excluding
the main author, who completed 19 experimental
sessions, the rest of the participants completed between
1 and 5 sessions, with a mean of 1.7 and a median
of 2 experimental sessions completed by participants.
For each experiment, we report the total number of
experimental sessions, corresponding to the sum of the
experimental sessions performed by all participants. In
total, participants completed 189 experimental sessions
across all experiments.

Experiment sessions were divided into 2 to 4
experimental blocks (with balanced conditions)
separated by 30 seconds resting periods. For
experiments 2 and 5, which involve manipulations of
stimulus configuration, we also separated the main
experimental conditions of these experiments (i.e.
target shape for experiment 2 and surround position
for experiment 5) into 2 condition blocks that were
nested within the main experimental blocks, to prevent
possible confusion. Finally, the different conditions
contained within a block were randomly interleaved,
and each was presented an equal number of times. The
total duration of the experiments, including training
and instructions, was between 20 and 45 minutes.

Detailed anonymized information on which
participants performed each experiment and with which
textures can be found in the online data made available
for this article (see Data Availability below).

Stimulus sampling

All textures shown in the experiments were patches
cropped from these larger synthesized images, with a
linear transparency gradient at their border, allowing
for a smooth fading with their neighboring surface
(e.g. the background or a neighboring texture). These
gradients had a length of 4 pixels, roughly equivalent
to 0.15 degrees. For each texture patch displayed, the
cropped region was randomly selected over the whole
image on a trial-by-trial basis.

We note that because the PS statistics were matched
over the large synthesized images, the random sampling
of patches from these images introduced some
trial-by-trial variation in the texture statistics displayed.
Although testing the effect of this image variability
on our results would require additional experiments,
we think this variability is unlikely to have significant
effects on the participants’ performance, as discussed in
section S6.

In each individual trial, an angle multiple of 90
degrees was randomly chosen and all textures were
rotated by this angle before being cropped for display.
This was done to reduce participants’ adaptation to low
level properties of the textures.

Task

Our task is a variation of that described by Freeman
et al. (2013), and consists in discriminating between
the naturalistic and the phase-scrambled versions of a
texture.

The target stimuli (targets) consisted of 2 circular
patches of texture presented simultaneously for 233 ms,
centered at 12 degrees to the right and to the left of
the fixation point (Figure 2). We used three different
target configurations: (1) phase-scrambled target to
the right (PS texture to the left), (2) phase-scrambled
target to the left (PS texture to the right), or (3) no
phase-scrambled target (PS texture in both targets).
The three configurations were shown an equal number
of times, in random order. Participants were instructed
to report the location of the phase-scrambled target
with the arrow keys, and to use the upward arrow to
indicate the absence of phase-scrambled targets. This
task design with two targets and three conditions was
used to discourage participants from looking away from
fixation, to compensate for the lack of eye-tracking in
the experiments.

The sequence of events in any given trial was the
following (see Figure 2): (1) start with the gray screen,
(2) after 500 ms, a red fixation dot appeared at the
center of the screen, on which participants were
instructed to fixate, (3) after a time interval sampled
uniformly from 400 ms to 600 ms, the 2 targets were
presented simultaneously for 233 ms (14 frames), (4)
after the targets disappeared, the participant responded
(without a time limit), (5) auditory feedback was
provided and the fixation dot disappeared, returning to
step 1). Participants were told to use the response stage
(step 4) to rest as needed by delaying the response.

For experiment 4, we slightly modified the task for
half of the participants. In this variation of the task,
participants were instructed to indicate the position
of the PS texture, instead of the phase-scrambled
texture. Accordingly, we substituted the condition
with two naturalistic targets for a condition with two
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Figure 2. Task design and observer model. (a) Two targets centered at 12 degrees to the left and to the right of the fixation point
were displayed simultaneously in each trial for 233 ms. Either the left, the right, or none of the targets was sampled from the
phase-scrambled texture (with the others sampled from the naturalistic texture), and the participant had to indicate with the arrows
where (if) the scrambled texture was present (3 AFC). In most trials, we added uninformative surround textures around the target (in
this example, surround textures are present, separated from the target by a gap). In any given trial, the two targets always had the
same kind of surround. To aid visibility, the size and color of the fixation dot in this image are not the same as in the experiments.
(b) Diagram showing the architecture of the model observers based on the SS model used to simulate the experiments. The SS of the
PS model are computed over circular pooling windows centered on each target (illustrated by the shaded regions). The difference
between the SS of the two targets is used to predict the stimulus configuration (i.e. where the phase scrambled target texture is). See
Methods for implementation details.

phase-scrambled targets, thus maintaining the structure
of the task.

Surround textures

In all the experiments, we included surrounding
textures with varying shapes and texture contents.
In any given trial, the two targets shared the same
kind of surround. These surrounds were also sampled
randomly (and independently from each other and
from the targets) from the larger synthesized textures.
Unless indicated otherwise in the text, the surrounds
were sampled from the PS texture of the texture pair to
be discriminated in the targets.

In most cases, surrounds were rings (or half-rings)
with a width (i.e. distance between inner and outer
edges) equal to target diameter. Experiment 1 and
texture T1 in experiment 3 were an exception, having a
surround width 1.4 times the diameter of the target.
The surrounds of the split disk targets in experiment 2
were not rings, but they had the same outer diameter
as the surrounds for the corresponding disk-shaped
targets.

Surrounds could be contiguous to the target or
separated by a gap showing the gray background.
The gap had a width of 0.5 degrees in all cases except
experiment 1, where it had a width of 0.35 degrees
and texture T1 in experiment 3, where both gaps of
0.5 degrees and 1 degree were used (although these were
grouped together for the analysis, see Supplementary
section S4). We selected this gap width by subjective
visual inspection, considering the need for a gap large
enough to be clearly visible in the periphery, but as small
as possible to minimize the spatial differences between
the stimuli with and without a gap (see Supplementary
sections S2 and S4 for more information on the slight
variability in gap size in some conditions).

Training and difficulty adjustment

Before the experiment, participants were provided
with training opportunity. Auditory feedback was
used in all stages of training, as well as in the main
experiment. In the first training session, targets
were shown without surround and remained on the
screen until the participant responded. The second
training session also used targets only, but had the
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same dynamics as the experiment. Both sessions were
terminated at will by the participant by pressing a
special key.

After running experiments 1 and 3 with texture T1
with a target diameter of 3.5 degrees, we observed
considerable variability between participants in task
performance. Therefore, we adjusted task difficulty to
each participant (except when noted otherwise), in order
to drive participants to a more informative performance
range (preventing saturation with very high or with
chance-level performances). To this aim, we presented
a sequence of trials with unsurrounded targets in
which target diameter was adaptively adjusted using
the accelerated stochastic approximation procedure
(Treutwein, 1995) to drive participant performance to
a predetermined level of 90% correct responses (see
Supplementary section S7 for details on the procedure
and final size distributions). If the final target diameter
was larger than 5.3 degrees (160 pixels), we used a
diameter of 5.3 degrees in the experiments. The widths
of the surrounds were then set equal to the target
diameter. We note that the results from experiment
1 and experiment 3 with texture T1 were obtained
without size adjustment, because this procedure was
only incorporated after these experiments.

After size adjustment, we repeated the static and
dynamic training stages as described above, including
also the surrounds, and instructed participants to
perform the task ignoring the surrounds. Again,
participants terminated these sessions at will.

Materials and apparatus

The task was performed in a dark room, using a
27 inch LCD screen (ASUS, model PG278QR) with a
refresh rate of 60 Hz. Participants used a chinrest to
maintain a viewing distance of 40 cm, at which 1 degree
of the visual field subtended 30 pixels. Experiments
were run on Psychtoolbox-3 (Kleiner et al., 2007)
running in Octave version 4.0.0 in Ubuntu 14.04.

The background gray had a luminance of 8.7 cd m−2,
and the textures used in the experiments had a range of
mean luminance of 50.9 cd m−2 to 67.3 cd m−2, and a
range of standard deviations in the luminance of the
pixels of 26.9 cd m−2to 34.1 cd m−2, as determined
with a screen calibration performed with a colorimeter
(Cambridge Research Systems, model ColorCAL II).

Summary-statistics model observer

We implemented an image-computable observer
model based on the feedforward SS model with fixed
pooling windows (Freeman et al., 2013). This model
first computes PS statistics over the two stimuli,
then computes their difference and feeds it to a

linear classifier to solve the task (see Figure 2b).
The weights of the discriminator were optimized to
maximize discrimination performance on a training
set, and the model is then tested on a separate test set
(cross-validation). We added noise to the PS statistics
computed by the model in both training and testing
stages, to roughly match the performance of the human
participants on average across stimuli.

We first generated sample images of single stimuli,
such as those used in the experiments, with either
phase-scrambled or naturalistic targets diameter 110
pixels (corresponding to a diameter of 3.7 degrees in
the experiments), and with the different surrounds. We
adapted the code of Freeman and Simoncelli, 2011, to
compute PS statistics over a circular fixed pooling area
centered on the target. We used a pooling area with
a diameter of 360 pixels, equivalent to 12 degrees of
visual field. We based this pooling size on Bouma’s law
of crowding (Whitney & Levi, 2011), which says that
surround elements hinder target perception when they
are within a distance of about 0.5 times the eccentricity,
thus we used this distance (12 degrees × 0.5) as the
radius of integration around the target center. We
note that previous studies on the SS model (Freeman
& Simoncelli, 2011; Doerig et al., 2019; Rosenholtz
et al., 2019; Wallis et al., 2019) used multiple pooling
regions with smaller sizes (with their diameter and not
their radius equal to half the eccentricity, analogous to
V2 receptive fields) that tile the visual field. Although
such models are more realistic than our model, and
their structure may allow them to capture some more
complex phenomena, using multiple pooling regions
would require a more complex decoder and several
additional design choices. Therefore, in the interest
of simplicity, we opted for the single pooling window
matching Bouma’s law.

We computed PS statistics using 4 scales,
4 orientations, and a neighborhood for computing
spatial correlations of 7 pixels (smaller than for texture
synthesis to reduce the number of model parameters),
corresponding to 0.7 degrees of visual field in the
experiments. This procedure leads to 782 SS per
stimulus (after removing the repetitions of symmetric
parameters from the correlation matrices).

To mimic the experimental task, we arranged
the stimuli (which either had naturalistic or phase
scrambled target) into three kinds of ordered pairs,
equivalent to those shown in the experiment. Using
Nat and Scr to refer to stimuli with naturalistic and
scrambled targets respectively, the three kinds of
ordered pairs were {Scr, Nat}, {Nat, Scr}, or {Nat,
Nat}. As in the experiment, the stimuli from a given
pair had the same surround. Then, we subtracted the
SS of the second stimulus to each corresponding SS
of the first stimulus, resulting in 782 differences in SS
(or predictors) for each stimulus pair. The observer
consisted of a linear discriminator trained to predict
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the class of the stimulus pair (e.g. {Scr, Nat}, {Nat,
Scr}, or {Nat, Nat}) from the SS difference of the pair.

First, for an observer trained for a given experiment,
we generated 750 stimulus pairs (250 of each class),
or trials, for each different surround condition in
the experiment, and computed the difference in SS
(predictors) for each generated pair. We then added
Gaussian noise to the predictors, with a standard
deviation equal to the standard deviation of the
predictor across the training dataset containing all
the conditions for the simulated experiment). Next,
we normalized each predictor to have unit variance
(using the default setting of the fitting package, glmnet;
Friedman et al., 2019). Last, we trained multiclass
logistic regression on the normalized predictors (i.e. the
differences in SS with added noise) with L2 penalization,
and optimized the hyperparameter that weights the
penalization by 10-fold cross-validation (i.e. the default
in the glmnet package). For each experiment, we trained
eight different models (observers), using different noise
samples and different samples for the training set,
leading to some variability between model observers.

After training the models, we tested their
discrimination performance on a test set comprising
1500 texture pairs (500 of each class) for each surround
condition.

We verified that all the trends and conclusions
are robust to the choices of target size, penalization
(we also tested elasticnet, which uses a mixed L1
and L2 penalization), and noise level. Furthermore,
we also ran the model with a variation of the
task that involved no stimulus sampling variability
(see Supplementary section S6).

Statistical analysis

All experiments were first performed with texture
T1, and all but experiment 1 were then reproduced
with other textures. Experiments performed with T1
sometimes had more conditions than experiments
with the other textures. These conditions exclusive
to T1 are analyzed separately in the supplementary
analysis.

We analyzed the data of the experiments and the
simulations using generalized linear mixed models
(GLMMs) of the binomial family (Gelman & Hill,
2006). In these models, we included a fixed effect for
each parameter of interest and an offset term. For each
of the fixed effects, we added random effects. When
applying the GLMMs to multiple textures to estimate
the mean effect across textures, we included for each
fixed effect a random effect for texture and a random
effect for participants nested within texture. We also
applied the GLMMs to individual textures, both for the
analysis of data that was only collected with one texture
(e.g. experiment 1), and for estimating the effects of the

different manipulations on each texture. In the plots
showing the effects for multiple textures, the estimate
for each individual texture was obtained by fitting a
GLMM to that texture individually. In these cases, we
only used a random effect for participants. Correlations
between random effects in the model were always set
to zero, to avoid overly complex models (Bates, Kliegl,
Vasishth, & Baayen, 2015).

All the GLMMs fitted by maximum likelihood using
the R package lme4 (Bates et al., 2019). The reported
p value for each effect was obtained by a likelihood
ratio test (LRT) between the full model and the null
model, in which that fixed effect is set to zero. The 95%
confidence intervals of the fixed effects were obtained
by likelihood profiling.

The analysis in the text is based on the parameters
fitted by these models, which are in log-odds ratio
(LOR) units. Although less intuitive than simple
differences between success probabilities, this is a
more adequate measure for the experimental effects,
especially given the variability in performance between
participants and textures.

In some cases, we fitted a generalized linear
model (GLM) to the data of each participant
in an experiment in order to display the actual
observed LOR for each individual (e.g. Figure 3).
These models contained no random effects. The
confidence intervals for the parameters were obtained
by the Wald method, and their p values by the Wald
test.

We excluded from analysis experimental sessions in
which the participant performed below 45% correct for
all conditions (chance level performance is 33%), to
avoid strong floor effects. This criterion discarded 14 of
the total 189 experimental sessions. In the main text, we
report for each experiment the number of experimental
sessions that satisfied the inclusion criterion. All results
and analyses are robust to removing this exclusion
criterion, as well as to excluding the main author from
the analysis.

Data analysis was performed in R version 3.4.4 (R
Core Team, 2018) using the packages lme4 1.1-19 (Bates
et al., 2019), dplyr 0.7.6 (Wickham, François, Henry, &
Müller, 2018), tidyr 0.8.1 (Wickham, Lionel Henry, &
RStudio, 2018), ggplot2 3.0.0 (Wickham, 2016), broom
0.5.0 (Robinson & Alex Hayes, 2018), MASS 7.3-50
(Venables & Ripley, 2002), and knitr 1.20 (Xie, 2015).

Data availability

The anonymized raw data of the experiments,
together with the analysis code, and the code for running
the experiments, are available in the Open Science
Framework (https://osf.io/8zr5h/). All participants gave
informed written consent for their anonymized data to
be publicly shared.

https://osf.io/8zr5h/


Journal of Vision (2021) 21(1):1, 1–26 Herrera-Esposito, Coen-Cagli, & Gomez-Sena 8

Figure 3. Surround textures impair texture discrimination performance. (a) Stimulus configurations used in the experiment (only
scrambled targets shown). Top: Target with surround, and bottom: target without surround. (b) Task performances for the two
conditions. The gray dots and lines show the performance of individual participants. Vertical lines indicate the ±SD of the estimated
performance. Horizontal jitter was applied to aid visualization. The larger red dots show mean performance across participants for
each condition. The dashed horizontal line shows chance performance. (c) Log odds ratios (LORs) between the presence and absence
of the surround (βSurr), estimated from the performance data in b. Each dot shows the LOR for one participant (estimated by fitting a
GLMM), and the horizontal lines indicate their 95% confidence interval. Statistical significance of the LOR for the individual
participants obtained by the Wald test is indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001. The vertical solid blue line
indicates the estimated mean LOR for the population (estimated by fitting a GLMM), and the grey shade indicates its 95% confidence
interval. The p value of the mean LOR estimate as obtained by likelihood-ratio test (LRT) is indicated above the solid line. The dashed
vertical line marks the LOR at which there is no difference between the conditions. (d, e) show the same as b and c but for the model
observers. Participants (n = 8) performed 70 trials in each condition, and model observers (n = 8) discriminated 1500 stimuli per
condition.

Results

We used a PS texture discrimination task (details
in Figure 2 and Methods) to study contextual
modulation of texture perception in peripheral vision.
We refer to contextual modulation as the observed
phenomenon by which perception of a part of a visual
stimulus is affected by its surrounds, regardless of the
precise underlying mechanisms. In our experiments,
we measure changes in contextual modulation as the
changes in task performance between conditions with
different surrounds (taken as indicative of changes
in target perception between conditions induced by
these surrounds). PS textures are characterized by a
set of SS inspired in natural image statistics and early
human vision, including the correlations between
the outputs of V1-like filters selective for orientation
and spatial frequency. The corresponding SS model
implementation consists of two stages: the first stage
computes the responses of the V1-like filters to the
input image, and the second stage evaluates the PS
statistics of those filter activations within fixed pooling
windows (see Figure 1).

The task required discriminating patches of
naturalistic PS texture from their corresponding
phase scrambled textures (see Figure 2) in a three
alternative forced choice design (we refer to the
patches to be discriminated as targets). These PS and
phase-scrambled texture pairs have the same FAS,
which means they activate the V1-like filters of the
SS model with the same average energy, and are thus
matched in the first stage of the SS model. Unlike
phase-scrambled textures, PS textures also have a
more structured distribution of filters activations,
corresponding to HOS that drive the second stage of
the SS model and lead to a more natural appearance
(Portilla & Simoncelli, 2000).

To evaluate whether our experimental observations
could be captured by the feedforward SS model with
fixed pooling windows, we implemented a model SS
observer to solve the task using a linear classifier on the
PS statistics of the stimuli, computed over a fixed area
centered on the target (see Figure 2b, Methods). We
then compared qualitatively the model’s discrimination
performance to the participants. The radius of the
pooling windows was chosen according to Bouma’s
law of crowding, which says that surrounding stimuli
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can interfere with target identification when they
are within a distance of approximately 0.5 times the
target eccentricity (Pelli, Palomares, & Majaj, 2004; see
Methods section).

The results are divided into three sections. First,
we report the effect of the surround on performance,
and its dependence on target-surround grouping
or segmentation. Then, we explore the relevance of
the statistical structure of the surround texture to
contextual modulation. Last, we study the relation of
this contextual interaction to crowding.

Contextual modulation and grouping

Target-surround grouping, or conversely
segmentation, is a major modulator of contextual inter
actions in vision, especially for crowding (Levi, 2008;
Saarela & Herzog, 2009; Manassi et al., 2013; Qiu et
al., 2013). It has been argued that these segmentation
and grouping processes are an important missing
component in pooling models of peripheral vision,
including the SS model (Manassi et al., 2013; Doerig et
al., 2019; Wallis et al., 2019). Despite considerable work
using stimuli, such as objects, shapes, or features (e.g.
Kooi et al., 1994; Saarela, Westheimer, and Herzog,
2010; Manassi et al., 2013; Manassi et al., 2016),
our understanding of how grouping processes affect
peripheral perception is still incomplete because it is
not clear how to relate those tasks that use non-texture
stimuli to the SS model, which may be affected by
more global stimulus information (Rosenholtz et al.,
2019), and whether those results extend to texture
processing.

Thus, to better understand the role of grouping
and segmentation in the SS model, and how they
influence perception of textures, we sought to determine
whether contextual modulation of naturalistic texture
perception is affected by segmentation or grouping
cues.

Experiment 1: Target-surround discontinuity reduces
contextual modulation

First, we measured whether naturalistic texture
perception is affected by contextual modulation.
Based on the relevance of contextual modulation
for target identification in peripheral vision, we
expected task performance to be impaired by
surrounding textures. To test this, we presented
participants (n = 8) with targets in isolation, and
with targets surrounded by an uninformative texture
ring that was sampled from the same PS texture
(see Figure 3a).

As expected, task performance was considerably
worse for the surrounded targets (see Figure 3b). To
quantify the effect sizes and test for their statistical

significance, we fitted a GLMM to the data (which
allows to take into account between-participant
variability; see Methods and Supplementary section
S5). We report the LOR between the conditions
(denoted by β), which is a measure of their difference in
success probability (see a guide for converting between
the two in Supplementary section S5). For example,
βSurr quantifies the effect of the surround around the
target, and βSurr < 0 means that the surround hindered
performance. Figure 3c shows that, in our experiments,
the surround strongly impaired performance, and that
the effect was statistically significant (βSurr = −1.07,
ci = [−1.58 to −0.57], p = 8 × 10−4). This effect was
captured by our implementation of the SS model
(see Figure 3e).

We next tested whether segmentation affects this
contextual modulation, and whether the effect can be
captured by our SS model implementation. To probe
the effect of segmentation, we presented participants (n
= 9) with two kinds of stimuli, either with continuous
target and surround, or with a visible gap that induced
target surround segmentation (Figure 4a). Importantly,
the gap was generated by shrinking the target of the
continuous stimuli, keeping surround geometry the
same in the two conditions. With this design, if pooling
regions are constant, the two conditions would have
the same amount of surround texture pooled with the
target, but in the discontinuous condition there would
be less target texture to be integrated (due to the smaller
target size). In line with what could be expected from the
ratio of informative target texture and uninformative
surround texture for each stimulus, our implementation
of the SS model showed worse performance in the
discontinuous than in the continuous condition
(Figures 4d, 4e; a similar reasoning to that applied in
Manassi et al., 2013). This is in contrast to what we
expect from previous studies using simple stimuli, in
which segmentation reduced contextual modulation
(Kooi et al., 1994; Saarela et al., 2010; Manassi et al.,
2012; Manassi et al., 2013; Qiu et al., 2013; Manassi
et al., 2015; Manassi et al., 2016). Figure 4b shows
that performance increased moderately when target
and surround were discontinuous (βDiscont = 0.62, ci =
[0.37 to 0.87], p = 1 × 10−4; see Figure 4c). Thus, our
SS model implementation was unable to capture the
effect of segmentation (see Supplementary section S4
for further discussion).

We also found that the observed effect of
discontinuity is sensitive to the size of the gap (see
Supplementary section S2), likely because the gap size
affects gap visibility, and also the difference in target
sizes between the conditions. In addition, notice that
segmentation did not completely remove contextual
modulation, that is, performance was still lower for
the discontinuous surround than for the target alone
(βDiscont

Surr = −0.40, ci = [−0.68 to −0.15], p = 5 ×
10−3; Supplementary section S2).
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Figure 4. Segmentation reduces contextual modulation. (a) Stimulus configurations used in the experiment (only scrambled targets
shown). Top: Discontinuous stimulus (smaller target size), and bottom: Continuous stimulus (larger target size). (b) Task performance
for the two conditions. (c) LOR for discontinuity (βDiscont), estimated from the performance data in b. (d, e) Same as b and c but for the
simulated observers. Participants (n = 9) performed 70 trials in each condition, and model observers (n = 8) discriminated
1500 stimuli per condition. Panels b through e use the same conventions as Figure 3.

Experiment 2: The effect of target-surround discontinuity
is mediated by segmentation

We reasoned that the gap between target and
surround used to induce segmentation may also affect
performance by other mechanisms, such as reducing
the uncertainty of target location within the stimulus,
or altering the SS of the stimulus in a way that is
not captured by our SS model implementation. For
example, it has been proposed that some uncrowding
results may be explained by a better encoding or
decoding of target information from the SS of the
stimuli, allowed by the specific stimulus configurations
that generate uncrowding (Rosenholtz et al., 2019).
Given that the gap in our stimuli is colocalized with the
target, it is possible that their low-level features induce
changes in the SS that allow for a better decoding of
target information (see Supplementary section S6 for
modeling results suggesting that such factors may be
relevant).

To control for the possible cues related to the gap
but not to segmentation, we introduced a different
target shape (split-target) consisting of two adjacent
semicircles with their straight sides facing outward (see
Figure 5a). This split-target shape had approximately
the same texture area as the original disk target, and a
gap could be introduced around its curved sides, while
preserving target-surround continuity on the straight
sides of the target.

Although the circular targets and the split targets
had gaps with similar low-level properties, we expected
no segmentation for the split-target stimulus because
target-surround continuity is maintained. Thus, if the
effect observed in the previous section was mediated
by segmentation, we should find lower performance
for the grouped continuous stimulus (split-target) as
compared to the segmented discontinuous stimulus
(disk-target). If the effects were mostly due to other
factors introduced by the low-level properties of the
gap, then we would expect similar performance for
these two kinds of stimuli.

We presented participants (n = 25) with the
disk-target and split-target stimuli using five different
textures to verify that the results did not depend on
a specific texture (most participants were shown only
some of the textures, see Methods). Participants
completed 40 experimental sessions (an experimental
session consists of a participant completing the
experiment with one texture) that satisfied the inclusion
criterion (see Methods). Consistent with a role of
segmentation in contextual modulation of texture
perception, performance was moderately worse for the
continuous (split-target) than for the discontinuous
stimulus (βDiscont = 0.42, ci = [0.23 to 0.62], p = 2 ×
10−3; see Figure 5c). In contrast to this observation, our
implementation of the SS model showed little difference
between the stimuli, showing again a failure to capture
the segmentation effect (see Figure 5e).
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Figure 5. Low level properties of the gap do not explain the effect of discontinuity. (a) Stimuli used in the experiment. Top: Disk
targets (discontinuous), and bottom: split-targets (continuous). (b) Task performance. Each panel shows the results for a different
texture, with texture identity indicated above the panel. The layout of each panel is the same as in 3b, except a different color is used
to identify the mean performance for each texture. The data of author DH are indicated by the blue symbols. (c) LOR for
target-surround discontinuity (βDiscont). The colored dots show the LOR obtained by fitting a GLMM for each individual texture (color
coded as in b) and the horizontal lines indicate their 95% confidence interval. The p value for the (βDiscont) of each individual texture,
estimated by LRT, is indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001. The vertical solid blue line shows the mean βDiscont
across textures and participants estimated by a hierarchical GLMMmodel using all textures, and the shaded gray region shows its
95% confidence interval. The p value for this estimate obtained using LRT is indicated above the line. The dashed vertical line marks
the value at which there is no difference between conditions. (d, e) Same as b and c but for the model observers. Participants (n = 25)
completed 40 experimental sessions (see Methods), and performed between 80 and 112 trials per condition. Model observers (n = 8)
discriminated 1500 trials per condition.

We also verified, using additional stimuli for texture
T1 (see Supplementary section S6), that splitting
the target had a small and nonsignificant effect on
performance (βSplit = −0.09 ci = [−0.31 to 0.14], p =
0.43 see Supplementary section S6) validating the use of
this experiment to control for low-level gap properties.

Furthermore, the estimated effect of the gap after
accounting for segmentation was also close to 0 (βGap =
0.04, ci = [−0.15 to 0.22], p = 0.71, see Supplementary
section S6), suggesting that effects of the gap other
than inducing target-surround segmentation are
negligible in our task. This extended analysis supports
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the interpretation that the effect of segmentation on
contextual modulation cannot be wholly explained by
the changes in target encoding or decoding allowed
by its colocalization with the gap, although it remains
possible that a more complex SS model with more
statistics or more complex structure could capture these
results.

We conclude from these experiments that target-
surround segmentation is an important factor in
mediating contextual modulation of texture perception,
that a discontinuity between target and surround
induces segmentation and thus reduces contextual
modulation, and that this effect is not observed in our
implementation of the feedforward SS model with fixed
pooling windows.

Effect of surround statistics

Besides the geometric cue (the gap) we considered
above, another important factor that can reduce
contextual modulation is target-surround dissimilarity.
The effect of target surround dissimilarity is well
reported for object and feature crowding, where the
effects of the surround on target identification can
be reduced if the two differ in aspects such as color,
orientation, or higher-level attributes (Kooi et al.,
1994; Louie, Bressler, & Whitney, 2007; Põder, 2007;
Farzin, Rivera, & Whitney, 2009; Whitney & Levi,
2011; Manassi & Whitney, 2018), thus increasing target
saliency (Gheri, Morgan, & Solomon, 2007). This
breakdown in statistical similarity is known to enhance
perceptual saliency (Li, 1999; Li, 2002) and in some
cases is suggested to act through segmentation (Whitney
& Levi, 2011; Manassi et al., 2013). Understanding the
effects of surround structure on contextual modulation
of texture perception is important because during
natural scene perception there is abundant variability
in texture properties and arrangement. Furthermore,
different levels of surround structure are often used as
proxies for different stages of neural processing (Louie
et al., 2007; Farzin et al., 2009; Gong, Xuan, Smart,
& Olzak, 2018; Manassi & Whitney, 2018), which
could provide insights on the mechanisms behind our
observations. For these reasons, we next asked how
target-surround dissimilarity affects peripheral texture
perception, and how it interacts with segmentation.

Experiment 3: FAS dissimilarity but not hos dissimilarity
strongly reduces contextual modulation through
segmentation

We focused on target-surround dissimilarity at the
FAS and HOS levels because they are related to the
SS model (Freeman & Simoncelli, 2011; Freeman
et al., 2013) and to physiology (Balas et al., 2009;
Freeman & Simoncelli, 2011; Freeman et al., 2013;

Okazawa et al., 2015; Ziemba et al., 2016; Okazawa
et al., 2017), as discussed above. Previous work on
contextual modulation (Xing & Heeger, 2000; Whitney
& Levi, 2011; Manassi & Whitney, 2018) suggests that
dissimilar surrounds should have a smaller influence
on target perception. In addition, it is well known
that textures can be segmented from one another
based on dissimilarity in their statistics (Julesz, 1962;
Rosenholtz, 2014; Victor, Conte, & Chubb, 2017),
and thus we expect that textures that allow for good
target-surround segmentation will lead to reduced
contextual modulation. However, although effects of
FAS and certain HOS in perceptual segmentation
and contextual modulation have been studied in a
variety of experimental settings (e.g. Julesz, Gilbert, &
Victor, 1978; Julesz, 1962; Julesz & Caelli, 1979; Xing &
Heeger, 2000; Whitney & Levi, 2011; Victor et al., 2013;
Hermundstad et al., 2014; Zavitz & Baker, 2014; Victor
et al., 2017), and a wide arrange of computational
models attempt to explain texture segmentation and
contextual modulation (for reviews and examples
see Bergen and Landy, 1991; Li, 2002; Thielscher &
Neumann, 2005; Bhatt, Carpenter, & Grossberg, 2007;
Thielscher, Kölle, Neumann, Spitzer, & Grön, 2008;
Landy, 2013; Rosenholtz, 2014; Victor et al., 2017),
these processes have not been systematically studied for
naturalistic textures, and their effects can also be task
dependent (Vancleef et al., 2013; Victor et al., 2017),
making it difficult to tell a priori what effects they may
have in our task.

To test the effects of FAS and HOS dissimilarity, we
compared three different surround textures (Figure 6a):
(1) the same PS texture as the target (none dissimilar),
(2) a different PS texture with FAS and pixel histogram
matched to the target PS texture (HOS dissimilar), and
(3) a different PS texture with only its pixel histogram
matched to the target (FAS and HOS dissimilar).
Furthermore, to study the interaction of FAS and
HOS dissimilarity with segmentation, we showed
these surround textures in both the continuous and
discontinuous conditions. In this experiment, target
size was the same for the continuous and discontinuous
conditions, and the gap was generated by enlarging the
surround for the discontinuous condition (increasing
inner and outer diameter to maintain its width).

We presented participants (n = 22) with 4
different target textures (see Figure 6a), adding to
31 experimental sessions. To analyze the data, we
fitted a GLMM with parameters for FAS dissimilarity
(βFAS) and HOS dissimilarity (βHOS) separately to
the continuous and discontinuous conditions, where
the effect of FAS dissimilarity is estimated as the
change in performance between the condition of HOS
dissimilarity and the condition of HOS and FAS
dissimilarity.

First, we asked whether the two levels of dissimilarity
had an effect for the continuous stimulus. The effect of
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Figure 6. Target-surround dissimilarity reduces contextual modulation. (a) Samples of the stimuli used in this experiment, showing
for target textures the three levels of target-surround dissimilarity used in the experiment (discontinuous stimuli not shown). (b, c)
Task performances for the different target-surround dissimilarities in the continuous and discontinuous conditions, respectively. (d, e)
LOR for HOS (βHOS) and FAS (βFAS) dissimilarity in the continuous and discontinuous conditions respectively. (f–i) Same as b through e
but for the model observers. Participants (n = 22) completed 31 experimental sessions, and performed between 60 and 120 trials per
condition. Model observers (n = 8) discriminated 1500 stimuli per condition. The plots in this figure use the same conventions as the
corresponding plots in Figure 5.

HOS dissimilarity was close to 0 and not significant
(βCont

HOS = −0.04, ci = [−0.69 to 0.61], p = 0.87;
see Figure 6d), whereas FAS dissimilarity generated
strong improvements in performance overall (βCont

FAS
= 0.84, ci = [0.50 to 1.16], p = 2 × 10−3; see Figure 6d).

We note that the effect of HOS showed considerable
variability between textures. In particular, for texture
T4 performance was strongly reduced for dissimilar
HOS, contrary to expectations. This is likely because
the surround without dissimilarity for this texture
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has a high regularity that introduces a phase effect at
the target-surround boundary, which could act as a
segmentation cue.

To better understand the relation between
dissimilarity and segmentation, we then asked
whether dissimilarity interacted with discontinuity.
If the effects of dissimilarity are mediated simply
by surround statistics pooled over fixed regions, we
would expect dissimilarity effects for the discontinuous
condition comparable to those of the continuous
condition (assuming, as we do, a pooling area with the
radius of Bouma’s law such that the small change in
surround geometry is negligible). On the other hand, if
dissimilarity effects are mediated by segmentation, we
expect the effects to be reduced in the discontinuous
condition where segmentation is already induced by
the gap. Consistent with the second mechanism, we
found that target-surround dissimilarity had little
effect on contextual modulation in the discontinuous
condition (see Figure 6c) for both HOS (βDiscont

HOS
= 0.03, ci = [−0.36 to 0.40], p = 0.84; see Figure 6e),
and FAS (βDiscont

FAS = 0.03, ci = [−0.29 to 0.34], p =
0.80; see Figure 6e), although there was considerable
variability between textures. We verified that the change
of the effect of FAS dissimilarity for the discontinuous
condition was significant (see Supplementary section S4
and Supplementary Figure S6).

Our analysis therefore suggests that FAS dissimilarity
effects are strong and mediated by segmentation,
whereas HOS dissimilarity effects show considerable
variability across textures but are, on average, weak.
We then tested whether these results could be captured
by our implementation of the SS model. First, in the
continuous condition our model showed a strong
improvement in performance when there was HOS
dissimilarity, and much weaker changes for FAS
dissimilarity (see Figures 6f, 6h). Second, these effects
were mostly unchanged for the discontinuous condition
(see Supplementary section S6), due to the lack
of explicit segmentation processes. Therefore, our
implementation of the SS model was not able to capture
the patterns observed in the human data.

Experiment 4: Naturalistic structure in the surround is
important to recruit contextual modulation

The results of the previous section show that a
surround with different naturalistic HOS than the
target can still exert substantial contextual modulation.
Interestingly, other studies have previously shown that
contextual modulation can be reduced by removing
the natural HOS from the surround. Perceptually,
this has been observed for tasks involving recognition
and discrimination of natural scenes in peripheral
vision (Wallis, Bethge, & Wichmann, 2016; Gong et
al., 2018), and for local orientation processing during
scene perception (Neri, 2017). Neurally, it has been

shown that phase-scrambling the surround (i.e. the
HOS are removed but the FAS maintained) strongly
affects contextual modulation of neural activity in
response to natural images in V1 (Guo, Robertson,
Mahmoodi, & Young, 2005; Pecka, Han, Sader, &
Mrsic-Flogel, 2014; Coen-Cagli, Kohn, & Schwartz,
2015) and to naturalistic textures in V2 (Ziemba,
Freeman, Simoncelli, & Movshon, 2018). This effect
of naturalness is thought to reflect that contextual
modulation is tuned to natural image statistics, to
support efficient coding and optimal perceptual
inferences (Pecka et al., 2014; Coen-Cagli et al., 2015).
This interpretation seems also in line with previous work
with artificial textures, proposing that the asymmetries
between textures with uniform and random orientation
in texture filling-in could be related to a process
of perceptual inference (Hindi Attar, Hamburger,
Rosenholtz, Götzl, & Spillmann, 2007). In other work
using natural and phase-scrambled scenes, the effect of
phase-scrambling has been explained (Gong et al., 2018)
as resulting from a weaker engagement of higher areas
in the visual hierarchy, leading to reduced contextual
modulation in these higher areas. In the context of
this literature, our finding of a relatively weak effect of
HOS dissimilarity in the previous experiment raises
the question of whether the presence of natural HOS
is necessary for recruiting contextual modulation for
textures.

To address this question, we compared the effects of
naturalistic and phase-scrambled surrounds continuous
to the target (Figure 7a). Because our experiments
required to identify the phase-scrambled target,
we reasoned that target-surround similarity with
the texture to be identified could affect contextual
modulation and lead to unpredictable confounding
effects. Therefore, to balance out this possible effect of
similarity, we asked half the participants to identify the
phase-scrambled texture and the other half to identify
the naturalistic texture (modifying the task accordingly,
see Methods), and we report the results from both task
variants together.

Participants (n = 28) were presented with 5 textures,
adding to 43 experimental sessions. Consistent with
previous studies, we observed that performance was
worse with natural HOS in the surround (βNat = −0.91,
ci = [−1.25 to −0.56], p = 10 × 10−4; see Figure 7c).
This is in agreement with previous physiology studies
(Guo et al., 2005; Pecka et al., 2014; Coen-Cagli
et al., 2015) showing that naturalistic HOS in the
surround are important for fully engaging contextual
modulation, possibly due to the tuning of contextual
modulation to natural image statistics for efficient
coding and inference. Together, these results and those
from experiment 3 suggests that although the presence
of HOS in the surround is important for contextual
modulation, their similarity to the HOS of the center
is of secondary importance. We note, however, that
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Figure 7. Naturalistic HOS increase contextual modulation. (a) Stimuli used in the experiment. Top row: Naturalistic surrounds.
Bottom row: phase-scrambled surrounds (only naturalistic targets are shown). (b) Task performance. (c) LOR for the presence of
naturalistic HOS (βNat). (d, e) Same as b and c but for the model observers. Participants (n = 43) completed 43 experimental sessions
and performed between 90 and 120 trials per condition. Model observers (n = 8) discriminated 1500 trials per condition. The plots in
this figure use the same conventions as the corresponding plots in Figure 5.

contextual modulation still occurs for phase-scrambled
surrounds (Supplementary section S7), thus the
phenomenon can occur in the absence of naturalistic
HOS.

Although, as discussed, the effect of naturalness may
reflect the tuning of contextual modulation to natural
statistics (Pecka et al., 2014; Coen-Cagli et al., 2015;
Ziemba et al., 2018), we observed a qualitatively similar
effect of naturalness in our SS model implementation
(see Figure 7e). This means that at least part of the effect
of naturalness could be mediated by simple pooling.
Nonetheless, for textures T1 and T2, we also studied

the interaction between naturalness and segmentation
(see Supplementary section S5, Supplementary Figure
S7), and found that adding a discontinuity reduced the
effect of naturalness (βNat:Discont = 0.43, ci = [0.06 to
0.83], p = 0.04; see Supplementary section S7), whereas
this effect was not captured by our SS model (βNat:Discont
= 0.05, ci = [−0.03 to 0.12], p = 0.15; Supplementary
section S7). In addition, further analysis of the model
shows that the observed naturalness effect in the model
is not due to surround naturalness itself, but rather due
to some specific features of our stimulus generating
process (see Supplementary section S6, Supplementary
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Figure 8. Inward surrounds affect performance more than outward surrounds. (a) Stimuli used in the experiment. Inward and
outward surround conditions differ in the position of the half ring of surround texture relative to the fixation point. (b) Task
performance for the different surround positions. (c) LOR for inward versus outward surround (β In). Participants (n = 21) completed
40 experimental sessions, and performed between 90 and 99 trials per condition. The figure uses the same conventions as Figure 5.

Figure S12). Thus, it is likely that pooling is not the only
mediator of the effect of naturalness in our experiments.

In conclusion, these results suggest that naturalistic
HOS are important for fully engaging contextual
modulation phenomena. This is compatible with
suggestions that neuronal contextual modulation
phenomena are tuned to the structure of natural images
(Pecka et al., 2014; Coen-Cagli et al., 2015), and more
specifically, with the results observed for neuronal
contextual modulation phenomena in V and V2, that
may be mechanistically related to our results (see
Discussion).

Texture crowding

We have thus far shown that texture perception is
affected by contextual modulation, and influenced by
segmentation and target surround dissimilarity. These
characteristics are consistent with a possible role of
visual crowding, a contextual modulation phenomenon
often regarded as the most important factor of
peripheral vision (Rosenholtz, 2016). The SS model
explains crowding as a loss of information from pooling
together target and surround features when computing
local SS (Balas et al., 2009; Freeman & Simoncelli,
2011; Whitney & Levi, 2011; Freeman et al., 2013).
However, it is not clear whether this explanation, that
is often applied to tasks on non-texture stimuli, should

hold for our task. Thus, we decided to test whether the
contextual modulation we observed is due to crowding.

There are two main diagnostic criteria for crowding.
One is compliance with Bouma’s law, which states
that the critical distance at which surrounds interfere
with target perception scales linearly with eccentricity
with a slope of approximately 0.5 (Pelli et al., 2004).
The other is an inward-outward asymmetry in which
surrounds more eccentric (outward) to the target
exert a stronger modulation than surrounds more
central (inward) to the target (Pelli et al., 2004; Petrov,
Popple, & McKee, 2007; Farzin et al., 2009; Whitney &
Levi, 2011; Rosenholtz, 2016). Probing Bouma’s law
with textures poses experimental challenges, such as
changing target-surround distance without breaking
continuity or altering target size, and determining how
to measure distance between texture stimuli (e.g. Rosen,
Chakravarthi, & Pelli, 2014). Therefore, we decided to
probe the characteristic inward-outward asymmetry of
crowding.

Experiment 5: Effect of surround position is small, highly
variable, and task dependent

To test for inward-outward asymmetry in our
task, we used half-ring-shaped surrounds (Figure 8a)
placed inward or outward of the target. Participants
(n = 21) were presented with 5 different textures,
completing 37 experimental sessions. Opposite to
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Figure 9. Reduced inward-outward asymmetry with single
target. (a) Task performance for the different surround
positions for the task using only one target, for texture T1.
(b) LOR of the position of the surround for the task using only
one target (β In). Participants (n = 15) performed 90 trials per
condition. The plots in this figure use the same conventions as
the corresponding plots in Figure 3.

what has been reported in most crowding studies,
performance in our task was consistently lower when
the surround was inward of the target (βIn = −0.32,
ci = [−0.47 to −0.18], p = 2 × 10−3; see Figure 8c).
This suggests that crowding as reported for classical
letter detection or orientation discrimination may not
be the main contextual modulation phenomenon in our
experiments.

Nonetheless, unlike the task used here, most reports
of inward-outward asymmetry use only one target
(Banks, Larson, & Prinzmetal, 1979; Petrov et al., 2007;
Farzin et al., 2009; Manassi et al., 2012). To verify that
the previous result is not only due to this task-related
effect, we repeated the experiment for texture T1 using
only one target, presented to the right of the fixation
point. Participants (n = 15) had to report whether
the target was naturalistic or phase scrambled. Using
this new task, we observed an effect of surround
position close to 0 (βIn = 0.02, ci = [−0.32 to 0.38],
p = 0.88; Figure 9b). We also verified whether this lack
of an effect is due to easier task conditions that bring
performance to ceiling levels by using an unsurrounded
control condition. Performance was significantly lower
for the surrounded than for the control condition in this
experiment (βSurr = −0.46, ci = [−0.72 to −0.20], p = 1
× 10−3), meaning that the lack of an effect was not due
to ceiling performance. This lack of inward-outward
asymmetry is not what would be expected from the
classical asymmetry in crowding, and thus supports
the conclusion from the experiment using two targets.
Nonetheless, we also note that the difference between
the results from the two tasks is in agreement with
an effect of task and attention on inwards-outwards
asymmetry, such as shown in a previous study in which

biasing attention toward the center of the visual field
inverted the direction of inward-outward asymmetry
(Petrov & Meleshkevich, 2011b).

Despite the lack of a clear asymmetry in the
average performance, variation between participants
was high, and some individual participants showed
strong effects of surround position in both directions.
One plausible interpretation of this result is that
contextual modulation in our task arises from different
contributing processes (e.g. crowding and surround
suppression, although others processes are possible;
see Discussion) and that participants with stronger
crowding effects would show worse performance for
outward targets, whereas participants more affected
by other processes would show little or opposite
asymmetry. This hypothesis is in line with previous
studies reporting substantial variability in sensitivity
to crowding between observers (Kooi et al., 1994;
Petrov & Meleshkevich, 2011a; Wallace, Chiu, Nandy,
& Tjan, 2013; Lev & Polat, 2015). In addition, we
hypothesize that this variability in sensitivity to
contextual modulation phenomena could arise from the
use of different strategies for solving the task, possibly
contributing to the considerable between-participant
variability that we observed in the results of the
previous experiments.

In conclusion, these results suggest that the processes
that underlie crowding in experimental paradigms,
such as letter recognition, and that have been widely
reported to be stronger for outward surrounds, interact
with other processes of at least comparable relevance to
contextual modulation of texture perception, that show
little or the opposite inward-outward asymmetry.

Discussion

Although the SS model of peripheral vision has
had considerable success (Rosenholtz, 2016), studies
using complex scenes (Wallis et al., 2019) and simple
object-like stimuli (Saarela et al., 2009; Manassi et
al., 2012; Manassi et al., 2013; Manassi et al., 2015;
Manassi et al., 2016; Francis et al., 2017; Doerig et al.,
2019) suggest that including processes of segmentation
and grouping together with contextual modulation is
crucial for a more accurate understanding of peripheral
vision. Here, we showed that PS texture perception
in the periphery is modulated by spatial context, and
that contextual modulation is strongly reduced by
segmentation engaged both by a gap between target
and surround, and by target surround dissimilarity (see
Figures 4, 5, 6). Although the relevance of segmentation
and target-surround dissimilarity for contextual
modulation has been studied for discrimination tasks
using simple features or objects (Kooi et al., 1994;
Zenger-Landolt & Koch, 2001; Sayim, Westheimer,
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& Herzog, 2008; Saarela & Herzog, 2009; Saarela et
al., 2010; Whitney & Levi, 2011; Manassi et al., 2013;
Qiu et al., 2013; Manassi & Whitney, 2018), this is,
to our knowledge, the first report of such effects for
texture discrimination, which likely involves different
processing of the visual input (Cant, Large, McCall, &
Goodale, 2008; Cavina-Pratesi, Kentridge, Heywood,
& Milner, 2010; Cant & Xu, 2012; Rosenholtz, 2014).
Furthermore, although the simple feature and object
stimuli are more difficult to relate to the SS model
(Rosenholtz et al., 2019), our choice of stimuli and task
allowed for a direct comparison with the SS model.

In line with previous work using a vernier
discrimination task to show that adding more
flankers could reduce crowding if these favored target
segmentation (Malania, Herzog, & Westheimer, 2007;
Manassi et al., 2012; Manassi et al., 2013), we found
that increasing target size in our texture task can reduce
performance if it eliminates a segmentation cue, and
that this was not explained by our implementation of
the SS model (see Figure 4). In addition, in line with
similar work showing that the precise configuration
of the surround is important because it determines
grouping with the target (Manassi et al., 2013; Manassi
et al., 2016), we show that the precise configuration of
the target is important for the same reason. Our SS
model implementation was not able to account for this
effect (see Figure 5). These results thus support the
view that the two-stage model with filtering followed by
fixed pooling windows cannot fully explain crowding.
We note, however, that this does not argue against
the importance of SS as a general framework for
understanding peripheral vision, but rather for the
need to incorporate segmentation and flexible pooling
processes more explicitly. As has been pointed out
for previous studies (Rosenholtz et al., 2019), it is
possible that a more sophisticated feedforward SS
model (e.g. with a nonlinear decoder) could account
for some of our segmentation results, leveraging the
segmentation cues to extract relevant information from
the SS of the stimulus. To test for this, we introduced
in experiment 2 and in Supplementary section S6 a
control for some of the major ways in which this could
happen, namely the colocalization of the target and
segmentation cue. The small effect of the control gap
on task performance of both human participants and
our implementation of the SS model suggests that our
results cannot be fully explained by an improvement
in encoding (or decoding) of target information in
the SS of the stimulus facilitated by the low-level
properties of the gap. Nonetheless, due to the several
changes in geometry introduced in the construction
of these control stimuli (see Figure 5a), it remains
possible that there are some unforeseen changes in the
SS of the stimuli that would allow a more elaborate
version of the feedforward SS model to account for our
results.

Although the effects of different kinds of target-
surround similarity on contextual modulation have
been widely studied for discrimination tasks using
features or objects (see Whitney & Levi, 2011; Manassi
& Whitney, 2018 for reviews), this has not been studied
for textures (note that textures have been used to study
these effects in the context of contrast perception (e.g.
Wang, Heeger, & Landy, 2012; Solomon, Sperling,
& Chubb, 1993). Our stimulus design allowed us to
study the perceptual relevance of dissimilarity in
texture properties (specifically, FAS and HOS) to target
discrimination. The relation of these properties to the
different stages of the SS model and of early visual
processing allows us to relate or results to the model and
to physiology. Previous studies using artificial textures
have reported that FAS is a stronger segmentation
cue than HOS, and that some HOS induce moderate
and others induce weak or no segmentation (Julesz &
Caelli, 1979; Victor et al., 2013; Zavitz & Baker, 2014).
We found that for our naturalistic stimuli dissimilarity
in FAS was a strong segmentation cue, but we did not
observe clear evidence that dissimilarity in the HOS of
the PS model induces segmentation in the periphery
(see Figure 6). This seems also in agreement with simple
inspection of our stimuli, in which the targets strongly
pop out when the surround is dissimilar in FAS and
HOS, but not when it is only dissimilar in HOS. The
weak effect of HOS dissimilarity in peripheral vision
is particularly interesting if we note that the textures
with HOS dissimilarity were noticeably different under
foveal inspection. It is also noteworthy that we did not
observe FAS dissimilarity effects when we induced
segmentation by a discontinuity between target and
surround. If the surround were pooled with the target
for the discontinuous condition, as the fixed pooling
regions model would suggest, we would expect more
similar statistics to interfere more (as was observed for
our implementation of the SS model; see Figure 6),
contrary to what we observed. A possible explanation
for this discrepancy between our model and our data
is that pooling windows are flexible, and when the
surrounds are segmented from the target they are not
pooled equally to when grouped together (Mareschal,
Sceniak, & Shapley, 2001; Wallis et al., 2019). Finally,
we showed that contextual modulation of naturalistic
texture perception is strongly dependent on the
naturalness of the HOS of the surround (see Figure 7),
in agreement with previous perceptual (Wallis et al.,
2016; Neri, 2017; Gong et al., 2018) and physiological
(Guo et al., 2005; Pecka et al., 2014; Coen-Cagli et
al., 2015; Ziemba et al., 2018) studies of contextual
modulation.

The effects of texture structure may be informative
about the mechanism of texture segmentation in
the model. Human texture segmentation is a widely
studied topic, and several computational models and
physiological mechanisms have been proposed in the
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literature. Our dissimilarity results seem compatible
with most of the different existing models, which is not
surprising given that they can make similar predictions,
and our stimuli were not designed to tell them apart.
Nonetheless, our results may offer some interesting
constraints on these models, and although an exhaustive
analysis is out of the scope of this work, it might be
useful to discuss some of the relation to three of the
main biologically inspired segmentation models (Landy,
2013): the feedforward filter-rectify-filter model; the
V1-based model with recurrent horizontal connections;
and the multistage segmentation models with feedback.

In the classic filter-rectify-filter (FRF) kind of
segmentation models, texture defined edges are detected
by filtering the image with V1-like filters, rectifying the
filters outputs, and then applying a second filtering stage
on these outputs (Landy & Bergen, 1991; Landy, 2013;
Rosenholtz, 2014). The classic version of the model
uses a quadratic function for rectification, making it
sensitive to local FAS for segmentation, but not to
HOS in general (Landy, 2013), which seems in line
with our results. Some models have been proposed to
allow the FRF model to be sensitive to some HOS, such
as modifying the rectifying function (Zavitz & Baker,
2013) or adding further rectification and filtering steps
(Emrith, Chantler, Green, Maloney, & Clarke, 2010),
but our results suggest that for naturalistic textures,
these further steps may be of secondary importance.

Another class of models compatible with our
dissimilarity results are the models based on recurrent
contextual interactions at the level of the V1 filtering
stage, that lead to differential activation at texture
defined edges, allowing for segmentation and saliency
(Li, 1999; Li, 2002; Robol, Grassi, & Casco, 2013;
Gheorghiu, Kingdom, & Petkov, 2014), which would
explain the strong segmentation effect observed for
FAS dissimilarity. Interestingly, contextual interactions
related to this segmentation model, such as surround
suppression and surround normalization, have also
been proposed to be a common computation in
neural processing (Carandini & Heeger, 2012). If
these contextual interactions at the level of V1 are
responsible for the FAS-based segmentation, and they
are also present in higher areas V2 and V4, we may
expect HOS-based segmentation given the selectivity
of these areas for the HOS of the PS model (Freeman
et al., 2013; Okazawa et al., 2015; Ziemba et al., 2016;
Okazawa et al., 2017). Nonetheless, our results showing
weak segmentation for HOS dissimilarities could mean
that this process of segmentation may not occur at
these higher areas, or that it may be much weaker than
in V1 (although see possible limitations below).

The last group of relevant models comprises the more
complex and biologically inspired models involving
multiple layers and recurrent feedback processing
(Thielscher & Neumann, 2005; Bhatt et al., 2007;
Thielscher et al., 2008; Kim, Linsley, Thakkar, & Serre,

2019). The complex nature of these models makes them
difficult to analyze without actually testing them with
our stimuli, although they usually use the first layer of
oriented V1-like filters as the substrate of segmentation,
allowing for FAS based segmentation. In addition,
their feedback processing allows them to respond to
more complex differences, explaining different texture
segmentation results. Our results also provide an
interesting experimental test to these models, namely
that they should show only weak responses to the HOS
explored here.

Besides the results for dissimilarity, it is less clear
how our results on naturalness should be related to
these models. From the discussion above, it seems
that for some of these models, center and surround
should not be strongly segmented if they share the
same FAS. Nonetheless, it is possible that naturalness
effects can emerge in some ways, particularly for the
recurrent models. This could be readily tested by using
implementations of these models with our stimuli
as inputs. Other possible explanations for the effect
of naturalness involve segmentation and contextual
modulation based on probabilistic inference (Hindi
Attar et al., 2007; Pecka et al., 2014; Coen-Cagli et
al., 2015), although this would involve at least some
extensions on the more mechanistic models described
above. Finally, we note that an important limitation
of our results is that although the selectivity of areas
V2 and V4 to naturalistic HOS is well established
(Freeman et al., 2013; Okazawa et al., 2015; Ziemba
et al., 2016; Okazawa et al., 2017), this has not been
tested for stimuli with different HOS but matched
FAS as those used in this work. Furthermore, the
space of PS statistics is high dimensional, and it is
possible that other dissimilarities in HOS produce
strong segmentation (although note that the textures
with dissimilar HOS look considerably different under
foveal inspection). Indeed, previous work with artificial
textures shows that selectivity for other simpler HOS
that can support texture segmentation (Victor et al.,
2013) emerges primarily in V2 (Yu, Schmid, & Victor,
2015). Therefore, a more exhaustive exploration of the
capacity of naturalistic HOS to induce segmentation
would be needed to better understand their role in
segmentation, as well as possible contributions from
higher visual areas.

What neural mechanisms might underlie the
contextual modulation we observe? One candidate
is V1 surround suppression, which appears linked
to our experimental results in several ways: both
strongly depend on FAS similarity (Cavanaugh, Bair, &
Movshon, 2002) and on segmentation cues (Coen-Cagli
et al., 2015), and it has been proposed that V1 surround
suppression underlies perceptual surround suppression
(Zenger-Landolt & Heeger, 2003; Carandini & Heeger,
2012), which affects texture perception (Chubb,
Sperling, & Solomon, 1989; McDonald & Tadmor,
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2006; Wang et al., 2012) and is relatively strong
in peripheral vision (Xing & Heeger, 2000; Petrov,
Carandini, & McKee, 2005). In addition, we showed
that contextual modulation of naturalistic texture
perception is tuned to the naturalness of the HOS, in
agreement with previous perceptual (Wallis et al., 2016;
Neri, 2017; Gong et al., 2018) and physiological (Guo
et al., 2005; Pecka et al., 2014; Coen-Cagli et al., 2015;
Ziemba et al., 2018) studies in contextual modulation.
This too could reflect V1 surround suppression, which
has been shown to be reduced for scrambled surrounds
(i.e. lacking natural HOS) compared to natural images
in V1 (Guo et al., 2005; Pecka et al., 2014; Coen-Cagli
et al., 2015; although unpublished recordings indicate
this might not be the case for naturalistic textures
Ziemba, Tim Oleskiw, Perez, Simoncelli, & Movshon,
2017). Overall, our experimental results on contextual
modulation and segmentation appear consistent with
flexible V1 surround suppression (Coen-Cagli et al.,
2015), in which suppression strength is reduced when
center and surround are inferred to be segmented on
the basis of image statistics. Furthermore, as discussed
above, this recurrent process of contextual modulation
in V1 is also related to some segmentation models
(Li, 1999; Li, 2002; Schmid, 2008; Robol et al., 2013;
Gheorghiu et al., 2014), and it could also partly explain
the segmentation effects we observed. Following the
proposed matching of physiology and the SS model
(see Figure 1), this process would act after the filtering
stage of the model, prior to computing the SS of the
texture features.

Another possible mechanism relevant to our
results is facilitation. For example, one possible
contributor is surround facilitation at the level of V2,
observed in texture stimuli similar to ours, in which
the response of V2 neurons to a texture patch can be
enhanced by naturalistic texture surrounds outside
their receptive fields (Ziemba et al., 2018). Following
the parallel between physiology and the SS model (see
Figure 1), this mechanism would act over the output
of the SS computation. After the SS of the different
image regions are computed, naturalistic surrounds
would facilitate the output of the SS computing
units corresponding to the target. Although not
directly tested in this previous study, this facilitation
mechanism could be stronger for scrambled targets
than for naturalistic targets, reducing the difference
in responses between the two kinds of targets when
naturalistic surrounds are included. Thus, this reduced
difference between the SS of the two kinds of targets
would result in reduced target discriminability. If
this is a relevant mechanism in our task, then our
results would suggest that V2 surround facilitation is
reduced by target surround segmentation, and that it
is relatively stronger for phase scrambled targets than
for naturalistic targets, which could be readily tested
experimentally.

Another mechanism that may contribute to our
results is pooling over flexible windows shaped by
segmentation, as proposed in studies of natural scene
perception in peripheral vision (Wallis et al., 2019) and
orientation discrimination in central vision (Mareschal
et al., 2001). Flexible surround suppression, facilitation,
and flexible pooling windows could therefore be
integrated at the corresponding stages of the SS
model, leading to a broader framework within which
to interpret our results and guide further studies of
peripheral vision.

Although the results discussed so far appeared
consistent with perceptual crowding, we did not
observe a clear inwards-outwards asymmetry as is
often reported for crowding (Petrov et al., 2007; see
Figures 8, 9). One possible interpretation for this
result is that the processes dominating our contextual
modulation effect may not be the same as those in letter
crowding. Nonetheless, another possible interpretation
is that our contextual modulation phenomenon is
produced by the same mechanisms as letter crowding,
but that these mechanisms affect texture perception
in our task differently from commonly used stimuli
such as letters and vernier. For example, it has been
shown that inward and outward flankers have different
relative weight for different crowding processes and
different crowding tasks (Chastain, 1982; Strasburger
& Malania, 2013; Strasburger, 2019), and also that
classical inward-outward asymmetry can be reversed
by biasing attention towards the fovea (Petrov &
Meleshkevich, 2011b). Therefore, it is possible that if
the different subprocesses of crowding have different
relative effects on textures than on letters, this may lead
to a different overall inwards-outwards asymmetry. In
line with this, we speculate that the large variability we
observed across participants in the sensitivity to the
different experimental conditions, such as surround
position, reflects a variability in the relevance of the
different underlying processes (whether the same as
in classical crowding or not), which is also consistent
with other crowding studies (Kooi et al., 1994; Petrov
& Meleshkevich, 2011a; Wallace et al., 2013; Lev &
Polat, 2015). Although our results do not allow to
tell whether our contextual modulation phenomenon
is different from letter crowding, or if it involves the
same mechanisms as crowding but affecting textures
differently, they point to the need of further studies
on the relation between contextual modulation of
textures and the phenomenon of crowding, which is
frequently described as objects undergoing “forced
texture processing” (Rosenholtz, 2016). This would also
be relevant, for example, to previous work studying
crowding in natural scenes (Wallis & Bex, 2012; Gong
et al., 2018), which according to this line of reasoning
might also have measured, to an unknown degree,
other contextual modulation processes affecting texture
perception. As explained above, our work points
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to additional processes such as flexible surround
suppression and facilitation whose relation to crowding
is uncertain and which may be of particularly high
relevance to texture contextual modulation. Finally, it
is worth noting that some of the tasks most associated
with peripheral vision such as scene perception (Ehinger
& Rosenholtz, 2016; Brady, Shafer-Skelton, & Alvarez,
2017; Groen, Silson, & Baker, 2017), guidance of eye
movements (Parkhurst & Niebur, 2004; Frey, König,
& Einhäuser, 2007; Schmid & Victor, 2014) and the
control of body movement (Brandt, Dichgans, &
Koenig, 1973; Bardy, Warren, & Kay, 1999; Berencsi,
Ishihara, & Imanaka, 2005) have been proposed to use
texture as a major source of information (Harrington et
al., 1985; Sinai, Krebs, Darken, Rowland, & McCarley,
1999; Parkhurst & Niebur, 2004; Frey et al., 2007;
Schmid & Victor, 2014; Brady et al., 2017; Groen et
al., 2017; Ehinger & Rosenholtz, 2016). Therefore,
understanding the role of contextual modulation on
texture perception in the periphery may be an important
step for understanding of the limitations of peripheral
vision in natural behavior.

Keywords: texture, naturalistic, contextual
modulation, peripheral vision
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