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Abstract
Flow diagrams are a common tool used to help build and interpret models of dynamical sys-

tems, often in biological contexts such as consumer-resource models and similar compart-

mental models. Typically, their usage is intuitive and informal. Here, we present a

formalized version of flow diagrams as a kind of weighted directed graph which follow a

strict grammar, which translate into a system of ordinary differential equations (ODEs) by a

single unambiguous rule, and which have an equivalent representation as a relational data-

base. (We abbreviate this schema of “ODEs and formalized flow diagrams” as OFFL.)

Drawing a diagram within this strict grammar encourages a mental discipline on the part of

the modeler in which all dynamical processes of a system are thought of as interactions

between dynamical species that draw parcels from one or more source species and deposit

them into target species according to a set of transformation rules. From these rules, the net

rate of change for each species can be derived. The modeling schema can therefore be

understood as both an epistemic and practical heuristic for modeling, serving both as an

organizational framework for the model building process and as a mechanism for deriving

ODEs. All steps of the schema beyond the initial scientific (intuitive, creative) abstraction of

natural observations into model variables are algorithmic and easily carried out by a com-

puter, thus enabling the future development of a dedicated software implementation. Such

tools would empower the modeler to consider significantly more complex models than prac-

tical limitations might have otherwise proscribed, since the modeling framework itself man-

ages that complexity on the modeler’s behalf. In this report, we describe the chief

motivations for OFFL, carefully outline its implementation, and utilize a range of classic

examples from ecology and epidemiology to showcase its features.

Introduction
When faced with the collected observations of a natural system, one of the principal tasks for a
scientist is to bring some level of understanding or order to the observations, typically by collat-
ing the raw facts according to some conceptual framework, a theory. The framework could be
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an existing paradigm for describing broad categories of observations with a minimum of prin-
ciples, or a novel model meant only to capture the quantitative details of a single study, or
somewhere in between [1].

The broad approach has proven especially challenging in biological and medical contexts,
where the complexity of most systems precludes a reductionist interpretation of observations
in terms of a few fundamental principles. In these cases, the ability to quickly generate and
evaluate the space of possible models for a system is of great practical importance for advancing
the scientific understanding of the system and applying that understanding to real world
situations.

Unfortunately, there seems to exist a correlation between the scientific fields where com-
plexity renders facile model building the most important and those fields whose professional
culture is associated with an aversion to the most powerful language in which to express mod-
els, that is mathematics [2]. Conversations about the relative cultures of mathematics and
other fields—in particular biology—have emerged in several forums in recent years. Some of
them have arisen as debates in major journals, others as informal discussions taking place
mostly in cyberspace [3, 4]. Part of this cultural divide involves the question of extent: while all
parties might agree that mathematical tools allow useful description of systems and phenome-
non, on what problems should such approaches be utilized?

The divide notwithstanding, practitioners in biological fields exhibit an impressive com-
mand of the vast natural histories (observations) of the systems they study, and the organiza-
tional schema commonly used to understand them. If there were clearer, more universal
methods to describe biological processes, then cross-disciplinary translation would be easier.
This implies to us that a set of tools which put the power of mathematical modeling into the
hands of biological and medical practitioners—and their students—which do not require
advanced mathematical training would be of great practical importance in helping to bridge
the cultural divide.

Here, we describe an organizational schema which enables one to study and understand
dynamical systems of the sort that commonly arise in problems of epidemiology, population
growth in both human and ecological (e.g., predator-prey and consumer-resource) systems,
chemical kinetics, and the like. In all of these situations, parcels of various dynamical species
are transformed into parcels of other species at rates determined by a set of interaction rules
that depend on the population values of the species. The dynamics of such systems are well-
described by rate equations which are systems of coupled (possibly nonlinearly) ordinary dif-
ferential equations (ODEs). These ODE models are often referred to as deterministic compart-
mental models. A representative example of this general class of systems are so-called chemical
reaction networks (see [5] and references therein), a term which emphasizes the underlying
network character of the system. Analogously, we will refer to the more general class of systems
considered here as interaction networks, but we will not attempt to define that term with any
specific rigor beyond the above description.

The core of the schema is an organizational framework which enforces a certain mental dis-
cipline for the modeler, but which is not inherently mathematical, making it readily accessible
to anyone wishing to translate practical knowledge of biological processes into the schema. The
remainder of the schema is a set of sophisticated but algorithmic rules—easily automated—
which translate the model into ODEs solvable by standard techniques. We emphasize that any
practical implementation of the schema as a software tool could and should bury these auto-
mated rules behind a non-mathematical user interface, separating the scientific modeling pro-
cess from the mathematics used to represent and solve the models. In contrast, this manuscript
is addressed to those researchers who might implement such software tools or otherwise
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investigate the mathematical structures which underlie the schema, and who therefore require
more technical detail than the would-be tool user.

To illustrate the use of this modeling approach, we will first introduce the schema, then
explain its theoretical underpinnings, and finally demonstrate its utility with a few classical
examples from ecology and epidemiology. In the course of this discussion we hope to make
clear that the schema and its automatability empowers the modeler to consider significantly
more complex models than practical limitations might have otherwise prescribed. Likewise,
tools built with this schema would appear to be ideally suited for teaching dynamical modeling
to the biological and medical student communities, where quantitative modeling is currently
underserved [6] due to a perceived deficit in prerequisite mathematical training. Nevertheless,
we do include here a technical discussion of the mathematical back end of the schema.

Methods

Flow diagrams, ODEs, and the modeling process
When considering systems which can be understood as interaction networks (as defined
above), we would like to have a model development process that lets the modeler follow a pro-
cedure similar to the following:

1. Identify all the dynamical quantities (the different species or compartments) in the system.

2. Identify all the processes (interactions between species, be they biological, ecological, physi-
cal, or otherwise) in the system.

3. For each process, identify which quantities are “consumed” by the interaction and which
quantities they are transformed into.

4. From this accounting of species and interactions (which constitutes the model of the sys-
tem), move quickly to a set of ODEs that can be analyzed by standard means, either analyti-
cally or numerically.

At an abstract level, the above steps describe a large range of specific modeling techniques
already in common use across a variety of fields.

One such technique is the use of “flow diagrams” or “box diagrams”, shown by example in
Fig 1. As described in a variety of sources (for example [7] or similar textbooks) flow diagrams
have been of enormous practical use in epidemiology and ecology, but their utility is more gen-
eral than these fields. In this technique, each species is written as a small box with the name (or
variable name) of the species in it, and directed arrows show the flow of the interactions from
one species to another. Individual modelers may apply the technique differently from problem
to problem, using it as an informal method for keeping one’s thoughts organized.

One example of a systematized implementation of flow diagrams is that given by the text-
book of Otto and Day [7], in particular Boxes 2.3, 2.4, and 2.5. In this implementation, the
arrows are labeled with the functional form of the interaction rate. In passing from the diagram
to ODEs, different interpretive rules are used for arrows which connect species versus arrows
that loop back to their source, as in Fig 1c. Also, different symbology must be used to indicate
arrows that are part of qualitatively different interactions. For example, solid lines flowing
from the source to the target in a consumer-resource interaction are supplemented by an addi-
tional dashed line looping from the target to the midpoint of the the solid arrow, as illustrated
in Fig 1a.

One might hope that such diagrams could be interpreted loosely as networks or graphs, in
the mathematical sense, such that the understanding and utilization of models described by
these diagrams could benefit from the tremendous advances that have been made in network
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theory over the past two decades, as well as from the simultaneous proliferation of software
tools now available to analyze these systems. With modern network tools, analysis of truly
enormous systems could be possible [8, 9]. Indeed, to describe very complex systems of ODEs
such as gene regulation networks or “all world” economy-ecology models (for example, [10]),
it is imperative that any flow diagram representation be brought under strict control, if only to
avoid errors in the modeling process. However, existing rule schema for constructing and inter-
preting these diagrams as a system of ODEs often exhibit some level of interpretational ambi-
guity which must be solved by human intervention, and are not as yet sufficiently regular to
bring flow diagrams fully under the purview of network theory. The new organizational
schema for managing ODEs and formalized flow diagrams (“OFFL”) presented in the follow-
ing sections aims to alleviate this difficulty.

Formalizing flow diagrams in the OFFL schema
To enable this level of rigor, the OFFL schema prescribes a formalized version of the modeling
process described above, including the representation of interaction network systems as for-
malized flow diagrams. In OFFL, such systems are thought of as a directed network of species
and interactions, with any given interaction having some species as sources and others as tar-
gets. (The nodes of the network represent the species and interactions while the edges represent
flows of parcels from species to interactions and vice versa. This way of thinking is already a
significant departure from common practice with flow diagrams. For example, it forbids edges
which enter or leave the network from “nowhere”.) We therefore want the schema to force the
modeler—motivated by a physical, biological, or ecological understanding of the system being
modeled—to work directly at the level of the dynamical quantities under examination and the
processes which affect them, rather than, say, skipping ahead to a particular differential

Fig 1. Examples of flow diagrams from two different diagrammatic schema.Diagrams (a) and (b) both
represent a simple consumer-resource interaction between a “susceptible” species S and an “infectious”
species I—such as is used in the simplest SI (susceptible-infected) epidemiological models—but do so in
different diagrammatic schema. The edge labels in diagram (b) further specify a model in which one parcel
each of S and I combine to form two parcels of I. Both diagrams resolve to the ODE system dI/dt = −dS/dt =
κSI. Diagrams (c) and (d) both represent exponential growth for a population of size N, but do so in different
diagrammatic schema. The edge labels in diagram (d) further specify a model in which each parcel ofN splits
to form two parcels of N. Both diagrams resolve to the ODE dN/dt = κN. Diagrams (a) and (c) are depicted
with the widely used schema of [7], conceptually representing different kinds of positive feedback processes,
while diagrams (b) and (d) use the schema described in this document (“OFFL”, defined below) and formally
represent the routing of parcels of the population through interaction processes.

doi:10.1371/journal.pone.0156844.g001
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equation or dynamical solution. Thus, the structure of the flow diagrams should reflect this
low-level approach in a way that can be uniformly applied to all possible processes.

In the diagrammatic schema to be presented here, an arrow leaving a species will represent
a negative contribution to that species’s rate of change while an incoming arrow will represent
a positive contribution. Thus, for example, without any further adornments, an arrow that
loops back into its source represents a parcel of the species leaving and then reentering the pop-
ulation, for no net change. This is another departure from typical usage, in which a self-looping
arrow represents a positive feedback, such as in the exponential growth model shown in Fig 1c.
We view this departure from convention as an advantage because even the case of simple expo-
nential growth is not simply a feedback, but rather a process in which each parcel is amplified
at each time step by a reproduction process. We would like the diagram to not just to indicate a
feedback in the numerical value, but also to capture the physical cause of that feedback. So, in
this case, the self-looping arrow should be interrupted by a new node: a “dot” representing the
reproduction process, as in Fig 1d. The dot itself carries the rate constant of the process (liter-
ally a constant in the case of exponential growth), while its incoming and outgoing edges carry
additional labels showing the proportions of how much incoming “stuff” turns into how much
outgoing “stuff”.

In fact, to achieve a uniform application of the schema in a way that enforces thinking at a
process level, all interactions between species in the network will be represented by a labeled
dot connected to species by arrows. Furthermore, species will never be connected to each other
except via an interaction. For example, in the simplest SI (susceptible-infected) epidemiological
model (illustrated in Fig 1), one might informally think of the basic mechanism as following
the schematic equation S + I! I, but being more careful, we recognize that reality is better
reflected by S + I! I + I = 2I. (A critical insight into such systems is that the total number of
people is conserved in every encounter!) The former way of thinking about the system is cap-
tured in the flow diagram of Fig 1a, while the latter way of thinking, which we believe to be
more disciplined and rigorous, is expressed in Fig 1b.

Therefore, in OFFL, the SI model shows the infection process as a dot—labeled with a rate
constant—which draws in parcels from two source species and then outputs parcels to a target
species with twice the “weight”. In contrast, Fig 1a simply shows one species flowing directly to
the other, representing the infection process as an arrow. The additional dashed line in Fig 1a
is cosmetic, indicating to the reader that the rate of the process is modulated by another species.
This point of departure from typical usage of flow diagrams is worth repeating: in an OFFL dia-
gram, both species and processes will be represented as nodes of the network while an edge rep-
resents a relationship between a species and an interaction, whereas in typical diagrammatic
schema, only species appear as nodes while edges represent processes.

The labels on the edges and on the interaction process together contribute to a rule which
governs the rate of change for each species involved in the process: how much to take away
from each source species and how much to redistribute to each of the targets. The sum of these
contributions to each species over all processes constitutes the dynamics of the system,
expressed as a set of ODEs. How one moves from a descriptive understanding of the system to
a formal representation as a flow diagram and then to ODEs is the subject of the next several
sections of this manuscript.

It is worth noting that rates of interaction—if left to chance—depend on the rate of uncorre-
lated random encounters between parcels of the source species. Therefore, a given interaction’s
contribution to the system dynamics will be proportional to the value of each of its source spe-
cies (not the target species), as well as having a contribution inherent to the interaction itself.
For example, in SI infection models, the rate of new infection is proportional to SI and addi-
tionally proportional to a rate constant describing how often S and I encounters which lead to
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new infection occur. This proportionality is part of the kinematic structure of such models—a
mass action law arising from an underlying dynamics in the uncorrelated microscopic degrees
of freedom, consisting of a random walk or diffusion with localized “billiard ball” interactions.
Deviations from this proportionality reflect interesting dynamics of the interaction process
beyond that of simple randomly walking parcels. (For example, transmission rates of sexually
transmitted diseases or predation rates in ecological systems with ample prey are not simply
proportional to the values of the involved populations because the interaction event itself can
only occur a maximum number of times in any fixed time period.) Given this, and given that
we want the flow diagram to distinguish the modeling of the interaction process from the basic
kinematic structure of population dynamics, the label on an interaction process in an OFFL
diagram should specify the fractional rate of transformation of the source species (e.g., per cap-
ita change per hour) such that the absolute transformation rate (e.g., quantity per hour) which
contributes to the final ODEs will be given by the product of this fractional rate with the popu-
lation values of each source species.

OFFL schema: from a systemmodel to a diagram
Based on the above discussion of general principles, we now propose a specific process for
developing a model and representing it as a flow diagram as follows. (Terms introduced as
jargon of the schema are indicated in italic typestyle. They are collected and defined in
S1 Appendix.)

1. Think carefully about the system, about which features are important for modeling and
which can be ignored, and about how the important features can be quantified as measur-
able numbers. Decide which aspects of the system are dynamical quantities—that is, chang-
ing in time in response to the values of the other dynamical quantities—and which aspects
are the processes that cause those dynamical changes. (The dynamical quantities of the sys-
tem will be represented by the species of the model. The processes of the system will be rep-
resented by the interactions of the model.)

2. Consider each process to be drawing parcels from certain dynamical quantities at some rate,
transforming them, and then depositing those transformed parcels back into other dynam-
ical quantities. Any process being regarded as an external source or sink for parcels should
instead be included as a dynamical quantity of the system.

3. Make a list of the species (the dynamical quantities) involved in the model.

a. Assign a variable name to each species.

b. Draw a box with the variable name in it for each species.

4. Make a list of the interactions (the different processes that define how the values of the spe-
cies change in time) involved in the model.

a. Assign variable names to the properties associated with each interaction.

• Identify which species are sources for the interaction (having parcels taken away by the
interaction at each time step) and which are targets (receiving parcels).

• Determine what size of parcel is drawn from each source species by each application of
the interaction. These numbers are called the source weights.

• Determine what size of parcel size is delivered to each target species by each application
of the interaction. These numbers are called the target weights.
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• Determine what this interaction contributes to the fractional rate of change for each
parcel of source species (e.g., per capita change per hour, or the time derivative of the
logarithm). In particular, how does the fractional rate of change scale with the values of
each species in the system? (A lack of scaling—a numerical constant—is common in
many models.) This functional dependence of the rate on the species is called the inter-
action function. It is based on the modeler’s empirical knowledge of the process and
the system.

b. Draw a point for each interaction and label it with the interaction function.

c. Connect each interaction to its target and sources species.

• Draw an arrow from each source species box to the interaction dot. Label it with that
species’s source weight unless the weight is 1.

• Draw an arrow from the interaction dot to each target species box. Label it with that
species’s target weight unless the weight is 1.

Summarizing, each species is represented by a box with the variable name inside. The inter-
action is represented by a small dot labeled by the interaction strength (or interaction function,
if it is not a constant). All source species for the interaction get an arrow from the box to the
dot. All target species get an arrow from the dot to the box. If some of the source species con-
tribute more than others, then the source arrows may be labeled with a weighting factor. If the
targets do not receive equal fractions, or if the targets receive a different amount than is output
from the sources, then the target arrows may be labeled with a weighting factor. Any unlabeled
arrows are assumed to have weight 1.

The weights and interaction functions could be functions of time, or of the dynamical species
values, or of external parameters, but in practice they will often be constants. However, the inter-
action function in particular will sometimes reflect a nontrivial functional dependence on the
species values, for example being inversely proportional to the sum of all the species values.
Weights may be pure numbers or they may have units, for example, “hares consumed per lynx
birth” in a predator-prey system. Also, there is no requirement that weights into and out of an
interaction be in balance: an interaction may represent a net gain of parcels, for example. Further
discussion of the interpretation of weights and interaction functions is given in S2 Appendix.

Ultimately, a model withM species and N interactions will result in a network withM + N
nodes:M boxes and N dots. Each box connects to some dots by a weighted directed edge outgo-
ing to the dot for source boxes and incoming to the box for target boxes. Boxes cannot connect
to boxes. Dots cannot connect to dots. Boxes are labeled with the species name. Dots are
labeled with the interaction rate. All dots must have at least one incoming and one outgoing
edge. All edges must terminate at one end on a box and at the other on a dot. “Loose ends” are
not allowed. “Direct feeds” from one box to another—that is, transformations of a species with-
out causation from an interaction—are not allowed. “Splits and merges” which connect dots
without an intermediate box are not allowed.

OFFL schema: from a diagram to ordinary differential equations
The interpretation of a given diagram as an ODE proceeds by the following rules:

• A network withM + N nodes in whichM nodes are labeled as dynamical variables Xi(t) (i 2
{0. . .M − 1}) and the remaining N nodes are labeled with interaction functions fa (a 2
{0. . .N − 1}) will represent a system ofM first order ODEs, i.e. a system of the form dXi/dt =
Fi(X) for some set of functions Fi to be determined as described below.
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• The species nodes and interaction nodes are connected by directed labeled edges. For each
interaction fa, note the number pa of outgoing target edges and the number qa of incoming
source edges.

• Construct the array αa,m which is the weight on themth target edge of the ath interaction and
the array βa,n which is the weight on the nth source edge of the ath interaction.

• Also construct the target array

tib;m ¼
1 if Xi is the target of themth edge of interaction a

0 otherwise

(
ð1Þ

and source array

sib;m ¼
1 if Xi is the source of themth edge of interaction a

0 otherwise

(
: ð2Þ

• Then,

dXi

dt
¼
XN�1

a¼0

Xpa�1

m¼0

aa;mt
i
a;m �

Xqa�1

n¼0

ba;ns
i
a;n

 !
fa
Yqa�1

‘¼0

XM�1

j¼0

sja;‘X
j

 !" #
: ð3Þ

This is the central result: an ODE which can be solved by standard techniques. Note that care
should be taken not to confuse the time variable t and the target array tib;m.

It is interesting to note that different diagrams can result in the same ODE, but the model
interpretation of those diagrams as “systems of processes that redistribute transformed parcels
among species” could be different. In the language of mathematical physics, transformations of
model quantities (such as elements of the diagram) which leave the behavior of the model (that
is, Eq 3) unchanged are known as “symmetries” of the system. Symmetries generally indicate a
redundancy of description in the model and carry interesting qualitative consequences for the
system’s dynamics, such as the existence of conserved quantities [11–13]. For example, in elec-
trical circuit networks, the modeler’s freedom to choose the ground point at which voltage is
zero is related in a deep way to the conservation of electric charge, which in turn leads to
Kirchhoff’s laws for electrical currents: powerful relationships which constrain the possible
behaviors of quantities in the network [14]. Though intriguing, for the sake of clarity we will
not further explore these concepts in the current manuscript.

Organizing OFFL: From a diagram to a database representation
The various quantities described in the previous section which specify the diagram also define
a relational database consisting of four tables: one each for the species nodes, the interaction
nodes, the source edges, and the target edges. We prove this claim by explicit construction of
the tables as shown in Fig 2.

In the language of relational databases, the source table and target table act as linking tables
between the species table and interaction table.

Each table could of course be decorated with additional fields, like textual descriptions of
the information being represented, or fields which support technical execution within a partic-
ular software implementation. For example, a KEY field consisting of a concatenation of the
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INTERACTION-INDEX and EDGE-INDEX fields could be added to the target and source tables. Or, a
new table uniquely keyed by NODE-INDEX and the time variable could be used to keep track of
the changing value of SPECIES-VALUE, instead of dynamically updating the field in the node table.

The elements of an OFFL flow diagram and its database representation are in exact one-to-
one correspondence, so the procedure given above for generating a diagram also applies to gen-
erating the database, and either the diagram or the database can be used equivalently in gener-
ating Eq (3). The database representation is readily stored and interpreted by a computer,
making the generation and subsequent solution of Eq (3) for a given system a directly automat-
able process.

Examples of simple processes as OFFL models
Many examples of practical importance involve only the linear processes of exponential growth
and death along with bilinear (that is, nonlinear through the product of two variables) con-
sumer-resource processes. As the core building blocks of many complex models, we consider
these three processes here in some detail.

Despite the processes of exponential growth (as shown in Fig 1d) and death being repre-
sented with the same ODE, differing only by the sign of the coefficient, the biological processes
which give rise to these phenomena are quite different. Appropriately, they are represented
quite differently as flow diagrams. In both processes, a parcel is drawn from the population N
at rate κ. In growth, that parcel is replicated (say, duplicated, as shown in Fig 3a) and returned

Fig 2. Database representation of an OFFLmodel. The four tables which represent OFFL diagrams as a
relational database. The “Example” columns refer to quantities as they appear in Eq (3).

doi:10.1371/journal.pone.0156844.g002
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to the population. In death, however, the parcel is simply moved from a live state population to
a dead state population Δ, as shown in Fig 3b. Thus, growth is given as dN/dt = k(−1 + 2)N =
κN, while death is given by the system dN/dt = −κN and dΔ/dt = +κN.

The formal grammar of OFFL diagrams does not allow an edge to end without a target
node. Therefore, the existence in Fig 3b of the target species Δ and its dynamical equation is
required, but the dynamical equation for N remains independent of Δ and can be solved with-
out the solution for Δ. The existence of such auxiliary variables—representing an external res-
ervoir whose dynamics are unimportant to the system variables—is typical for OFFL models of
“open” systems that exhibit processes similar to death, immigration, or emigration: processes
that might be represented in a less formal schema by lines that enter or leave the diagram from
nowhere. On the other hand, a process like death could perhaps be modeled instead as a spon-
taneous eradication rather than as a change of state. In this case, the diagram for the death pro-
cess would take same form as for the growth process as in Fig 3a, except with a 0 instead of a 2
on the target edge, resulting in the single equation dN/dt = −κN and no auxiliary variable Δ
representing a death state.

The two-species consumer-resource interaction is perhaps the simplest nonlinear process
appearing in the types of models under consideration here. One notable example, the SI epide-
miological model, has already been presented in Fig 1b. The most general version of the pro-
cess, in which a parcels of species A combine with b parcels of species B at rate κ to become c
parcels of species B is shown in Fig 4. Its associated ODE is

dA=dt ¼ �akAB ð4aÞ

dB=dt ¼ ðc� bÞkAB: ð4bÞ

Note, if the number of parcels incoming to the interaction equals those outgoing (a + b = c) as
in the SI system, then d

dt
ðAþ BÞ ¼ 0, and the total population is therefore constant. Otherwise,

the consumer-resource process will lead to overall growth or death of the population.

Fig 4. OFFL diagram for the most general two-species consumer-resource process.

doi:10.1371/journal.pone.0156844.g004

Fig 3. Exponential growth and death in the OFFL schema. (a) Growth is shown as positive feedback
process. (b) Death is shown as a change of state.

doi:10.1371/journal.pone.0156844.g003
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Discussion
In this section, we will discuss two slightly more complex examples. Both are established models
whose usage is well understood in several scientific communities. This provides an opportunity
to demonstrate how OFFL works and affirms that it can recapitulate results from well character-
ized biological problems. Additional examples will be given at http://modeling.mit.edu.

Susceptible-Infected-Recovered (SIR) system
In an epidemiological SIR system [15], susceptibles S contact the infected I at a rate c (say,
encounters per infected per day) of which a fraction a of contacts lead to new infections, while
the infected spontaneously recover at a rate ρ (say, recoveries per infected per day), becoming
the resistant population R. The specific system considered here also includes the waning of
immunity at rate σ (losses per resistant per day), returning the resistant back to the susceptible
population; death rates d and δ (deaths per person per day) for each species; and immigration
of new susceptibles at rate θ (susceptibles per day).

The SIR system is ideally suited for modeling as a flow diagram. Fig 5 shows a side-by-side
comparison of two different schema representations of this SIR model: a traditionally informal
flow diagram and an OFFL diagram. The OFFL diagram is generated by starting from the
above description of the system and following the steps given in the Methods section.

Fig 5. A simple epidemiological SIR model. Contact between susceptibles S and infected I leads to new
infections, while simultaneously the infected can spontaneously recover and become resistant to the infection
R. (a) An informal flow diagram for the SIR model as shown, for example, in Figs 3–9 of Ref. [7]. (b) The OFFL
version of SIR. The new “dead pool” species Δ is the target of the death interactions. The new external
“community pool” species K is the source of the immigration interaction. The model has 5 species and 7
interactions.

doi:10.1371/journal.pone.0156844.g005
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Given the diagram, the rules leading to Eq (3) then illustrate how to generate a set of ODEs,
which proceeds as follows. We first identify all the species and name them: along with the three
dynamic species S, I, and R, we also add a “community pool” species K which is the source for
external immigration and a “dead pool” species Δ which is the target for death interactions.
Next, reasoning through the description of the model given above, we see there are seven inter-
actions in the model: the death of each of the three dynamical species (moving a unit parcel
from S, I, or R to Δ with rate δ or d), spontaneous recovery (moving a unit parcel from I to R
with rate ρ), loss of immunity (moving a unit parcel from R to S with rate σ), infection (in
which a parcel of S interacts with a parcel I at rate ac to become two parcels of I), and immigra-
tion (moving a unit parcels from K to S). In immigration, θ—the absolute rate of change to S—
is presumed by the model to be constant even as the number of available parcels in the K popu-
lation varies, so it must the case that the strength of the process which attracts parcels from K
to Smust vary as*1/K, specifically θ/K. The dynamics of S, I, and R are then independent of
the dynamics of K.

The resulting ODE is then

dS=dt ¼ �acSI þ sR� dSþ y ð5aÞ

dI=dt ¼ acSI � rI � dI ð5bÞ

dR=dt ¼ þrI � sR� dR ð5cÞ

dK=dt ¼ �y ð5dÞ

dD=dt ¼ dSþ dI þ dR: ð5eÞ
Eqs (5a), (5b) and (5c) are the essential dynamics of the system. These are the equations which
would result from a standard reading of the informal diagram in Fig 5a. As discussed at the end
of the Methods section, OFFL results in two additional equations for K and Δ, but these are
trivial additions to the dynamics which can be ignored when solving for S, I, and R.

Note that to maintain realism in the model, the initial condition on K should be sufficiently
large that K will not change appreciably during the run time τ of the model, K(0)� θτ. Or,
alternatively, one could force K to be constant dK/dt = 0 by any number of ways while leaving
the rest of the ODE unchanged, such as setting the immigration source weight to 0.

Lotka-Volterra predator-prey system
The Lotka-Volterra system is one of the defining models in ecology, and has served as a basis
for understanding predator-prey dynamics for many years [16–18]. Although superseded by

Fig 6. Lotka-Volterra flow diagram. The Lotka-Volterra model is the simplest predator-prey model. A prey
species R (“rabbits”) reproduce spontaneously at rate k while a predator species F (“foxes”) consume α
rabbits at rate a and convert them to β new foxes. Foxes move spontaneously at rate δ to the dead pool Δ.

doi:10.1371/journal.pone.0156844.g006
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more modern models in ecological research, Lotka-Volterra remains a classic application of
mathematical modeling. The OFFL treatment of Lotka-Volterra is shown in Fig 6, with the sys-
tem itself described in the figure caption. Following the steps leading to Eq (3), Fig 6 renders to
the following equations:

dR=dt ¼ kR� aaRF ð6aÞ

dF=dt ¼ abRF � dF ð6bÞ

dD=dt ¼ dF: ð6cÞ
As discussed in the Methods section, modeling the death of the predator species F again
involves the addition of an auxiliary species Δ whose dynamics are ultimately irrelevant to the
other dynamical species.

In the language of mathematical ecology, the “functional response” of the model in this case
is so-called type I. That is, the rate of prey consumption is linear in prey population [19], indi-
cating that predators do not eat any less often as they consume prey: they never get “full”.
Changing to a type II functional response—which saturates to a constant as the predators get
full—is as simple as changing a in Fig 6 to a function of F and R, say a(F, R) = a/(1 + haR) for
some “handling time” h. This easy extensibility of the simple model into a more complicated
one is typical of the OFFL schema.

Conclusions
The goal of this manuscript was to describe a framework which puts the power of mathematical
modeling into the hands of content experts who might otherwise avoid the use of highly math-
ematical tools. We focused on a particular framework that manages systems well-described by
ODEs (“interaction networks”), but the general program should be considered open for tools
which address other mathematical methods (such as stochastic systems) in a similar spirit. Spe-
cifically, we have attempted the following:

• Introduce the OFFL schema, explaining both how it works and its theoretical underpinnings

• Highlight differences between OFFL and related approaches to modeling biological systems
which also use flow diagrams and ODEs

• Illustrate how OFFL might offer advantages in modeling dynamical systems

Mathematically, we have shown that the broad class of dynamical systems under consider-
ation here can be represented in three complementary ways: a weighted directed graph (a net-
work), a system of ODEs, and a relational database. While fundamentally interesting and a
clear opportunity for future research into the properties of these systems, further mathematical
study of this observed triality is beyond the scope of the present manuscript and will be left for
future communications.

Algorithmization of the model building process naturally lends itself to a software engineer-
ing implementation. One could imagine a graphical front end that allows a would-be modeler
to draw an OFFL diagram intuitively—based, for example, on the modeler’s observations of
infectious disease dynamics in the field—while all the mathematics is carried out behind the
scenes. This can put the modeling of even complicated outbreaks into the hands of front line
medical personnel and public health officials while requiring little mathematical expertise.
Development of such a software implementation of OFFL as a free web application [20] is pres-
ently underway and will be the subject of a future report. Such a software solution could also
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enable improved instructional methods in and appreciation for the value of quantitative
modeling in the biological, public health, and medical student communities.

Because the OFFL approach lends itself so readily to automation, it is tempting to compare
it to the myriad of existing software packages and simulators that model complex systems in
biology. Before making any direct comparisons, however, we should reiterate that this manu-
script is intended as neither a user manual nor a rationale for a pending software package.
Instead, OFFL is designed and presented as an epistemic framework for understanding how
modeling works in biological systems. The true goal of this approach, then, is not to make the
act of simulating a dynamic system easier through software, but rather to support the system-
atic use of systems thinking and the iterative mental processes of model building (and, perhaps,
modeling education).

We might even say that OFFL could be compatible with existing software packages in the
systems biology and epidemiology communities. We suggest that users of these software
tools make use of the OFFL framework in constructing models (perhaps through “pen and
paper”methods) before using any given package or simulator. Additionally, for instructors
and students, OFFL is a way of introducing modeling concepts prior to using any software
package.

Nevertheless, a modeler might choose an OFFL-based software tool for a variety of reasons.
Existing software packages for modeling in systems biology and related fields tend to have
applications focused on specific classes of problems, such as VCELL[21] (cell biology, biochem-
istry), CELLDESIGNER[22–24] (biochemistry and gene regulation), and EPIMODEL[25] (modeling
of epidemics). In this sense, OFFL differs in its purpose and fungibility. It can be used for any
given systems-style model in ecology, evolution, epidemiology, chemical kinetics, or even social
sciences. Because of this, OFFL might be compared to software packages like STELLA[26] or
BERKELEY MADONNA[27], both highly developed and well-regarded systems simulation software
packages whose developers also have a mind towards making modeling accessible to novice
users and promoting widespread usage of systems thinking. But while STELLA and BERKELEY

MADONNA have many potential applications (including in social sciences and business), they
are not free packages. Again, it may be possible to implement the OFFL schema within any of
the above software tools, but for an OFFL-based software tool to not miss the point of using
the OFFL schema, it should take care to present a user interface which only requires graphical
manipulation of the species and interactions of the model, avoiding any user intervention
requiring advanced mathematical or computational training.

Several authors have noted the importance of universal standards for the representation and
transmission of information about models in systems biology, resulting in successful projects
such as the Systems Biology Markup Language (SBML) [28] and Systems Biology Graphical
Notation (SBGN) [29]. OFFL can work within these modern standards; in particular, we note
that OFFL diagrams are readily represented using the entity pool nodes, process nodes, con-
sumption arcs, and production arcs of the SBGN Process Description language (SBGN-PD)
[30]. (However, modulation arcs from SBGN-PD do not have a direct interpretation under the
rules of OFFL, which requires that modulations such as catalysis be either explicitly modeled
or represented in an interaction function.) However, we must again emphasize that OFFL dif-
fers from strictly symbolic notational frameworks like SBGN because it is more than a visual
standard for depicting qualitative biological relationships. Instead, OFFL’s elements have dedi-
cated mathematical definitions, and consequently, can be used to model quantitative relation-
ships between actors (biological, social, or other), not simply illustrate them.

In the end, improving the community’s general mathematical literacy is a daunting task that
requires commitment and investment from educators, politicians, and active researchers alike.
That said, even a small pedagogical breakthrough can go a long way—by being engaged,
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improved upon, and modified—towards bridging gaps between complicated mathematics and
real world applications.

The OFFL modeling approach presented here aims to improve our understanding of
dynamical systems modeling, a tool that is increasingly useful to both practitioners of science
and citizen-scientists in an increasingly complex world.

Supporting Information
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