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Abstract: Radioiodination of oligonucleotides provides an extra modality for nucleic acid-based
theranostics with potential applications. Herein, we report the design and synthesis of a phospho-
ramidite embedded with a phenolic moiety and demonstrate that oligonucleotides can be readily
functionalized with phenol as a precursor by general DNA synthesis. It was identified that the
introduction of the precursor does not block the specificity of an aptamer, and the radioiodination is
applicable to both DNA and RNA oligonucleotides in a site-specific approach with a commercial kit.

Keywords: radioiodination; aptamer; oligonucleotide; solid-phase synthesis; phosphoramidite

1. Introduction

Oligonucleotides are chemically synthesized biomacromolecules with programma-
bility and automated preparation characteristics, which have been widely applied as
therapeutical molecules, diagnostic probes, and intelligent materials [1–5]. During the last
decades, antisense oligonucleotides (ASOs) [6] and small interference RNA (siRNA) [7]
are emerging as a new generation of therapeutics after small molecular drugs, which can
modulate disease-related gene expression. Aptamers are oligonucleotides generated by Sys-
tematic Evolution of Ligands by Exponential Enrichment (SELEX) technology [8,9], which
bind to the antigens specifically with high affinity. As “chemical antibodies”, aptamers are
exploited as both therapeutical and diagnostical molecules [10–13].

Radiolabeling of oligonucleotides facilitates the determination of pharmacokinetics
and biodistribution of nucleic acid therapeutics by positron emission tomography (PET) and
single-photon emission computed tomography (SPECT) [14–16], which will be beneficial
for patients under the therapies directed by molecular imaging. Furthermore, radiolabel-
ing aptamers are potential imaging probes for clinical diagnosis to visualize the in vivo
biological process on the molecular level [17–19].

More than 30 radioisotopes of iodine and 123I, 124I, 125I, and 131I have been utilized in
the labeling of proteins [20,21]. Proteins labeled with 123I and 124I have been extensively
used as SPECT and immunoPET probes [22] for clinical diagnosis while 125I-labeled proteins
are mainly used for in vitro radioimmunoassays (RIA) [23]. Antibodies labeled with 131I
had originally been utilized for RIA, which is commonly explored for targeted therapy
and immunotherapy [24,25]. The importance of radioiodinated proteins has spurred the
development of efficient methods for preparing these molecules [26–31], and different
isotopes can generally be introduced into target molecules by the same method with
corresponding radioactive sodium iodide.
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Due to phenol’s highly efficient and selective reactivity with iodine, proteins can read-
ily be radioiodinated directly by commercial kits such as IODOGEN [32–34]. In contrast, it
is not easy to iodinate either natural DNA or RNA molecules directly and efficiently [35,36].
The radioiodination of oligonucleotides always requires extra bioconjugation steps to in-
corporate functionalities that can be iodinated efficiently [37]. Dougan and Téoule had
independently developed the radioiodination of the oligonucleotide by functional phospho-
ramidites [38,39]. However, the preparations of the phosphoramidites are quite complicated
and it is not clear whether the introduction of such functionalities would alter the biological
properties of oligonucleotides, such as the specific binding affinity of an aptamer with its
target. To facilitate the discovery of radioiodinated oligonucleotides as diagnostic probes
and therapeutics, both the preparation of an oligonucleotide precursor and radiolabeling
reaction should be simple and efficient, so it can be handled by non-professionals.

Enlightened by the success of protein radioiodination, we hypothesize that a proper
phosphoramidite embedded with a phenolic moiety (Figure 1, phenolic phosphoramidite)
would introduce the functionality into any oligonucleotide as convenient as the introduc-
tion of standard bases (A, C, G, and T/U) by a DNA synthesizer. The resulting phenolic
oligonucleotides may also be radioiodinated efficiently by standard protocols for protein-
radioiodination with a commercial kit (Figure 1). Therefore, radioiodination of oligonu-
cleotides can be realized as efficiently as that of proteins from properly designed phenolic
phosphoramidite, plus a site-specificity as a benefit from the programmable synthesis.
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Figure 1. The rationale for site-specific and efficient radioiodination and the advantage over the
traditional route (* represent reactive functionalities for bioconjugation).

2. Results and Discussion

To verify our hypothesis, we designed and synthesized phenolic phosphoramidite 7
(Scheme 1), from which two types of oligonucleotides were prepared by a DNA synthesizer.
Then, the oligonucleotides were characterized to determine how the precursor would affect
the biological properties and whether radioiodination can be achieved as expected.
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Scheme 1. Synthetic approach to the phosphoramidite 7. (a) EDC.HCl, NHS, DMF; (b) TBSCl,
imidazole, DMF; (c) iodine, methanol; (d) DMTrCl, Pyridine; (e) chlorophosphoramidite, DIEA,
DCM; (f) Automated synthesis of oligonucleotides with phosphoramidite 7 by a DNA synthesizer;
(g) Radioiodination of oligos with the IODOGEN kit.

The synthesis of phosphoramidite 7 started with commercially available 3-aminopropane-
1,2-diol (compound 1, Scheme 1) and 4-hydroxybenzoic acid (compound 2), the coupling of
which provided the product 3 in a 75% yield under the activation of 3-(3-dimethylaminopropyl)-
1-ethylcarbodiimide hydrochloride (EDC.HCl) and N-hydroxysuccinimide (NHS). Consid-
ering the difficulty in selectively protecting the phenolic hydroxyl group, all the hydroxyl
groups were protected with the silyl group by the reaction with tert-butyldimethylsilyl
chloride (TBSCl), giving compound 4 in a 70% yield. Selective desilylation of compound
4 to reveal the alkyl hydroxyl group was accomplished by the reaction with iodine in
methanol, and diol 5 was thus prepared smoothly in an 85% yield. Following standard
procedures, compound 5 was converted into phosphoramidite 7 in two steps, which is a
standard molecular element for the introduction of phenolic functionality into oligonu-
cleotides by solid-phase synthesis. From commercial materials 1 and 2, phosphoramidite
7 was efficiently prepared in 5 steps in mild reaction conditions with a 25.7% overall
yield (see the Supplementary Materials for the detailed procedure and spectra of the com-
pounds), the synthesis of which is readily scaled up for commercialization to facilitate the
radioiodination of oligonucleotides.

With phosphoramidite 7 in hand, its properties as a solid phase module in a DNA syn-
thesizer were tested. Similar to A, T, C, and G, phenol moiety (P) can also be programmed
at any position of oligonucleotides as a functional element from phosphoramidite 7 after
the trityl deprotection by acetic acid. Several modified oligonucleotides were prepared by
standard DNA synthesis and purified by HPLC, and their structures were identified by
their mass spectra (Figures S2–S5, Supplementary Materials). ASO-P3 (5′-CGC GAG GTC
GGG ATG GAT CTT GAA P) and ASO-P5 (5′-PCG CGA GGT CGG GAT GGA TCT TGA
A) are 25mers incorporated with an artificial element P at 3′-end and 5′-end, respectively,
and Sgc8-P (5′-PTT TTT TTT ATC TAA CTG CTG CGC CGC CGG GAA AAT ACT GTA
CGG TTA GA-Cy5) is a fluorophore Cy5-labeling 50mer with the element P at 5′-end. It
was found that the coupling efficiency of phosphoramidite 7 is as good as that of standard
A, T, C, and G phosphoramidites whether it is programmed at 3′- or 5′- end, verifying
its qualification as a standard module for oligonucleotide synthesis. In addition, short
RNA (sRNA-P, 5′-PUA CGU ACG) modified with phenol was prepared efficiently with
compound 7 similarly.

Sgc8 is a DNA aptamer selected by cell-SELEX using CCRF-CEM cells as target cells
originally [40], which has been identified to bind specifically to membrane protein tyrosine
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kinase 7 (PTK7). HCT116 cells overexpress PTK7 protein, so Sgc8 also binds strongly to
HCT116 cells specifically. To investigate whether the incorporation of element P affects
the binding specificity of the aptamer, a flow cytometry assay of Sgc8-P was performed
with HCT116 cells. Cy5-labeled Sgc8 was used as the positive control and the negative
control was a Cy5-labeled 41mer (Lib: 5′-NNN NNN NNN NNN NNN NNN NNN NNN
NNN NNN NNN NNN NNN NN, N = aNy base from ATCG). As shown in Figure 2,
the fluorescence of HCT116 cells incubated with Sgc8-P was comparable to that of cells
incubated with Sgc8, both of which were much stronger than that of cells incubated with
Lib as the negative control. The flow cytometry result demonstrates that the introduction
of phenolic functionality at the 5′-end of the Sgc8 strand has a negligible effect on the
specificity of the aptamer.
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Figure 2. Flow cytometry results for HCT116 cells after incubation with 250 nM Cy5-labeled library
(Lib), Sgc8, and Sgc8-P for 30 min at 4 ◦C. Sgc8 was used as the positive control, and Lib was used as
the negative control.

It is important to determine whether efficient radioiodination can be achieved by the
incorporation of the phenolic moiety. Sgc8-P is a 50mer derivative of Sgc8 with a phenolic
moiety (P) at 5′-end while Sgc8 (5′-ATC TAA CTG CTG CGC CGC CGG GAA AAT ACT
GTA CGG TTA GA-Cy5) is a Cy5-labeled 41mer without phenolic moiety. When they
are subjected to the standard protein-radioiodination protocols (see the Supplementary
Materials for details) using Na131I as the radioactive source, it was found that Sgc8 is
hardly labeled with 131I, as analyzed by the HPLC spectra (Figure 3a). In contrast, the
radiolabeling of Sgc8-P was realized smoothly, with up to a 98% yield under the stan-
dard protein-radioiodination protocol. As shown in Figure 3d, the UV absorbance peak
appeared at the same time as that of a radioactive substance (Figure 3b). From the re-
sults, we speculate that radioactive iodine should have been added to the P moiety of the
modified oligonucleotides.
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Figure 3. HPLC chromatogram analysis of Sgc8 (c), Sgc8-P (d), and the oligonucleotides after the
treatment with classical radioiodination protocols (a,b).

Short DNA ASO-P3 and ASO-P5 are 25mers as derivatives of an antisense oligonu-
cleotide with phenolic moiety incorporated at 3′-end or 5′-end, respectively. Both short
DNA and short RNA (sRNA-P) modified with a phenol can be radioiodinated efficiently
(Figure S1).

From the established oligonucleotide radioiodination method, 131I-Sgc8-P was pre-
pared readily, which was used as an illustration for the biodistribution of labeled oligonu-
cleotides. The biodistribution was performed on the xenografted HCT116 mice model. As
shown in Figure 4, the substantial uptakes of radiolabeled Sgc8-P were shown in the liver,
kidney, and stomach. The tumor uptake showed that 131I-Sgc8-P was able to target the
HCT116 cells at 0.5 h post-injection through the tail vein.
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3. Materials and Methods
3.1. The Preparation of Oligonucleotides

Oligonucleotides were synthesized on an ABI 394 synthesizer (Applied Biosystems,
Waltham, MA, USA), and then deprotected in AMA (ammonium hydroxide/40% aqueous
methylamine, 1:1) at 65 ◦C for 30 min and further purified by reversed-phase HPLC
(Agilent, Santa Clara, CA, USA) on a C-18 column (Waters, Milford, MA, USA) using
0.1 M triethylamine acetate (TEAA) buffer and acetonitrile as the eluents. ASO-P3 was
prepared using universal CPG. The oligos were confirmed by the mass spectra shown in
Supplementary Figures S2–S4.

3.2. Radioiodination of the Oligonucleotides

Oligonucleotide (10 µg), Na131I solution (0.2 mL, 37 MBq, XinKe Corporation, Shang-
hai, China), and 100 µL PBS solution were added to Iodogen (50 µg) tube. The mixture was
incubated for 10 min at RT. The radiolabeling yield was measured by an Agilent HPLC
1260 Infinity system equipped with a C-18 column (4.6 × 250 mm, 5 µm) and radioactive
detector (Raytest, Benzstrase, Straubenhardt, Germany). The mobile phase comprised
solvent A (0.05% TFA in water) and solvent B (0.05% TFA in acetonitrile). The flow rate
was 1 mL/min. The gradient of the solvent B concentration started with 3% for the first
5 min and increased to 100% at 15 min, which was returned to 3% at 20 min.

3.3. Biodistribution Study

Female nude mice bearing HCT116 tumor xenografts were injected with 0.37 MBq
of 131I-SGC8 to evaluate the distribution of this radiotracer in tumor tissues and major
organs (n = 4 per group). The mice were sacrificed and dissected at 0.5 h post-injection (p.i.).
Blood, tumor, major organs, and tissues were collected and weighed. The radioactivity in
the tissues was measured using a γ-counter (PerkinElmer, Waltham, MA, USA). The results
are presented as the percentage of injected dose per gram of tissue (%ID/g).

4. Conclusions

In conclusion, we designed and synthesized a phenolic (P) phosphoramidite for the au-
tomated introduction of functional element P into oligonucleotides. The phosphoramidite
was synthesized efficiently in five steps under mild conditions and can readily be scaled
up for commercialization. Consequently, oligonucleotides (ASO-P3, ASO-P5, and Sgc8-P)
were prepared smoothly by standard DNA synthesis protocols, in which element P was
introduced at the designed position by a programmable and automated approach. The
flow cytometry assay indicated that the introduction of P has a negligible effect on the
specificity of aptamer sgc8. By application of the established protein-radioiodination proto-
cols, all the modified oligonucleotides with P were radioiodinated efficiently. In contrast,
the oligonucleotide without P element was hardly labeled under the same condition. The
biodistribution study also confirmed that radioiodinated aptamers are suitable tools for in-
vestigating the in vivo activities of ONs. Overall, we developed a simple, efficient, practical,
and universal method for radioiodination of oligonucleotides, which is also site-specific.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27196257/s1, Figure S1: (a) HPLC chromatogram analysis
of ASO-P3 and ASO-P5 with or without the treatment with classical radioiodination. (b) HPLC
chromatogram analysis of short RNA sRNA and modified sRNA-P with or without the treatment
with classical radioiodination; Figure S2. ESI-MS analysis of ASO-P3 by Sangon (Shanghai, China).
The calculated molecular weight was 7760.8, and the observed DNA peak was 7745.9. Figure S3.
ESI-MS analysis of ASO-P5 by Sangon (Shanghai, China). The calculated molecular weight was
7760.8, and the observed DNA peak was 7746.2. Figure S4. ESI-MS analysis of Sgc8-P by Sangon
(Shanghai, China). The calculated molecular weight was 16043.5, and the observed DNA peak was
16029.6. Figure S5. ESI-MS analysis of sRNA-P by Biosyntech (Suzhou, China). The calculated
molecular weight was 2805.7, and the observed RNA peak was 2804.3.

https://www.mdpi.com/article/10.3390/molecules27196257/s1
https://www.mdpi.com/article/10.3390/molecules27196257/s1
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