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Abstract

Background: We recently reported that colon tumor cells stimulate macrophages to release IL-1b, which in turn inactivates
GSK3b and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of
tumor cells.

Principal Findings: Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced
apoptosis. Inactivation of IL-1b by neutralizing IL-1b antibody, or silencing of IL-1b in macrophages inhibited their ability to
counter TRAIL-induced apoptosis. Accordingly, IL-1b was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced
collapse of the mitochondrial membrane potential (Dy) and activation of caspases were prevented by macrophages or by
recombinant IL-1b. Pharmacological inhibition of IL-1b release from macrophages by vitamin D3, a potent chemopreventive
agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages.
Macrophages and IL-1b failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkB, dnAKT or dnTCF4,
confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that
macrophages and IL-1b stabilized Snail in tumor cells in an NF-kB/Wnt dependent manner and that Snail deficient tumor
cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1b, demonstrating a crucial role of Snail in
the resistance of tumor cells to TRAIL.

Significance: We have identified a positive feedback loop between tumor cells and macrophages that propagates the
growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1b, which in turn,
promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D3 halts this amplifying
loop by interfering with the release of IL-1b from macrophages. Accordingly, vitamin D3 sensitizes tumor cells to TRAIL-
induced apoptosis, suggesting that the therapeutic efficacy of TRAIL could be augmented by this readily available
chemopreventive agent.
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Introduction

Inflammation contributes to tumor progression by establishing

conditions that support tumor cell growth and survival and increase

their metastatic potential. Indeed, chronic inflammation has been

shown to predispose to development of a variety of tumors, a

striking example being inflammatory bowel disease, which is

associated with elevated risk of colon cancer [1]. Moreover, it

appears that colon cancers that do not develop as a complication of

inflammatory bowel disease are also driven by inflammation,

because it has been shown that regular use of NSAIDs lowers the

mortality from sporadic colon cancer and results in regression of

adenomas in FAP patients, who inherit a mutation in the Apc gene

[2]. Soluble factors which propagate inflammation can be produced

by tumor cells themselves or, more often, by cells recruited to the

tumor microenvironment, such as tumor associated macrophages

(TAMs). Coordinated signaling between tumor cells and nonma-

lignant cells in the tumor microenvironment is required for the

progression of tumors, and signaling pathways that regulate the

crosstalk between colon tumor cells and stroma, such as NF-kB and

STAT3, have emerged as important targets for chemopreventive

and chemotherapeutic agents [3,4]. Likewise, TNFa antagonists are

in phase I/II clinical trials and have been shown to be well tolerated

in patients with solid tumors [5,6].

We recently established that macrophages promote Wnt

signaling in colon cancer cells and thus enhance their proliferation,

and demonstrated that macrophages exert their protumorigenic

activity mainly through the release of IL-1b [7,8]. Here we show

that macrophage-derived factors, in addition to supporting the

growth of tumor cells, also promote their survival upon treatment

with TNF-related apoptosis inducing ligand (TRAIL), a potent

initiator of the extrinsic pathway of apoptosis.

TRAIL initiates apoptosis by binding to two death receptors,

DR4 and DR5, while binding to the decoy receptors which lack
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the death domain, such as DCR1, DCR2 and osteoprotegerin,

inhibits its pro-apoptotic activity [9]. Binding of TRAIL to the

death inducing receptors DR4/DR5 results in the recruitment of

the Fas –associated death domain (FADD) to the receptors, which

initiates binding of procaspase-8 and procaspase-9, and the

formation of the death inducing signaling complex (DISC) [9].

In type I cells, caspase-8 activation is sufficient to activate effector

caspases 3, 6 and 7, while in type II cells, the apoptotic cascade

requires integration of the mitochondrial pathway mediated by

caspase-8 induced cleavage of Bid.

Tumor cells are significantly more sensitive to TRAIL-induced

apoptosis than normal cells, establishing TRAIL and DR4 or DR5

agonistic antibodies as attractive anti-cancer drugs. Indeed, in stark

contrast to other members of the TNF family, treatment of mice and

primates with recombinant TRAIL induced significant regression of

tumors without systemic toxicity [10,11]. Recently, the combination

of TRAIL with all trans-retinyl acetate (RAc) has been shown to

induce apoptosis selectively in adenomatous polyposis (APC) deficient

epithelial cell without harming normal cellsaa and treatment of

ApcMin mice with TRAIL and RAc induced apoptosis in intestinal

polyps and prolonged animal survival [12].

However, there are significant differences in TRAIL sensitivity

among human cancer cells. Resistance to TRAIL has been shown

to develop in cells with mutant DR5 [13] or in mismatch repair

deficient tumors with Bax mutations [14]. In contrast, c-Myc

promotes the responsiveness to TRAIL by inhibiting the

expression of FLIP, an inhibitor of TRAIL signaling [15], and

by counteracting TRAIL-induced upregulation of mcl-1 and

cIAP2, two proteins with intrinsic ability to inhibit apoptosis [16].

In addition, stromal cells and soluble factors present in the tumor

microenvironment have been shown to have a significant impact

on the sensitivity of tumor cells to therapeutic agents [17,18].

TRAIL deficient mice display increased susceptibility to

carcinogen induced tumorigenesis and have increased metastatic

potential [19,20], demonstrating that TRAIL exerts tumor

suppressor activity, and suggests an important role of endogenous

TRAIL in tumor surveillance. Indeed, the authors showed that

TRAIL is, at least in part, responsible for NK cell mediated, IFNc
dependent, mechanism of tumor elimination.

In this study we demonstrated that TRAIL induced apoptosis of

colon cancer cells is inhibited by macrophage derived IL-1b, and

showed that macrophages and recombinant IL-1b counteract

TRAIL-induced apoptosis through activation of Wnt signaling and

stabilization of Snail in tumor cells. Finally, we present data indicating

that ‘‘normalization’’ of the tumor microenvironment by vitamin D3,

a potent chemopreventive agent, restores the sensitivity of colon

cancer cells to TRAIL, suggesting that the therapeutic efficiency of

TRAIL may be greatly improved by agents that inhibit the crosstalk

between tumor cells and the tumor microenvironment.

Materials and Methods

Cell lines and co-culture experiments
The HCT116 and Hke-3 colorectal carcinoma cell lines, which

differ only by the presence of the mutant k-Ras allele [21] and

SW480 cells were cultured in MEM, while 293T cells were

cultured in DMEM. The human monocytic cell line, THP1, was

cultured in RPMI. Normal human monocytes, .90% CD14 and

CD11c positive and less than 1% anti T cell receptor positive,

were purchased from Astarte Biologics (Redmond, WA). Tumor cells

and monocytes/macrophages were co-cultured separated by

transwell inserts of a polycarbonate membrane with 0.4 mM pore

size, which preclude direct cell-cell contact, but permit the

exchange of soluble factors (Corning Incorporated, Lowell, MA).

For clonogenic assay, HCT116 and Hke-3 cells were seeded at a

density of 200 cells per well of a six well plate alone or together with

THP1 macrophages or peripheral blood monocytes for 7 days.

Tumor cells were cultured with THP1 monocytes directly (1600 per

well of a 6 well plate), as THP1 cells did not attach and form colonies.

The optimal ratio between tumor cells and macrophages was

established previously [7,8]. Colonies were fixed and stained with 6%

glutaraldehyde and 0.5% crystal violet and counted using Total Lab

1.1 software (Nonlinear Dynamics, Durham, NC, USA).

Apoptosis assay
Cells were treated with recombinant TRAIL (50 ng/ml, which

we determined was the optimal concentration) alone or in the

presence of macrophages, IL-1b (5 ng/ml) or TNFa (10 ng/ml)

for 7 hours. Cells were resuspended in hypotonic buffer (0.1%

Triton X-100, 0.1% sodium citrate) and stained with propidium

iodide (50 mg/ml) for 4 hours at 4uC as described [22]. Samples

were analyzed by flow cytometry and cell cycle distribution and

the extent of apoptosis (cells with a subG1 DNA content) were

analyzed by the Modfit software. Mitochondrial membrane

potential was determined by flow cytometry using the fluorescent

dye JC-1 (Invitrogen). Cells were stained with 1 mM of JC1 for

1 hour at 37uC, washed with PBS and analyzed by fluorescence in

the FL2 channel. Cells were treated with TRAIL for ,7 hours

and were collected for evaluation based on morphological criteria.

However, as PI staining may underestimate the amount of

apoptosis [23], we confirmed the apoptotic nature of cells by

biochemical analysis of cell lysates. Statistical analysis was

performed using unpaired Student’s t test, with values ,0.05

considered statistically significant.

Transient transfection and Reporter gene assay
HCT116 and Hke-3 cells were transiently transfected with the

TOP-FLASH or TOP-FOP luciferase reporter plasmids using the

calcium phosphate method. Transfection efficiency was normal-

ized by co-transfection with pTK-Renilla and luciferase activity

was determined according to the vendor’s protocol (Dual

Luciferase reporter assay, Promega, Madison, WI). Dominant

negative IkBa was expressed from a plasmid coding for IkBa with

serines 32 and 36 mutated to alanine, which confers resistance to

stimulus induced degradation [24]. Plasmids expressing constitu-

tively active AKT, (HA-mdelta (4-129) PH-AKT), and dominant

negative AKT (HA-AKT-K179M) were provided by Richard

Roth [25,26]. dnTCF4 was described previously [27].

Macrophages were transfected with 20 nM of non specific siRNA

(NSP) or siRNAs specific for VDR, IL-1b or STAT1 (Dharmacon,

Lafayette, CO) using Lipofectamin LTX (Invitrogen, Carlsbad, CA).

The efficiency of silencing was monitored by immunoblotting (for

STAT1 and VDR), or by ELISA (for IL-1b), as reported [7,8].

Immunofluorescence
For the subcellular detection of b-catenin by immunofluores-

cence, cells were fixed in 4% paraformaldehyde for 30 minutes.

The cells were incubated with anti-b-catenin antibody (1:100) for

1 h at 37uC and with secondary anti-rabbit antibody conjugated to

FITC for 45 min at 37uC. Images were acquired with a SPOT

CCD camera and analyzed by SPOT software.

Western Blot
Western blots were performed using standard procedures.

Membranes were blocked with 5% milk in TBS containing

0.1% Tween 20, and incubated with antibodies specific for caspase

8 (Abcam), caspase 9, PARP, Snail (Cell Signaling Technology),

Interleukin 1b and TRAIL
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pGSK3b (Millipore, Billerica, MA), total b-catenin (BD Biosci-

ences, San Jose, CA), and b-actin (Sigma Aldrich, St. Louis, MO).

Immunoreactive bands were visualized by chemiluminescence

(Amersham ECLTM western blotting detection kit, Piscataway,

NJ).

Results

Macrophages and IL-1b protect colon cancer cells from
TRAIL induced apoptosis

We demonstrated that macrophages induce several prosurvival

signaling pathways in colon cancer cells, including NF-kB, AKT

and Wnt signaling [7,8], suggesting that the presence of

macrophages could affect the response of tumor cells to

therapeutic agents. HCT116 colon cancer cells are highly

susceptible to TRAIL-induced apoptosis [16]. Accordingly,

TRAIL significantly inhibited the clonogenic growth of HCT116

and HKe-3 cells (Fig. 1A and B), cell lines that differ only by the

presence of the mutant kRas [21]. There was no reproducible

difference between the responsiveness of HCT116 and Hke-3 cells

to TRAIL (Fig. 1 and 2), demonstrating that the presence of

mutant kRas does not regulate the responsiveness of cells to

TRAIL. To determine whether macrophages alter the sensitivity

of tumor cells to TRAIL, we treated HCT116 and Hke-3 cells

with TRAIL in the absence or in the presence of THP1

macrophages. Remarkably, the presence of THP1 macrophages

or treatment with IL-1b, a cytokine produced in cocultures of

tumor cells and macrophages [7], restored the clonogenic growth

of TRAIL-treated colon cancer cells (Fig. 1).

Macrophages did not inhibit the expression of DR4 or DR5, or

modulate the levels of decoy receptors DcR1 or DcR2 in

HCT116/Hke-3 cells (Figure S1), suggesting that they do not

modulate the responsiveness to TRAIL through regulation of

TRAIL receptors.

Next we showed that macrophages and IL-1b inhibited TRAIL-

induced apoptosis of HCT116 and Hke-3 cells (Fig. 2A). THP1

macrophages and IL-1b precluded TRAIL-induced collapse of the

mitochondrial membrane potential (MMP) (Fig. 2B) and prevent-

ed TRAIL-induced activation of caspase-8 and caspase-9 (Fig. 2C).

The human monocytic cell line THP-1 was derived from the

Figure 1. Macrophages and IL-1b counteract TRAIL-induced inhibition of colon cancer growth. A and B: HCT116 and Hke-3 cells were
seeded at a density of 200 cells per well of a six well plate in the absence or the presence of macrophages (1600/well) or IL-1b, and were treated with
TRAIL for 4 hours. The results shown in B represent the average of two independent experiments each performed in duplicate.
doi:10.1371/journal.pone.0011700.g001
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peripheral blood of a patient with acute monocytic leukemia and

THP1 cells have properties of human monocyte-derived macro-

phages [28]. These cells have several characteristics of tumor

associated macrophages (TAMs), including impaired activation of

NF-kB, lack of nitric oxide production in response to LPS/IFNc
(not shown) and high constitutive STAT1 signaling [7,8].

However, to confirm that the results obtained using THP1 cells

are biologically relevant, we showed that normal peripheral blood

monocytes, precursors of the tumor associated macrophages,

protected a panel of colon cancer cell lines from TRAIL-induced

apoptosis (Fig. 2D). Like THP1 macrophages, normal peripheral

blood monocytes restored the MMP and prevented activation of

caspase 8 and cleavage of PARP in TRAIL-treated tumor cells

(data not shown, Figure S2), which is consistent with the ability of

colon cancer cells to induce IL-1b release from peripheral blood

monocytes [7].

Peripheral blood monocytes inhibited TRAIL-induced apopto-

sis also in 293T cells (Fig. 2D), demonstrating that macrophage-

derived factors are general and potent inhibitors of TRAIL-

induced cell death.

Macrophages protect from TRAIL-induced apoptosis
through IL-1b

We showed that IL-1b is sufficient to inhibit TRAIL-induced

apoptosis (Fig. 2). To establish whether IL-1b is required for

macrophage mediated protection of tumor cells from TRAIL-

induced apoptosis, we first silenced IL-1b in THP1 macrophages.

These experiments revealed that IL-1b deficient macrophages fail

to protect tumor cells from TRAIL-induced apoptosis (Fig. 3A and

3B). Consistent with these data, neutralization of IL-1b by IL-1b
specific antibody, or silencing of STAT1, a transcription factor

that we showed is required for the release of IL-1b from

macrophages [7] also inhibited the anti-apoptotic activity of

macrophages (Fig. 3A and 3B). As expected, neutralizing IL-1b
antibody inhibited the prosurvival activity of IL-1b, demonstrating

the specificity of antibody. Together, these data established that

tumor associated macrophages protect tumor cells from TRAIL-

induced apoptosis in an IL-1b dependent manner.

To determine whether the ability of IL-1b to interfere with therapy

induced apoptosis is restricted to TRAIL, we surveyed Oncomine

(www.oncomine.org), which is an assembly of human tumor

Figure 2. Macrophages and macrophage-derived factors protect colon cancer cells from TRAIL-induced apoptosis. A: HCT116
(average of 5 independent experiments) and Hke-3 cells (average of 4 independent experiments) were treated with TRAIL in the absence or the
presence of macrophages or IL-1b (5 ng/ml) as indicated and the extent of apoptosis was determined after 7 hours. B: The mitochondrial membrane
potential (MMP) was determined by JC1 staining 5 hours after treatment. C: Activation of caspase 8 and caspase-9 was determined in colon cancer
cells treated with TRAIL (50 ng/ml) under conditions indicated. D: TRAIL- sensitive cancer cell lines were treated with TRAIL in the absence or the
presence of human peripheral blood monocytes (Mo) and the extent of apoptosis was determined 7 hours after treatment. Data shown represent the
average of 2 or 3 independent experiments.
doi:10.1371/journal.pone.0011700.g002
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microarray studies. The analysis of 30 cell lines by Gyorffy et al [29]

revealed that high expression of IL-1b in tumor cells lines strongly

correlates with the resistance of cells to vinblastine and doxorubicin

(Fig. 3C). The analysis of 70 metastatic colon tumors [30] revealed

that colon tumors that harbor mutant kRas have higher levels of IL-

1b than tumors with WT kRas (Fig. 3D, left panel). Whether IL-1b is

produced by stromal cells or tumor cells themselves cannot be

concluded, however the analysis of this database revealed that higher

levels of IL-1b in tumors correlate with resistance to cetuximab [30]

(Fig. 3D, right panel). In summary, these data established that the

levels of IL-1b are elevated in a subset of human colon tumors, and

that IL-1b modulates the response of tumor cells to a variety of

therapeutic agents both in vitro and in vivo.

Pharmacological inhibition of IL-1b stimulation by
Vitamin D3 inhibits the prosurvival activity of
macrophages

We recently demonstrated that the cross talk between tumor

cells and macrophages is disrupted by vitamin D3, an important

chemopreventive agent for colorectal cancer. Vitamin D3

inhibited the ability of tumor cells to stimulate IL-1b release from

macrophages [7] and, subsequently, vitamin D3 treated macro-

phages failed to induce Wnt signaling in tumor cells [7]. These

data suggested that vitamin D3 may also regulate TRAIL induced

apoptosis. HCT116 cells were cultured alone or in the presence of

macrophages, and were treated with TRAIL in the absence or the

presence of vitamin D3. Vitamin D3 did not affect TRAIL-induced

apoptosis in HCT116 or Hke-3 cells (data not shown), which is

consistent with the unresponsiveness of these cells to vitamin D3

[31]. However, we demonstrated that the ability of macrophages

to protect colon cancer cells from TRAIL-induced apoptosis was

inhibited by vitamin D3 (Fig. 4A). The addition of exogenous IL-

1b prevented the ability of vitamin D3 to regulate TRAIL induced

apoptosis, confirming that vitamin D3 restored the sensitivity of

tumor cells to TRAIL by inhibiting the release of IL-1b from

macrophages, and not by affecting signaling by IL-1b. Silencing of

VDR by VDR specific siRNA in macrophages did not affect their

ability to inhibit TRAIL-induced apoptosis in tumor cells, however

vitamin D3 failed to restore TRAIL induced apoptosis of tumor

Figure 3. IL-1b is sufficient and required to protect cells from TRAIL-induced apoptosis. A and B: HCT116 cells were cultured with THP1
macrophages with silenced IL-1b or STAT1 expression and were treated with TRAIL as indicated. IL-1b was neutralized by anti-IL-1b specific antibody.
Pictures were taken (A) and the amount of apoptosis (B) was determined after 7 hours. Data shown in B represent the average of three independent
experiments. C and D: Studies by Gyorffy et al ([29], C) and by Khambata-Ford et al ([30], D) were surveyed through Oncomine and indicate that cell
lines (C) and primary colon cancers (D) with higher levels of IL-1bdisplay resistance to therapeutic agents, such as vinblastine, doxorubicin and
cetuximab (CTX).
doi:10.1371/journal.pone.0011700.g003
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cells cocultured with VDR deficient macrophages (Fig. 4A). These

data demonstrated that vitamin D3 affects the crosstalk between

tumor cells and macrophages by targeting macrophages and not

the tumor cells, and that, accordingly, it requires the expression of

VDR on macrophages, consistent with our published data [7].

Biochemical analysis confirmed that while macrophages

inhibited TRAIL-induced activation of caspase 8 and caspase-9

and cleavage of PARP and b-catenin, treatment with vitamin D3

promoted TRAIL-mediated activation of the apoptotic cascade in

tumor cells that were grown in the presence of WT, but not VDR

deficient macrophages (Fig. 4B). As vitamin D3 acts as an inhibitor

of IL1-b release, its activity was prevented by exogenous IL1b and

was dependent on the expression of VDR on macrophages

(Fig. 4A, Fig. 4B) and not on tumor cells (data not shown).

Vitamin D3 also restored sensitivity to TRAIL in colon cancer

cells that were cultured in the presence of peripheral blood

monocytes. It enhanced activation of caspase 8 and subsequent

cleavage of PARP and b-catenin in HCT116 that acquired

resistance to TRAIL due to the presence of peripheral blood

monocytes (Figure S2).

These data suggest that the therapeutic efficacy of TRAIL could

be greatly improved by vitamin D3 in cancers that are infiltrated

by macrophages.

Wnt signaling is required for the prosurvival activity of
macrophages

We recently demonstrated that macrophages and IL-1b induce

Wnt signaling in colon cancer cells through activation of NF-kB-

dependent AKT signaling [8], pathways that have been shown to

protect tumor cells from apoptosis. To determine whether

macrophages and IL-1b inhibit TRAIL-induced apoptosis

through activation of these pro-survival signaling pathways, we

expressed in HCT116 cells dnIkB (an inhibitor of NF-kB

signaling), dnAKT (an inhibitor of AKT signaling) and dnTCF4

(an inhibitor of Wnt signaling). Inhibition of NF-kB or AKT did

not impact TRAIL-induced apoptosis. However, cells transfected

with dnTCF4 reproducibly showed a modestly reduced amount of

TRAIL-induced apoptosis (differences were not statistical signif-

icant), which may be consistent with the requirement of the Wnt

pathway for optimal TRAIL-induced apoptosis [32] (Fig. 5A).

However, the critical point was that in contrast to cells transfected

with an empty plasmid, macrophages and IL-1b did not protect

cells with impaired NF-kB, AKT or Wnt signaling from TRAIL-

induced apoptosis (Fig. 5A). We confirmed that macrophages and

IL-1b failed to counteract TRAIL-induced activation of caspase-8

and caspase-9 and subsequent cleavage of PARP in cells that

express either dnIkB, dnAKT or dnTCF4 (Fig. 5B). Of particular

interest, macrophages and IL-1b prevented TRAIL-induced

cleavage of b-catenin, but only in cells with intact NF-kB/

AKT/Wnt signaling (Fig. 5B).

Cleavage of b-catenin was mediated by caspases, as we could

prevent its processing by ZVAD, a pan-caspase inhibitor (Figure

S3). Cleaved b-catenin has been shown to exhibit impaired

transcriptional activity [33]. We showed that TRAIL inhibits

TCF4/b-catenin transcriptional activity and that macrophages

and IL-1b could partially restore b-catenin transcriptional activity

in TRAIL-treated cells (Figure S3).

Similar to published reports [34] we found that, despite the fact

that HCT116 cells carry a mutant b-catenin allele, most of b-

Figure 4. Pharmacological inhibition of IL-1b secretion by Vitamin D3 inhibits the prosurvival function of macrophages. A: The
amount of apoptosis was determined in HCT116 cells treated with TRAIL under indicated conditions. Error bars were derived from 2 independent
experiments. B: The effect of vitamin D3 on TRAIL-induced activation of caspases and the cleavage of PARP and b-catenin was determined by
immunoblotting.
doi:10.1371/journal.pone.0011700.g004
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catenin is localized to the membranes in HCT116 cells. Consistent

with the cleavage of b-catenin by TRAIL, membranous

localization of b-catenin was severely diminished in TRAIL

treated cells (Fig. 5C). Both IL-1b and TNFa restored the

membranous localization of b-catenin in HCT116 cells in TRAIL-

treated cells (Fig. 5C), in accordance with their prosurvival activity.

Together, these data demonstrated that tumor associated

macrophages (TAMs) protect tumor cells from TRAIL-induced

apoptosis through their ability to stabilize b-catenin and to

promote Wnt signaling in colon cancer cells.

Macrophages, TNFa and IL-1b stabilize Snail in an NF-kB
and AKT/WNT dependent manner

Although macrophages and IL-1b protected tumor cells from

TRAIL-induced apoptosis, they did not regulate the levels of the

bcl-2 family members in tumor cells, such as Bcl-x or Mcl1, or

alter the expression of cIAPs, which have been shown to modulate

the response of cells to TRAIL-induced apoptosis [16] (data not

shown). However, we showed that the levels of Snail protein were

increased in HCT116 cells treated with IL-1b or in HCT116 cells

cultured in the presence of macrophages (Fig. 6A). TNFa, another

macrophage-derived factor that can induce Wnt signaling in

tumor cells [7,35], also elevated the levels of Snail in tumor cells

(Fig. 6A). We demonstrated that macrophages, IL-1b and TNFa
elevated Snail through NF-kB, AKT and Wnt signaling, as they

failed to increase the levels of Snail in cells expressing dnIkB,

dnAKT or dnTCF4 (Fig. 6A). The levels of Snail mRNA in

HCT116 or Hke-3 cells were not increased by macrophages (not

shown), suggesting that macrophage-derived factors stabilize Snail

protein in tumor cells. The induction of c-jun by IL-1b and TNFa
also required NF-kB, consistent with published data (Fig. 6A). We

showed that TNFa and IL-1b also failed to induce c-jun in cells

expressing dnTCF4, confirming the importance of Wnt signaling

for the biological activity of these cytokines and for the interaction

of tumor cells with macrophages.

GSK3b is a major kinase that phosphorylates Snail and induces

its degradation [36,37]. Because we reported that macrophages

and IL-1b inactivate GSK3b in tumor cells [7,8], we next

examined whether macrophages/IL-1b stabilize Snail through

inhibition of GSK3b. HCT116 and Hke-3 cells were treated with

LY294002, a PI3K inhibitor - and thus activator of GSK3b
(phoshorylation of GSK3b on Serine 9 inhibits its activity). As

shown in Fig. 6B, treatment of cells with LY294002 indeed

precluded macrophages/IL-1b/TNFa-mediated inactivation of

Figure 5. Wnt is required for the prosurvival activity of macrophages and IL-1b. A and B: HCT116 expressing dnIkB, dnAKT or dnTCF4 were
treated with TRAIL under indicated conditions and the amount of apoptosis was determined by propidium iodide staining. A: Data represent the
average of 5 independent experiments. B: The extent of caspase activation and the cleavage of PARP and b-catenin were determined in cell lysates by
immunoblotting. C: The localization of b-catenin was determined by immunofluorescence in HCT116 cells treated with TRAIL in the absence or the
presence of IL-1b or TNFa.
doi:10.1371/journal.pone.0011700.g005

Interleukin 1b and TRAIL
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GSK3b, and completely prevented stabilization of Snail by

macrophages, TNFa and IL-1b. This result demonstrates that

inhibition of GSK3b regulates the stability of Snail in HCT116

cells and strongly suggests that macrophages, TNFa and IL-1b
stabilize Snail through their ability to inhibit GSK3b. Indeed,

pharmacological inhibition of GSK3b by LiCL or by GSK3b
specific inhibitor, AR-A014418, was sufficient to stabilize Snail in

tumor cells (Figure S4).

Finally, treatment of cells with LY29004 completely prevented

the ability of IL-1b to protect colon cancer cells from TRAIL-

Figure 6. Macrophages, IL-1b and TNFa stabilize Snail in a NF-kB/AKT/Wnt dependent manner. A: Macrophages, IL-1b and TNFa stabilize
Snail in a NF-kB/AKT/Wnt dependent manner. HCT116 cells were transfected with dnIkB, dnAKT or dnTCF4 and were treated with IL-1b or TNFa, or
were cultured with THP1 macrophages as indicated. The levels of Snail and c-jun were determined by immunoblotting. B: The levels of Snail and
pGSK3b were determined by immunoblotting in Hke-3 cells that were treated with IL-1b, TNFa or were co-cultured with macrophages in the absence
or the presence of LY 294002 for 24 hours. C: HCT116 and Hke-3 cells were treated with TRAIL in the absence or the presence of IL-1b and LY294002,
as indicated. The experiment was performed three times.
doi:10.1371/journal.pone.0011700.g006
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induced apoptosis (Fig. 6C), implying that macrophages and IL-1b
protect from TRAIL induced apoptosis through GSK3b depen-

dent stabilization of Snail.

Macrophages and IL-1b protect from TRAIL-induced
apoptosis through stabilization of Snail

Snail has been shown to interact with b-catenin and to promote

the expression of Wnt target genes [38]. In accord with these data,

we found that overexpression of Snail promotes TOP-FLASH-

driven activity in both HCT116 and Hke-3 cells (Fig. 7A). In order

to determine whether stabilization of Snail by macrophages/IL-1b
contributes to their ability to drive Wnt signaling, we silenced Snail

in tumor cells (Fig. 7B), and examined the ability of macrophages

and IL-1b to induce Wnt signaling in Snail deficient HCT116 and

Hke-3 cells. In contrast to HCT116 and Hke-3 cells transfected

with NSP(nontargeting) RNAi, cells transfected with Snail specific

RNAi failed to respond to macrophages and IL-1b with enhanced

Wnt signaling (Fig. 7C). Snail deficiency did not impair IL-1b
induced NF-kB activation in HCT116 cells (data not shown),

demonstrating a specific requirement for Snail in macrophage

mediated b-catenin driven transcription.

Finally, since we demonstrated that macrophages and IL-1b
protect from TRAIL-induced apoptosis through Wnt signaling

(Fig. 5), we tested whether macrophages can protect tumor cells

transfected with Snail siRNA from TRAIL-induced apoptosis.

Indeed, macrophages and IL-1b failed to inhibit TRAIL induced

apoptosis in Snail deficient HCT116 or Hke-3 cells (Fig. 8A),

confirming that macrophages and IL-1b protect from TRAIL-

induced apoptosis through stabilization of Snail in tumor cells.

Indeed, macrophages with silenced IL-1b or STAT1 (Fig. 8B) or

vitamin D3 treated macrophages (Fig. 8C), which failed to protect

tumor cells from TRAIL-induced apoptosis ([7], Fig. 4), also failed

to stabilize Snail in tumor cells.

These data established a pivotal role of Snail in inflammation-

induced resistance of tumor cells to TRAIL (Fig. 9).

Discussion

Acquired resistance to tumor therapy can develop as a result of

de novo genetic changes that accompany the progression of cancer.

In addition, tumors can attain resistance through a pathway that is

not intrinsic to tumor cells, but originates in the tumor

microenvironment, also called the tumor microenvironment

mediated drug resistance (TMMDR). Two types of TMMDR

have been described: resistance that is mediated by soluble factors

produced by the cells in the tumor microenvironment and

resistance that develops as a result of the adhesion of tumor cells

to stromal fibroblasts or to components of the extracellular matrix

[18]. It is therefore likely that therapeutic approaches that aim to

normalize the tumor microenvironment and/or interrupt the

crosstalk between the tumor cells and the microenvironment, will

Figure 7. Snail regulates Wnt signaling. A: HCT116 and Hke-3 cells were transfected with TOP-FLASH reporter together with an empty vector
(neo), or the increasing concentrations of Snail expression vector. The experiment was performed in triplicate. B: Tumor cells were transfected with
NSP or Snail specific siRNA and were treated with IL-1b as indicated. The levels of Snail were determined by immunoblotting. C: Tumor cells were
transfected with TOP-FLASH reporter together with NSP or Snail specific siRNA. Data represent the average of two independent experiments each
performed in duplicate.
doi:10.1371/journal.pone.0011700.g007
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not only help to stall the progression of cancer, but also have a

potential to promote sensitivity of tumors to chemotherapy or

radiotherapy.

Recently we reported that vitamin D3, a potent chemopreven-

tive agent for colorectal cancer, inhibits growth of colon cancer

cells by targeting the tumor associated macrophages [7]. We

showed that vitamin D3 inhibited the ability of tumor cells to

induce the release of IL-1b from macrophages, and thereby

inhibited the subsequent increase in Wnt signaling and growth of

colon cancer cells. Here we present data which establish that

TRAIL responsive colon cancer cells acquire resistance to TRAIL

when cultured in the presence of macrophages, and showed that

macrophage-derived IL-1b was required for their anti-apoptotic

activity. Consistent with the ability of vitamin D3 to inhibit the

release of IL-1b from macrophages, vitamin D3 restored the

sensitivity of tumor cells to TRAIL. Macrophages were not general

inhibitors of apoptosis, as we demonstrated that they actually

promoted apoptosis of colon cancer cells in response to 5FU and

butyrate (Kaler et al, unpublished). Our preliminary results suggest

that macrophages promoted 5FU-induced apoptosis in an IL-1b
dependent manner, while the enhancement of butyrate induced

apoptosis was mediated though an unknown macrophage-derived

factor (Kaler et al, unpublished). This underscores the complexity

of the interactions between tumor cells and the stroma, and

emphasizes the specificity of the interactions between tumor cells

and environmentally derived factors, which is likely to contribute

to contrasting reports regarding prognostic significance of

macrophages in colon cancer [39]. The levels of IL-1b are

increased in colon cancer patients harboring mutant kRas and

elevated levels of IL-1b correlate with the resistance to cetuximab

(Fig. 3D) [30].

Cytokines secreted by the activated tumor stroma modulate tumor

growth and regulate their survival and invasiveness through

activation of oncogenic signaling pathways in tumor cells, examples

being activation of NF-kB by TNFa and IL-1b, and activation of

STAT3 by IL-6 [4,40]. More recently, TNFa [35], Hepatocyte

Growth Factor [41], PDGF [42] and FGF19 [43] and IL-1b [7] have

been shown to activate Wnt/b-catenin signaling, the oncogenic

pathway activated in the majority of colorectal cancers.

Here we present data which demonstrate that macrophages and

IL-1b protect tumor cells from TRAIL-induced apoptosis through

induction of Wnt signaling in tumor cells, as cells expressing

dnTCF4 were not protected from TRAIL-induced apoptosis by

macrophages. Likewise, Wnt expressing rat embryonic fibroblasts

have been shown to inhibit TRAIL-induced apoptosis of human

leukemia cells [44].

Figure 8. Snail mediates the anti-apoptotic activity of macrophages and IL-1b. A: HCT116 and Hke-3 cells were transfected with NSP or
Snail specific siRNA and were treated with TRAIL in the absence or the presence of macrophages or IL-1b as indicated. Data represent the average of
two independent experiments. B and C: Silencing of IL-1b or STAT1 (B) in macrophages, or treatment with vitamin D3 (C) abrogates the ability of
macrophages to stabilize Snail in colon cancer cells.
doi:10.1371/journal.pone.0011700.g008
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Consistent with our observation that macrophages/IL-1b
induce Wnt signaling in an NF-kB dependent manner [8], we

showed that macrophages and IL-1b failed to inhibit TRAIL-

induced apoptosis in tumor cells expressing dnIkB, confirming the

oncogenic role of NF-kB signaling. It has been shown that the

ability of LPS, an inducer of IL-1b, to promote the growth of

CT26 tumors strictly depends on functional NF-kB signaling, and

that inhibition of NF-kB converts inflammation-induced tumor

growth to TRAIL-mediated tumor regression [45]. Our data

suggest that tumor cells with impaired NF-kB/Wnt signaling fail

to respond to survival signals from the tumor microenvironment

and thus undergo TRAIL-mediated cell death.

Myc has been shown to sensitize colon cancer cells to TRAIL

induced apoptosis through repression of MCL1 and cIAP2 in bax

deficient HCT116 cells [16]. In contrast, we have not observed

modulation of c-myc, MCL-1 or cIAP1 or cIAP2 in our system,

using HCT116 cells which are bax proficient. However, we

demonstrated that macrophages, TNFa and IL-1b increased the

levels of Snail in tumor cells, a known Wnt target gene and

regulator of tumor cell apoptosis [46]. Snail is a zinc finger

transcription factor that, through transcriptional repression of E

cadherin, induces an epithelial mesenchymal transition (EMT)

[47,48]. Although IL-1b was shown to upregulate Snail and to

downregulate E-cadherin in head and neck squamous carcinoma

cells [49], our initial analysis revealed no major changes in the

expression of epithelial or mesenchymal markers in colon cancer

cells exposed to macrophage-derived factors. The only mesenchy-

mal marker strongly induced in these cultures was fibronectin

(Kaler, not shown). However, more extensive analyses are

required to establish whether stabilization of Snail is sufficient to

promote an EMT in colon cancer cells.

GSK3b phosphorylates both the NES (nuclear export sequence)

and the destruction box in Snail and thereby triggers ubiquitin

mediated proteasomal degradation of Snail [37]. In addition,

inhibition of GSK3b has been also shown to activate the

transcription of Snail [36]. We showed that pharmacological

inhibition of GSK3b (Figure S4) or IL-1b mediated inhibition of

GSK3b (Fig. 6), were sufficient to elevate the levels of Snail in

colon cancer cells. This is in contrast to the recent report that

TNFa stabilized Snail through NF-kB-dependent induction of

CSN2 in breast cancer cells, which inhibited the association of

Snail with GSK3b and thus suppressed its phosphorylation and

degradation [50].

Wnt signaling has been shown to promote transcription, protein

stability and to regulate nuclear localization of Snail [36,37]. In

turn, Snail interacts with b-catenin and increases the expression of

Wnt target genes [38]. Likewise, Gli1, the hedgehog pathway

transcription factor, has been shown to promote Wnt signaling

through induction of Snail [51]. We showed that macrophage-

induced stabilization of Snail contributes to Wnt signaling in colon

cancer cells and creates a positive feedback loop initiated, and

propagated, by macrophage-derived IL-1b. In the ApcMin mouse

model of intestinal tumorigenesis, inhibition of Snail increased cell

death and reduced tumor formation [52] and in human tumors,

nuclear b-catenin activity is enhanced at the invasive front, where

the expression of E-cadherin, a direct target of Snail, is

downregulated [53], suggesting that this positive regulatory

signaling is functional in vivo.

Figure 9. Crosstalk between tumor cells and macrophages which propagates the growth and survival of cancer cells. Tumor cells
activate macrophages to secrete IL-1b which in a NF-kB/AKT dependent manner inactivates GSK3b and thus promotes Wnt signaling in tumor cells.
Elevated levels of c-myc contribute to enhanced growth of tumor cells, while increased levels of Snail contribute to enhanced Wnt signaling, protect
cells from TRAIL induced apoptosis, and are likely to contribute to the epithelial mesenchymal transition (EMT) and enhanced metastatic potential of
tumor cells.
doi:10.1371/journal.pone.0011700.g009
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Macrophages have been shown to promote invasiveness of

breast cancer cells by inducing epithelial mesenchymal transition

(EMT) via NF-kB dependent stabilization of Snail [50]. Our data

suggest that colon cancer cells with stabilized Snail escape TRAIL-

induced cell death, a novel mechanism whereby Snail promotes

tumor progression.

Many studies have investigated the role of genetic and

epigenetic changes in the responsiveness of tumor cells to TRAIL.

This report establishes that the proinflammatory tumor microen-

vironment can render tumor cells resistant to TRAIL. Consistent

with our data, TRAIL induced apoptosis is inhibited by IL8 in

ovarian cancer cells [54,55], by IL-1b in keratinocytes [56,57],

and by IL6 in multiple myeloma cells [58]. Neutralization of IL4

significantly enhanced the effectiveness of TRAIL in epithelial

tumors [59], confirming that factors derived from the tumor

microenvironment can diminish the response of tumor cells to

TRAIL. We established that vitamin D3, which interrupts the

crosstalk between tumor cells and macrophages, restores the

sensitivity of colon cancer cells to TRAIL. Because TRAIL is a

promising therapeutic agent, these data offer an exciting

opportunity to pharmacologically enhance the responsiveness of

cancer patients to TRAIL by commonly used chemopreventive

agent. Our data suggest that such an approach should be

beneficial in patients with tumors that have a high level of

infiltration of macrophages and therefore may not respond to

TRAIL alone.

Supporting Information

Figure S1 The expression of TRAIL receptors on tumor cells:

The expression of DR4, DR5, DcR1 and DcR2 mRNA in

HCT116 and Hke-3 cells that were cultured alone or together

with THP1 macrophages, and were either left untreated or were

treated with vitamin D3.

Found at: doi:10.1371/journal.pone.0011700.s001 (0.19 MB TIF)

Figure S2 Vitamin D inhibits the anti-apoptotic activity of

peripheral blood monocytes (Mo). HCT116 and Hke-3 cells were

treated with TRAIL in the absence or the presence of peripheral

blood monocytes and vitamin D, as indicated. The extent of

apoptosis was determined by PI staining (left panel), and the

activation of caspase 8 and cleavage of PARP and beta catenin

were determined by immunoblotting (right panel).

Found at: doi:10.1371/journal.pone.0011700.s002 (0.12 MB TIF)

Figure S3 TRAIL inhibits beta-catenin/TCF4 transcriptional

activity. A: HCT116 and Hke-3 cells were treated with TRAIL in

the presence of pan-caspase inhibitor, ZVAD, and the cleavage of

PARP and beta-catenin was determined by immunoblotting. B:

HCT116 and Hke-3 cells were transfected with the TOP-FLASH

reporter gene and were treated with TRAIL (10 ng/ml) in the

presence of macrophages or IL1 as indicated for 24 hours.

Found at: doi:10.1371/journal.pone.0011700.s003 (0.16 MB TIF)

Figure S4 Inhibition of GSK3beta stabilizes Snail in tumor cells.

HCT116 cells were treated with LiCl (10 mM) or with AR-

A014418 (AR, 50 mM) for 24 hours and the levels of Snail and

beta actin were determined by immunoblotting.

Found at: doi:10.1371/journal.pone.0011700.s004 (2.24 MB TIF)
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