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Abstract

Background: Massive text mining of the biological literature holds great promise of relating
disparate information and discovering new knowledge. However, disambiguation of gene symbols
is a major bottleneck.

Results: We developed a simple thesaurus-based disambiguation algorithm that can operate with
very little training data. The thesaurus comprises the information from five human genetic
databases and MeSH. The extent of the homonym problem for human gene symbols is shown to
be substantial (33% of the genes in our combined thesaurus had one or more ambiguous symbols),
not only because one symbol can refer to multiple genes, but also because a gene symbol can have
many non-gene meanings. A test set of 52,529 Medline abstracts, containing 690 ambiguous human
gene symbols taken from OMIM, was automatically generated. Overall accuracy of the
disambiguation algorithm was up to 92.7% on the test set.

Conclusion: The ambiguity of human gene symbols is substantial, not only because one symbol
may denote multiple genes but particularly because many symbols have other, non-gene meanings.
The proposed disambiguation approach resolves most ambiguities in our test set with high
accuracy, including the important gene/not a gene decisions. The algorithm is fast and scalable,
enabling gene-symbol disambiguation in massive text mining applications.

Background

The amount of information in the life sciences is stagger-
ing and growing exponentially. One of the largest bio-
medical resources of textual scientific information, the
Medline database, currently contains over 14 million
abstracts, with an estimated increase in size of more than
one article per minute. Scientists are faced with an over-
load of information, which is particularly pressing in the

biological field where high-throughput experiments in
genomics and proteomics generate new data at an unprec-
edented rate. More often than not, interpretation of these
data requires the digestion and integration of information
contained in many thousands of articles and other infor-
mation sources, a daunting task clearly beyond the capac-
ity of human reading and comprehension.
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Recently, a number of information retrieval systems have
been proposed to extract and relate pertinent biological
information from large corpora of text [1-9]. These sys-
tems even hold promise for the discovery of new, "tacit"
knowledge that is hidden in the literature. The term "con-
ceptual biology" has already been coined to distinguish
this emerging field of research as a branch of biological
research in its own right [10]. There are however several
issues that limit the practical utility of current text-mining
tools [11]. One problem is the highly-variable use of gene
nomenclature in the literature [12,13], producing multi-
ple symbols and names for one and the same gene. This
complicates relating information in different documents
that deal with the same gene but use different symbols.
One approach to deal with this synonym problem is to
make use of the information about genes and their aliases
that is available in existing genetic databases.

A second, probably more intricate, problem is that a single
gene symbol may refer to multiple genes, or may also be
the abbreviation of terms with completely different, non-
gene meanings. When building gene networks from the
literature [1], for example, one would not want to con-
taminate the network on prostate specific antigen (PSA)
with puromycin-sensitive aminopeptidase, psoriatric
arthritis, pig serum albumin, or one of the more than 100
other meanings of PSA that can be found in the literature
[14].

The extent of this ambiguity or homonym problem has
been further subject of two recent studies. Tuason et al.
[15] compared gene symbols of four organisms (not
including human) and showed that up to 20% of the gene
symbols of an individual organism were ambiguous with
the other three organisms. In another study by the same
group, Chen et al. [16] found that 85% of correctly
retrieved mouse genes in a set of 45,000 abstracts were
ambiguous with gene names from 20 other organisms,
while ignoring gene names that were also English words.
When the latter were included, 233% additional "gene"
instances were retrieved, most of which were false posi-
tives. In several other studies [17-19], it was also suggested
that solving this ambiguity problem is an important
requirement for large-scale application of text-mining
tools in the biomedical field.

General word-sense disambiguation has been studied
extensively in the field of natural language processing. A
wide variety of approaches has been proposed (see
[20,21] for excellent reviews), including dictionary-based
approaches and the use of supervised learning techniques
to build classifiers that assign the proper sense to an
ambiguous term. Typically, these methods use the words
in a window around the ambiguous term, or information
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derived from this context window, such as part-of-speech
or collocation.

Recently, several studies have explored the use of disam-
biguation techniques in the biological field. Hatzivassi-
loglou et al. [22] applied machine learning methods to
classify symbols into one of three categories: genes, pro-
teins, and mRNA. No attempt was made to resolve homo-
nyms with two or more senses within one group, or with
a sense outside of these three groups, and performance
results were rather moderate, although still better than
human interpretation. The same problem was recently
tackled by Ginter et al. [23], who proposed a new classifier
design and were able to slightly improve on the best
method used by Hatzivassiloglou [22]. In a series of arti-
cles [17,24,25], Liu and co-workers investigated the effect
of different supervised learning techniques, feature repre-
sentations, and context window sizes on disambiguation
performance. They obtained excellent results on a small
number of ambiguous biomedical abbreviations [17,24],
but for training they typically needed dozens of examples
for each of the possible senses. In practice, these numbers
may often be difficult to obtain. Widdows et al. [26] com-
pared several methods for disambiguating ambiguous
concepts from the Medical Subject Headings (MeSH) the-
saurus [27] on a set of 70 ambiguous terms. Their most
successful method achieved 74% precision and utilized
existing MeSH-term co-occurrence data, which were
derived from the MeSH annotations by human annota-
tors. However, their method would not work well for gene
symbols, which are poorly covered by MeSH.

Recently, Podowski et al. [19] used Bayesian classifier
models to disambiguate gene symbols found in
LocusLink [28]. Interestingly, their system can distinguish
between gene and non-gene meanings of a symbol,
acknowledging the fact that many gene symbols are
abbreviations of terms with non-gene meanings. They val-
idated their system on two manually curated test sets of 66
gene symbols, and found that the accuracy of the system
is mostly over 90% when more than 20 abstracts per gene
sense were available for training.

Although several of these approaches produced very good
disambiguation results, they require substantial amounts
of training data, typically tens of instances per sense. For
gene symbol disambiguation, these numbers may be dif-
ficult to acquire. Given the extent of the homonym prob-
lem for gene symbols, manual curation of training data
would be extremely laborious. Any practical disambigua-
tion system should be trained with data that are gathered
automatically, but even then the required numbers are
unlikely to be available for many of the ambiguous
symbols.
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Here we present a disambiguation method for gene sym-
bols, which maintains excellent performance when
trained with sparse data. At the basis of our approach lies
a thesaurus that is used to find biomedical concepts,
including gene symbols, in text. Focusing on human
genes, we first quantify the ambiguity problem for gene
symbols, particularly paying attention to ambiguity aris-
ing from non-gene meanings of gene symbols. We then
describe our disambiguation approach and assess the per-
formance of the disambiguation algorithm on a large test
set of documents.

Results

Thesaurus construction and ambiguity of human gene
symbols

We extracted human gene symbols and aliases, gene
names, and identification numbers from five publicly
available databases [29]: Genew, the Genome Database
(GDB), LocusLink, Online Mendelian Inheritance in Man
(OMIM), and Swiss-Prot. Genes from the different data-
bases were matched based on identification numbers and
overlap in gene symbols or names, and the corresponding
information was merged into a new gene thesaurus. The
resulting thesaurus contained information on 26,367
human genes, with a total of 63,148 gene symbols. The
percentage of ambiguous gene symbols was 4.9% (2,911
of 59,604 distinct gene symbols), whereas the percentage
of genes affected by homonymy was 17.5% (4,606/
26,367).

Gene symbols may not only denote multiple genes, but
may also have other, non-gene meanings. To further
gauge the extent of ambiguity, we searched 13 years of
Medline abstracts for abbreviations (or short forms) and
their expansions (or long forms) using an abbreviation
expansion algorithm [30]. A total of 10,398 unique, case-
sensitive short forms were found that matched a gene
symbol from our gene thesaurus, with 146,198 long
forms. Of these, 117,149 long forms (corresponding with
5,639 symbols) did not match, partially or completely,
any of the gene names associated with that symbol, and
were assumed to have a non-gene meaning. The number
of different long forms per symbol with a non-gene mean-
ing varies widely (Figure 1), up to 734 (for the short form
"PC", which for example can denote "pachyonychia con-
genital", "prefrontal cortex", and "protective clothing").
The short forms with at least one non-gene meaning
affected 26.9% of the genes and 9.5% of the gene symbols
in our combined gene thesaurus. Overall, taking into
account both gene and non-gene meanings, 32.7% of the
genes in our combined thesaurus had one or more
homonymous symbols, and 12.6% of the gene symbols in
the thesaurus were ambiguous.
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Number of non-gene meanings for gene symbols.
Dots indicate the number of human gene symbols (on the
vertical axis) and, for each of these symbols, the number of
corresponding long forms with a non-gene meaning (horizon-
tal axis). It should be noted that spelling variations may yield
different long forms for the same non-gene meaning. To
reduce the effect of these variations, long forms were
stemmed.

Disambiguation of gene symbol senses

The algorithm to disambiguate homonymous gene sym-
bols operates as follows. For each of the possible genes
that the symbol can denote, a reference description is
assumed to be available. Given an ambiguous symbol, the
textual context in which it occurs, say, a Medline abstract,
is matched with each reference description, yielding a set
of matching scores. The gene corresponding with the ref-
erence description that best matches the context is then
taken to indicate the symbol's meaning. However, the
symbol is assumed to have a non-gene meaning if the con-
text does not match well with any of the reference descrip-
tions and the matching score stays below a homonym-
dependent threshold, as determined by a leave-one-out
procedure (see Additional file: 1 for an example of the dis-
ambiguation process). For the textual context, we used the
title, abstract, and MeSH terms that had been assigned to
the Medline abstract. As reference descriptions, we
selected either gene annotations that were culled from
OMIM, or one or more (up to five) Medline abstracts
about a particular gene.

For training and testing purposes, we automatically com-
piled a set of annotations and abstracts for 690 ambigu-
ous symbols, having 974 different gene meanings; 528 of
the symbols had at least one non-gene meaning. All
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Table I: Disambiguation of gene vs. non-gene senses. Table
entries show the number of abstracts in the test set with gene
symbols that were correctly or incorrectly classified by the
disambiguation algorithm as having a gene or non-gene sense.
The percentages indicate the correctly and incorrectly classified
symbols relative to the row totals. Reference fingerprints per
gene symbol sense were derived from a combination of five
Medline abstracts, not being part of the test set.

Algorithm

Reference Gene Non-gene

Gene
Non-gene

24243 (93.5%)
1197 (4.5%)

1666 (6.5%)
25323 (95.5%)

100

95

90

Accuracy (%)

854 ‘

i

NI

1 abstr ' 2 abstr ' 3abstr 4 abstr 5 abstr '
Reference description

Figure 2

Performance of the disambiguation algorithm. Total
accuracies of the disambiguation algorithm were determined
on the test set of 52,529 Medline abstracts for reference fin-
gerprints derived from different reference descriptions:
OMIM annotations or a varying number of Medline abstracts.
When two or more abstracts were used, the fingerprints of
the individual abstracts were averaged to yield the final refer-
ence fingerprint.

abstracts and annotations were sought for concepts from
MeSH and the gene thesaurus with indexing software
from Collexis (Geldermalsen, The Netherlands) [31]. For
each document this yielded a list of biomedical concepts
with attached relevance scores (a "concept fingerprint", or
CFP), which was used for subsequent processing.

For each gene sense of a symbol, five randomly chosen
abstracts were set aside for generating different reference
CFPs; the remaining abstracts were used for testing. The
test set contained 52,529 abstracts. The matching score
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between textual context and reference description was
defined as the normalized cosine-vector score [32]
between the CFPs of these two texts.

Overall accuracy of the disambiguation algorithm,
defined as the percentage of abstracts in our test set in
which the correct meaning of the homonym was chosen,
was 88.9% when OMIM annotations were used as refer-
ence description. This was comparable to using one
abstract as the reference (87.6%), while accuracy
increased to 92.7% when a CFP combination of five
abstracts was used as the reference (Figure 2). For compar-
ison, a simple majority rule (for each symbol always select
the sense that occurs most often in the test set) resulted in
a baseline accuracy of 72.4%.

We made a breakdown of the errors when a combination
of five abstracts was used as the reference description. As
shown in Table 1, symbols indicating a gene were
assigned a non-gene meaning in 6.5% of the cases; sym-
bols with a non-gene meaning were misclassified as a gene
even less frequently (4.5%). For gene symbols with multi-
ple gene meanings, 9.9% of the symbols were assigned to
the incorrect genes (993 out of 10,054 abstracts that con-
tain an in-thesaurus homonym).

Discussion

Ambiguity of gene symbols in free text is an impediment
for the massive application of text mining and literature-
based discovery methods. Our assessment of gene symbol
ambiguity indicates that the homonym problem cannot
be ignored when text mining in the biological field is per-
formed, corroborating findings of previous studies [15].
We found up to 33% of the genes in our thesaurus being
affected by homonymy, and even this high figure is under-
estimating the problem because we limited ourselves to
human genes only, not considering other organisms and
gene products.

Disambiguation would be a trivial task if each ambiguous
symbol in an abstract were accompanied by its corre-
sponding long form at least once. Unfortunately, this
approach is of limited practical value. We recently
checked 3,901 Nature Genetics and BioMed Central
articles and found that only 30% of the gene symbols in
the abstracts are accompanied by a matching long form
[33]. For an additional 8% of the symbols in the abstracts,
the long form could be found in the full text. Of all gene
symbols mentioned in the full-text articles, only 18%
were accompanied by a long form.

We compared two sources of reference descriptions, gene
annotations and abstracts about a particular gene. OMIM
annotations did not perform better as a reference
description than randomly chosen abstracts about a gene.
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The performance increased when the reference CFP was
constructed from the information of several abstracts
combined, but the improvement appeared marginal
when more than three abstracts were used (Figure 2). This
suggests that excellent disambiguation results can be
obtained with relatively simple reference descriptions,
and offers a viable way for massive acquisition of such
descriptions from literature links in genetic databases,
which in view of the extent of the homonym problem
should be automatic for all practical purposes.

Our disambiguation algorithm could be used as part of a
gene identification module in an information extraction
application. In a recent review article on term identifica-
tion, Krauthammer and Nenadic [34] distinguish between
two types of disambiguation: at the broader level of pin-
pointing the type of a concept (e.g., distinguishing
between genes and non-genes) and at the specific level of
resolving different meanings of a term within a term class
(e.g., distinguishing between homonymous genes within
a gene thesaurus). Our approach addresses both types of
disambiguation. While the algorithm was developed and
tested for disambiguation of gene symbols, the approach
is general and easy to apply to other ambiguous entities as
well, provided adequate reference descriptions are
available.

We would like to emphasize the practicality of our
approach in terms of processing speed, scalability, and
accuracy. The initial indexing process is the most time-
consuming step, but in principle has to be done only
once. For our whole test set of 52,529 abstracts, indexing
currently takes about two hours on a standard Pentium IV
computer. Once the context and reference fingerprints are
available, the disambiguation process itself is very fast,
taking about two minutes for the whole test set.

In practical applications, reference descriptions will be
needed for many more than the almost 700 homonymous
gene symbols that we used in this study. Considering that
even a single abstract about a particular gene can provide
an adequate reference description, our approach can eas-
ily be scaled up, for instance by taking the abstracts that
are referenced with each of the gene descriptions in
LocusLink. In our download of LocusLink, 13,811 genes
had at least one reference, and 7,587 had three or more.

Automatic determination of a gene/non-gene threshold
may be more difficult, as our approach presently requires
the availability of examples of non-gene meanings of a
symbol. We are currently investigating automatic thresh-
old setting based on a general set of abstracts with non-
gene meanings, obviating the need to acquire non-gene
examples of each specific symbol.
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The accuracy of any disambiguation algorithm must be
very high in order to be of practical value in massive liter-
ature mining. In this respect, gene symbols that are
assigned a non-gene meaning (6.5% in our test set) may
be less of a problem than the other way around (4.5%), or
than being assigned the wrong gene meaning (9.9%). It
should be remarked that these results pertain to our test
set, which is large but still limited in scope because we
only selected gene symbols that occur in OMIM and had
six or more abstracts per gene sense. This may have
favored selection of relatively well-known genes. It is con-
ceivable that some abstracts with gene symbols that were
not selected provide a less focussed context that would
perform less well.

In our data selection, we focused on human genes. The
abstracts in our test set with ambiguous symbols that indi-
cated a gene, were taken from two sources: OMIM, which
is a database about human genes and diseases, or the SF/
LF data set, if both short form and long form in the
abstract exactly matched an entry in our human gene the-
saurus. However, previous investigations [15,16] showed
that substantial ambiguity of gene symbols exists across
species, and suggested that most of this ambiguity was
attributable to homologous genes. In a random sample of
100 abstracts from our test set with symbols that had a
gene meaning, 31 symbols referred to non-human genes,
mostly from mouse or rat (data not shown). All of these
were apparently homologous to the human genes with
identical names. In this study, we did not attempt to dis-
tinguish between homologous genes. Model organisms
are often used to understand the biology of human genes
and the distinction between homologous genes in text is
often difficult to make, or not useful. If disambiguation of
homologous genes is important, though, our approach
could be extended by including reference descriptions of
genes from other species.

Finally, the current performance is based on reference
descriptions that were acquired fully automatically. Man-
ual curation of these descriptions or their corresponding
fingerprints for low-scoring symbols may further add to
the algorithm's performance.

Conclusion

The ambiguity of gene symbols is substantial, not only
because one symbol may denote multiple genes but par-
ticularly because many symbols have other, non-gene
meanings. A simple, thesaurus-based disambiguation
approach can resolve most ambiguities in our test set with
high accuracy, including the important gene/not a gene
decisions. The proposed method is fast and scalable, ena-
bling gene-symbol disambiguation in massive text mining
and information extraction applications.
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Methods

Construction of the gene thesaurus

We downloaded (January 2004) information about
human genes from five curated databases: Genew [35],
GDB [36], LocusLink [37], OMIM [38], and Swiss-Prot
[39]. For each human gene in a database, gene symbols
(including aliases), gene names, and gene identification
codes were extracted. Since gene name fields in the data-
bases often contain more descriptive statements rather
than gene names proper, we excluded gene names that
could not be matched with one of the corresponding gene
symbols according to the abbreviation expansion algo-
rithm described by Schwartz and Hearst [30].

The number of identification codes per gene varied from
database to database. Each database maintains its own set
of gene identification codes, but also included cross-refer-
ences to one or more of the other databases; also gene
identification codes from Unigene and RefSeq were
extracted if available. The original databases, including
Unigene and RefSeq, were searched for information about
obsolete identification codes and their possible replace-
ments, and the extracted codes were corrected or excluded
as appropriate.

To find corresponding genes from the different databases,
genes with any matching identification code, gene sym-
bol, or gene name were grouped. Within each group, sub-
groups of genes without conflicting identification codes
were generated. If there was only one subgroup, the genes
in this subgroup were taken to represent one and the same
gene and all gene symbols and names of the separate
genes were merged. If there was more than one subgroup,
an iterative procedure was entered in which the number of
similar and disparate identification codes as well as the
overlap in gene symbols and names were determined for
all bigroup comparisons of subgroups. A scoring rule was
then used to decide whether two subgroups represented
the same gene and should be merged.

The new gene thesaurus contained information on 26,367
human genes, with a total of 63,148 gene symbols. The
overlap with the original databases is most substantial for
LocusLink, which covers 98.1% of the genes and 92.3% of
the gene symbols in the new thesaurus; Genew, main-
tained by the HUGO Gene Nomenclature Committee,
covers 67.0% of the genes and 54.3% of the symbols. The
average number of symbols per gene in the original data-
bases varies from 1.68 (in OMIM) to 2.25 (in LocusLink);
the combined gene thesaurus has an average of 2.39 sym-
bols per gene.

Text indexing
Text documents were indexed with Collexis (Gelder-
malsen, The Netherlands) indexing software. For a given
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text, frequently occurring non-informative words are
removed and the remaining terms are stemmed (using the
LVG software which is part of the UMLS lexical tools
[40]), i.e., brought into a standard, canonical form.

Subsequently, the document is searched for biomedical
terms that occur in MeSH or in our gene thesaurus. Each
found term is mapped to a unique identification code that
denotes the preferred term, or concept, f;and is assigned a
relevance score or weight w; that equals the Term Fre-
quency TF (the number of occurrences f; of the concept ¢;
(i.e., the term or its synonyms) in the document) multi-
plied by the Inverse Document Frequency IDF (a correc-
tion factor for the number of documents N; containing ¢
in a given set of N documents; we used 10 years of
Medline) [32]. We applied a commonly-used variant of
the IDF that normalizes for the total number of docu-
ments [41]:

w; = TF xIDF = f; nglogi +1 B

o NioO
A document is then represented by an M-dimensional vec-
tor W = (w;,w,,...,w,,), where M is the number of distinct
concepts in the thesaurus, and w; = 0 if t; is not in the doc-
ument. This weight vector W will subsequently be called
the "concept fingerprint" (CFP) of the document, and is
used for subsequent processing.

Document test sets

The various processing steps related to the construction of
our test sets are summarized in Figure 3 and will be
described below. We automatically generated two sets of
abstracts containing symbols with known meaning. First,
we searched all abstracts from Medline 1990-2002 for
abbreviations, or short forms, and their corresponding
expansions, or long forms, with the abbreviation
expansion algorithm of Schwartz and Hearst [30]. For
each homonymous short form, i.e., a short form with at
least two different long forms, the gene thesaurus was
mined for genes with a symbol and name that fully
matched one of the short form/long form pairs. The
abstracts in which these pairs occurred were labeled as
containing the gene. If the long form only partially
matched the names of a particular gene, we excluded the
short form/long form pair and related abstracts from fur-
ther consideration in order to guard against a non-gene
meaning being assigned to a gene, or a gene meaning to
an incorrect other gene. The remaining pairs, which could
not be matched against the gene thesaurus, were lumped
together in a non-gene meaning of the short form, and the
corresponding abstracts were labeled accordingly. Thus, a
test set of abstracts was collected containing short forms
that represent either gene symbols or other meanings,
excluding abstracts with uncertain meanings (short form/
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Short-form/long-form set OMIM set
(350,051 abstr, 961 symbols) (23,679 abstr, 1,376 symbols)
\4
Merged set, = 6 abstr/gene sense OMIM annotations
(57,399 abstr, 690 symbols, 974 gene senses) (974 genes)
V \4
Test set Reference set, 5 abstr/gene sense
(52,529 abstr) (4,870 abstr)
Indexing with the combined gene thesaurus
V V \4
Test fingerprints for 52,529 Reference fingerprints
abstr with ambiguous symbols for 974 gene senses
\b Y
Gene symbol

disambiguation algorithm

Figure 3

Steps involved in the construction of test and reference fingerprints. Two sets of abstracts containing symbols with
known gene or non-gene meaning were constructed. One set consisted of abstracts with short-form/long-form combinations
culled from Medline, the other set consisted of abstracts that were mentioned in OMIM annotations of genes. The two sets
were merged by selecting symbols that occurred in both sets and had at least six abstracts for each of their gene senses. The
OMIM annotations for the genes in the merged set were stored separately. A reference set was generated by randomly select-
ing five abstracts per gene sense from the merged set; the remaining abstracts were used for testing. All abstracts in the test
and reference set as well as the OMIM annotations were indexed using the combined gene thesaurus, and the resulting "con-
cept fingerprints" were used for reference fingerprint construction and testing of the disambiguation algorithm.

long form test set, 350,501 abstracts for 961 homony-  proposed by [17], although they did not match against a
mous gene symbols) [14]. This approach to automatically ~ thesaurus to focus on gene symbols and non-gene
create a sense-tagged set of abbreviations was originally =~ meanings.
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Second, we extracted from our gene thesaurus all homon-
ymous genes that had an OMIM identification code and a
symbol that referred to multiple genes in the thesaurus or
to a long form with non-gene meaning. For each gene, we
culled the corresponding annotation from the OMIM
database, including the PubMed citations that were given
as a reference for the gene. It should be noted that if the
Medline abstract contained a synonym of the homony-
mous gene symbol, we replaced the synonym with the
homonymous symbol. All these abstracts together formed
a second test set (OMIM test set, 23,678 abstracts for
1,376 gene symbols). The short form/long form set is
much larger than the OMIM set because it contains many
abstracts with symbols that have non-gene meanings.

In order to compare the performance of the disambigua-
tion algorithm when using either annotations or abstracts
as the reference descriptions (see below), symbols were
selected that occurred in both our test sets and had at least
six abstracts for each of its gene senses. A total of 690 sym-
bols qualified, having 974 different gene meanings; 528
of the symbols had at least one non-gene meaning. For
each gene sense of a symbol, five randomly chosen
abstracts were set aside for generating a reference CFP; the
remaining abstracts, with a maximum of 100 abstracts per
sense, were used for testing. The test set contained 52,529
abstracts, 25,809 with symbols having a gene meaning
and 26,720 with symbols having a non-gene meaning.

Homonym disambiguation

The disambiguation algorithm compares the textual con-
text of a homonym in a document with a reference
description of each of the genes that the homonym may
possibly denote. For the textual context, we took the CFP
of the abstract (including title and MeSH terms) in which
the homonym occurs, setting the weight of the homonym
itself to 0. For the reference descriptions, two approaches
were studied. In one approach, the CFP of the OMIM
annotation of a gene served as the reference. In the other
approach, an averaged reference CFP was derived from the
CFPs of abstracts (up to five) with a known sense of the
homonym, by summing the term frequencies of the indi-
vidual abstracts and computing the weights. In either case,
the context CFP W, and the reference CFP W, were then
compared by computing a normalized cosine-vector score
[32]:

M
Cos(wc'wr ) = Z(wciwri )/| We er |/

i=1
where w,; and w,; are the relevance scores of concept ¢; in
the context CFP and the reference CFP, respectively, and
|W,| and |W,| are the lengths of these CFPs. The cosine
score varies between 1 (identical CFPs) and 0 (no overlap
between CFPs). For each gene sense of the homonym, a
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score was determined and the sense with the highest score
was assigned to the term, unless the maximum score was
lower than a homonym-dependent threshold value, in
which case the homonym was taken to have a non-gene
meaning. Error rates were determined with a leave-one-
out procedure: for each of the test abstracts of a particular
gene symbol (containing both gene and non-gene mean-
ings), scores between the context CFP and each of the ref-
erence CFPs for that symbol were determined and the
highest score selected. (If there was only one reference
CFP for the symbol, there was obviously only one score
per abstract, which was selected.). From this set of scores,
one score was left out and the threshold that minimized
the error rate on the remaining scores was determined.
The symbol in the abstract associated with the removed
score was then classified as having a gene or non-gene
meaning, depending on whether the removed score was
higher or lower than this threshold value. This was done
for each score in turn, yielding an overall error rate for the
ambiguous symbol. The threshold that minimized the
error rate for the whole sample of scores was then taken as
the final homonym-dependent threshold.
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