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Abstract

Constraining the many biological parameters that govern cortical dynamics is computation-

ally and conceptually difficult because of the curse of dimensionality. This paper addresses

these challenges by proposing (1) a novel data-informed mean-field (MF) approach to effi-

ciently map the parameter space of network models; and (2) an organizing principle for

studying parameter space that enables the extraction biologically meaningful relations from

this high-dimensional data. We illustrate these ideas using a large-scale network model of

the Macaque primary visual cortex. Of the 10-20 model parameters, we identify 7 that are

especially poorly constrained, and use the MF algorithm in (1) to discover the firing rate con-

tours in this 7D parameter cube. Defining a “biologically plausible” region to consist of

parameters that exhibit spontaneous Excitatory and Inhibitory firing rates compatible with

experimental values, we find that this region is a slightly thickened codimension-1 submani-

fold. An implication of this finding is that while plausible regimes depend sensitively on

parameters, they are also robust and flexible provided one compensates appropriately

when parameters are varied. Our organizing principle for conceptualizing parameter depen-

dence is to focus on certain 2D parameter planes that govern lateral inhibition: Intersecting

these planes with the biologically plausible region leads to very simple geometric structures

which, when suitably scaled, have a universal character independent of where the intersec-

tions are taken. In addition to elucidating the geometry of the plausible region, this invari-

ance suggests useful approximate scaling relations. Our study offers, for the first time, a

complete characterization of the set of all biologically plausible parameters for a detailed

cortical model, which has been out of reach due to the high dimensionality of parameter

space.

Author summary

Cortical circuits are characterized by a high degree of structural and dynamical complex-

ity, and this biological reality is reflected in the large number of parameters in even semi-

realistic cortical models. A fundamental task of computational neuroscience is to under-

stand how these parameters govern network dynamics. While some neuronal parameters
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can be measured in vivo, many remain poorly constrained due to limitations of available

experimental techniques. Computational models can address this problem by relating dif-

ficult-to-measure parameters to observable quantities, but to do so one must overcome

two challenges: (1) the computational expense of mapping a high dimensional parameter

space, and (2) extracting biological insights from such a map. This study aims to address

these challenges in the following ways: First, we propose a parsimonious data-informed

algorithm that efficiently predicts spontaneous cortical activity, thereby speeding up the

mapping of parameter landscapes. Second, we show that lateral inhibition provides a basis

for conceptualizing cortical parameter space, enabling us to begin to make sense of its geo-

metric structure and attendant scaling relations. We illustrate our approach on a biologi-

cally realistic model of the monkey primary visual cortex.

Introduction

From spatially and temporally homogeneous but sensitive resting states to highly structured

evoked responses, neuronal circuits in the cerebral cortex exhibit an extremely broad range of

dynamics in support of information processing in the brain [1–8]. Accompanying this dynam-

ical flexibility is a high degree of morphological and physiological complexity [9–15]. As a

result, any effort to characterize cortical circuits necessarily involves a large number of biologi-

cal parameters [16–21]. Understanding the range of parameters compatible with biologically

plausible cortical dynamics and how individual parameters impact neural computation are, in

our view, basic questions in computational neuroscience.

Due to limitations of available experimental techniques, many neuronal and network

parameters are poorly constrained. Biologically realistic network models can bridge this gap

by quantifying the dependence of observable quantities like firing rates on parameters, thereby

constraining their values. However, two challenges stand in the way of efforts to map the

parameter landscape of detailed cortical networks. First, a direct approach, i.e., parameter

sweeps using network models, may be extremely costly or even infeasible. This is because even

a single layer of a small piece of cortex consists of tens of thousands of neurons, and the

computational cost grows rapidly with the size of the network. This cost is compounded by the

need for repeated model runs during parameter sweeps, and by the “curse of dimensionality,”

i.e., the exponential growth of parameter space volume with the number of parameters. Sec-

ond, even after conducting parameter sweeps, one is still faced with the daunting task of mak-

ing sense of the high dimensional data to identify interpretable, biologically meaningful
features.

This paper addresses the twin challenges of computational cost and interpretable cortical

parameter mapping. Starting from a biologically realistic network model, we define as “viable”

those parameters that yield predictions compatible with empirically observed firing rates, and

seek to identify the viable region. To mitigate the computational cost of parameter space scans,

we propose a parsimonious, data-informed mean-field (MF) algorithm. MF methods replace

rapidly-fluctuating quantities like membrane potentials with their mean values; they have been

used a great deal in neuroscience [22–38]. MF models of neuronal networks are all based on

the relevant biology to different degrees, but most rely on idealized voltage-rate relations (so-

called “gain” or “activation” function) to make the system amenable to analysis (see, e.g., [39,

40] and the Discussion for more details). In contrast, our MF equations are derived from a bio-

logically realistic network model: Instead of making assumptions on gain functions, our MF

equations follow closely the anatomical and physiological information incorporated in the
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network, hence reflecting its key features. To stress this tight connection to a realistic network

model, we have described our method as a “data-informed MF approach”. As we will show, the

algorithm we propose is capable of accurately predicting network firing rates at a small fraction

of the expense of direct network simulations.

We illustrate the power of this approach and how one might conceptualize the mapping it

produces using a biologically realistic model of Macaque primary visual cortex (V1). Focusing

on spontaneous activity, our main result is that the viable region is a thin neighborhood of a

codimension-1 manifold in parameter space. (A codimension-1 manifold is an (n − 1)-dimen-

sional surface in an n-dimensional parameter space.) Being approximately codimension-1

implies that the viable region is simultaneously sensitive and flexible to parameter changes: sen-

sitive in that a small perturbation can easily move a point off the manifold; flexible in the sense

that it allows for a great variety of parameter combinations, consistent with the wide variability

observed in biology. Our analysis of parameter dependence is based on the following organizing

principle: By restricting attention to certain 2D planes associated with lateral inhibition, we dis-

cover geometric structures that are remarkably similar across all such “inhibition planes”. Our

findings suggest a number of simple approximate scaling relations among neuronal parameters.

The Macaque V1 network model we use for illustration involves ≳ 4 × 104 neurons in

Layer 4Cα of V1, and has been carefully benchmarked to a large number of known features of

V1 response [41]. In [41], the authors focused on a small parameter region which they had rea-

son to believe to be viable. The present study produces a much more comprehensive character-

ization of the set of all viable parameters defined in terms of spontaneous activity. The reason

we have focused on spontaneous activity is that it is a relatively simple, homogeneous equilib-

rium steady state, and understanding it is necessary before tackling more complex, evoked

responses. However, as all cortical activity depends on a delicate balance between excitation

and inhibition, even background dynamics can be rather nontrivial.

Parameter search and tuning are problems common to all areas of computational biology.

By significantly reducing the cost of mapping parameter landscapes, we hope the computa-

tional strategy proposed in the present paper will enable computational neuroscientists to con-

struct high-fidelity cortical models, and to use these models to shed light on spontaneous and

evoked dynamics in neural circuitry. Moreover, reduced models of the type proposed here

may be useful as a basis for parameter and state estimation on the basis of experimental data.

Results

As explained in the Introduction, this work (1) proposes a novel data-informed mean-field

approach to facilitate efficient and systematic parameter analysis of neuronal networks, which

we validate using a previously constructed model of the monkey visual cortex; and (2) we

develop ways to conceptualize and navigate the complexities of high-dimensional parameter

spaces of neuronal models by organizing around certain relationships among parameters,

notably those governing lateral inhibition.

Sect. 1 describes the network model of the visual cortex that will be used both to challenge

the MF algorithm and to assess its efficacy, together with a brief introduction to the algorithm

itself; details are given in Methods. Sect. 2 uses the algorithm to explore the parameter land-

scape of the model. Qualitative analysis is offered along the way leading to a conceptual under-

standing of parameter dependence.

1 Network model and parameter landscape

We use as starting point the large-scale network model in [41]. This is a mechanistic model of

an input layer to the primary visual cortex (V1) of the Macaque monkey, which has vision very
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similar to that of humans [42–46] Among existing neuronal network models, [41] is at the

very high end on the scale of details and biological realism: It incorporates a good amount of

known neuroanatomy in its network architecture, capturing the dynamics of individual neu-

rons as well as their dynamical interaction.

In [41], the authors located a small set of potentially viable parameters, which they refined

by benchmarking the resulting regimes against multiple sets of experimental data. No claims

were made on the uniqueness or optimality of the parameters considered. Indeed, because of

the intensity of the work involved in locating viable parameters, little attempt was made to

consider parameters farther from the ones used. This offers a natural testing ground for our

novel approach to parameter determination: We borrow certain aspects of the model from

[41], including network architecture, equations of neuronal dynamics and parameter struc-

ture, but instead of using information on the parameters found, we will search for viable

parameter regions using the techniques developed here.

For a set of parameters to be viable, it must produce firing rates similar to those of the real

cortex, including background firing, the spontaneous spiking produced when cortex is unsti-

mulated. Background activity provides a natural way to constrain parameters: It is an especially

simple state of equilibrium, one in which spiking is statistically homogeneous in space and

time and involves fewer features of cortical dynamics. For example, synaptic depression and

facilitation are not known to play essential roles in spontaneous activity. A goal in this paper

will be to systematically identify all regions in parameter space with acceptable background fir-

ing rates.

1.1 Network model of an input layer to primate visual cortex

The network model is that of a small patch of Macaque V1, layer 4Cα (hereafter “L4”), the

input layer of the Magnocellular pathway. This layer receives input from the lateral geniculate

nucleus (LGN) and feedback from layer 6 (L6) of V1. Model details are as in [41], except for

omission of features not involved in background activity. We provide below a model descrip-

tion that is sufficient for understanding—at least on a conceptual level – the material in

Results. Precise numerical values of the various quantities are given in S1 Text. For more

detailed discussions of the neurobiology behind the material in this subsection, we refer inter-

ested readers to [41] and references therein.

Network architecture. Of primary interest to us is L4, which is modeled as a 2D network

of point neurons. Locations within this layer are identified with locations in the retina via neu-

ronal projections, and distances on the retina are measured in degrees. Cells are organized

into hypercolumns of about 4000 neurons each, covering a 0.25˚ × 0.25˚ area. (In this paper,

“cells” and “neurons” always refer to nerve cells in the primary visual cortex.) The neurons are

assumed to be of two kinds: 75−80% are Excitatory (E), and the rest are Inhibitory (I). The E-

population is evenly placed in a lattice on the cortical surface; the same is true for I-cells. Pro-

jections to E- and I-cells are assumed to be isotropic, with probabilities of connection

described by truncated Gaussians. E-neurons (which are assumed to be spiny stellate cells)

have longer axons, about twice that of I-neurons (which are assumed to be basket cells). E-to-E

coupling is relatively sparse, at about 15% at the peak, while E-to-I, I-to-E and I-to-I coupling

is denser, at about 60%. Connections are drawn randomly subject to the probabilities above.

On average, each E-neuron receives synaptic input from slightly over 200 E-cells and about

100 I-cells, while each I-cell receives input from *800 E-cells and 100 I-cells. Exact numbers

are given in S1 Text.

Cells in L4 also receive synaptic input from two external sources, “external” in the sense

that they originate from outside of this layer. One source is LGN: Each L4 cell, E or I, is
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assumed to be connected to 4 LGN cells on average; each LGN cell is assumed to provide 20

spikes per sec, a typical firing rate in background. These spikes are assumed to be delivered to

L4 cells in a Poissonian manner, independently from cell to cell. L6 provides another source of

synaptic input: We assume each E-cell in L4 receives input from 50 E-cells from L6, consistent

with known neurobiology, and that each L6 E-cell fires on average 5 spikes per sec in back-

ground. For I-cells, the number of presynaptic L6 cells is unknown; this is one of the free

parameters we will explore. Spike times from L6 are also assumed to be Poissonian and inde-

pendent from cell to cell, a slight simplification of [41]. All inputs from external sources are

excitatory. Finally, we lump together all top-down modulatory influences on L4 not modeled

into a quantity we call “ambient”. Again, see S1 Text for all pertinent details.

Equations of neuronal dynamics. We model only the dynamics of neurons in L4. Each

neuron is modeled as a conductance-based point neuron whose membrane potential v evolves

according to the leaky integrate-and-fire (LIF) equation [47, 48]

dv
dt
¼ � gLðv � VrestÞ � gEðtÞðv � VEÞ � gIðtÞðv � VIÞ : ð1Þ

Following [41], we nondimensionalize v, with resting potential Vrest = 0 and spiking thresh-

old Vth = 1. In Eq (1), v is driven toward Vth by the Excitatory current gE(t)(v − VE), and away

from it by the leak term gLv and the Inhibitory current gI(t)(v − VI). When v reaches 1, a spike

is fired, and v is immediately reset to 0, where it is held for a refractory period of 2 ms. The

membrane leakage times 1/gL = 20 ms for E-neurons and 16.7 ms for I-neurons, as well as the

reversal potentials VE = 14/3 and VI = −2/3, are standard [49].

The quantities gE(t) and gI(t), the Excitatory and Inhibitory conductances, are defined as

follows. First,

gIðtÞ ¼ SQI
X

tIspike

GIðt � tIspikeÞ : ð2Þ

Here, the neuron whose dynamics are described in Eq (1) is assumed to be of type Q, Q = E
or I, and the constant SQI is the synaptic coupling weight from I-neurons to neurons of type Q.

The summation is taken over tIspike, times at which a spike from a presynaptic I-cell from within

layer 4Cα is received by the neuron in question. Upon the arrival of each spike, gI(t) is elevated

for 5–10 ms and GI(�) describes the waveform in the IPSC. Second, the Excitatory conductance

gE(t) is the sum of 4 terms, the first three of which are analogs of the right side of Eq (2), with

an EPSC lasting 3–5 ms: they represent synaptic input from E-cells from within L4, from LGN

and from L6. The 4th term is from ambient.

This completes the main features of the network model. Details are given in S1 Text.

1.2 Parameter space to be explored

Network dynamics can be very sensitive—or relatively robust—to parameter changes, and

dynamic regimes can change differently depending on which parameter (or combination of

parameters) is varied. To demonstrate the multiscale and anisotropic nature of the parameter

landscape, we study the effects of parameter perturbations on L4 firing rates, using as reference

point a set of biologically realistic parameters [41]. Specifically, we denote L4 E/I-firing rates at

the reference point by ðf 0
E ; f

0
I Þ, and fix a region F around ðf 0

E ; f
0
I Þ consisting of firing rates (fE,

fI) we are willing to tolerate. We then vary network parameters one at a time, changing it in

small steps and computing network firing rates ðf 0E; f
0
I Þ until they reach the boundary of F ,

thereby determining the minimum perturbations needed to force L4 firing rates out of F .
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Table 1 shows the results. We categorize the parameters according to the aspect of network

dynamics they govern. As can be seen, L4 firing rates show varying degrees of sensitivity to

perturbations in different parameter groups. They are most sensitive to perturbations to syn-

aptic coupling weights within L4, where deviations as small as 1% can push the firing rates out

of F . This likely reflects the delicate balance between excitation and inhibition, as well as the

fact that the bulk of the synaptic input to a L4 neuron comes from lateral interaction, facts con-

sistent with earlier findings [41]. With respect to parameters governing inputs from external

sources, we find perturbing LGN parameters to have the most impact, followed by amb and

L6, consistent with their net influence on gE,I in background. We also note that the parameters

governing afferents to I cells are more tolerant of perturbations than those for E cells.

These observations suggest that network dynamics depend in a complex and subtle way on

parameters; they underscore the challenges one faces when attempting to tune parameters “by

hand.” We now identify the parameters in the network model description in Sect. 1.1 to be

treated as free parameters in the study to follow.

Free parameters. We consider a parameter “free” if it is hard to measure (or has not yet

been measured) directly in the laboratory, or when data offer conflicting guidance. When

available data are sufficient to confidently associate a value to a parameter, we consider it fixed.

Following this principle, we designate the following 6 synaptic coupling weights governing

recurrent interactions within L4 and its thalamic inputs as free parameters:

SEE; SEI; SIE; SII; SElgn; SIlgn :

As shown in Table 1, these are also the parameters to which network response rates are the

most sensitive. As for SEL6 and SIL6, which govern synaptic coupling from L6 to E- and I-neu-

rons in L4, we assume

SEL6 ¼
1

3
� SEE; SIL6 ¼

1

3
� SIE

Table 1. Network parameters and response. Using the parameters from [41] as a reference point, we set ðf 0
E ; f 0

I Þ ¼ ð3:85; 13:32ÞHz and F ¼
fE; fIð Þj fE=f 0

E 2
2

3;
4

3= Þ;
fI=fE 2 3; 4:5ð Þg=ð

�
and vary one parameter at a time. We then compute the minimum perturbation needed to force the network firing rates out of

F . Values such as FEP, where P 2 {lgn, L6, amb}, represent the total number of spikes per second received by an E-cell in L4 from source P. For example, in the reference

set, each L4 cell has 4 afferent LGN cells on average, the mean firing rate of each is assumed to be 20 spikes/s, so FElgn = 80 Hz. Column 5 gives the lower and upper bounds

of single-parameter variation (rounded to the nearest 1%) from the reference point that yield firing rates within F .

Group Parameter Meaning Value Bounds

within L4 SEE E-to-E synaptic weight 0.024 (-3%, 1%)

SII I-to-I synaptic weight 0.120 (-4%, 1%)

SEI I-to-E synaptic weight 0.0362 (-1%, 3%)

SIE E-to-I synaptic weight 0.0176 (-1%, 3%)

LGN to L4 SElgn lgn-to-E synaptic weight 0.048 (-5%, 3%)

SIlgn lgn-to-I synaptic weight 0.096 (-6%, 9%)

FFlgn total # lgn spikes/s to E 80 Hz (-7%, 4%)

FIlgn total # lgn spikes/s to I 80 Hz (-9%, 11%)

L6 to L4 SEL6 L6-to-E synaptic weight 0.008 (-16%, 11%)

SIL6 L6-to-I synaptic weight 0.0058 (-19%, 30%)

FEL6 total # L6 spikes/s to E 250 Hz (-16%, 10%)

FIL6 total # L6 spikes/s to I 750 Hz (-16%, 29%)

amb to L4 Samb ambient-to-E/I synaptic wt. 0.01 (-8%, 6%)

FEamb rate of ambient to E 500 Hz (-7%, 5%)

FIamb rate of ambient to I 500 Hz (-10%, 27%)

https://doi.org/10.1371/journal.pcbi.1009718.t001
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following [50] (see also [41]). This means that in our study, these quantities will vary, but they

are indexed to SEE and SIE in a fixed manner and we will not regard them as free parameters.

A second category of parameters govern external sources. Here we regard FElgn, FIlgn and

FEL6 as fixed to the values given in Table 1. L6 firing rates in background have been measured,

but we know of no estimates on the number of presynaptic L6 cells to I-cells, so we treat FIL6

(which combines the effects of both) as a free parameter. The relation between SIL6 and SIE

assumed above is in fact unknown from experiments. On the other hand, we are assuming that

errors in the estimate of SIL6 can be absorbed into FIL6, which we vary. As for “ambient”, these

inputs are thought to be significant, though not enough to drive spikes on their own. Since so

little is known about this category of inputs, we fix the values of Samb, FEamb, and FIamb to those

given in Table 1, having checked that they meet the conditions above.

As discussed earlier, we are interested in L4 firing rates under background conditions.

Denoting E- and I- firing rates by fE and fI respectively, the aim of our study can be summa-

rized as follows:

Aim: To produce maps of fE and fI as functions of the 7 parameters

SEE; SEI; SIE; SII; SElgn; SIlgn; and FIL6 ; ð3Þ

to identify biologically relevant regions, and to provide a conceptual understanding of the results.

1.3 A brief introduction to our proposed MF approach

The approach we take is a MF computation of firing rates augmented by synthetic voltage

data, a scheme we will refer to as “MF+v”. To motivate the “+v” part of the scheme, we first

write down the MF equations obtained from Eq (1) by balancing mean membrane currents.

These MF equations will turn out to be incomplete. We discuss briefly how to secure the miss-

ing information; details are given in Methods.

MF equations. Eq (1) reflects instantaneous current balance across the cell membrane of

a L4 neuron. Assuming that this neuron’s firing rate coincides with that of the L4 E/I-popula-

tion to which it belongs and neglecting (for now) refractory periods, we obtain a general rela-

tion between firing rates and mean currents by integrating Eq (1). We will refer to the

equations below as our “MF equations”. They have the general form

fE ¼ ½4E ! E� þ ½4I ! E� þ contributions from LGN; L6; amb and leak ; ð4aÞ

fI ¼ ½4E ! I� þ ½4I ! I� þ contributions from LGN; L6; amb and leak ; ð4bÞ

where [4E! E] represents the integral of the current contribution from E-cells in L4 to E-cells

in L4, [4I! E] represents the corresponding quantity from I-cells in L4 to E-cells in L4, and

so on. The contribution from lateral, intralaminar interactions can be further decomposed

into, e.g.,

½4E ! E� ¼ NEE � fE � SEE � ðVE � �vEÞ;

½4I ! E� ¼ NEI � fI � SEI � ðVE � �vEÞ :

Here NEE and NEI are the mean numbers of presynaptic E- and I-cells from within L4 to an

E-neuron, fE, fI, SEE and SEI are as defined earlier, and �vE is the mean membrane potential v
among E-neurons in L4. Other terms in Eq (4a) and in Eq (4b) are defined similarly; detailed

derivation of the MF equations is given in Methods.

Network connectivity and parameters that are not considered “free parameters” are

assumed to be fixed throughout. If additionally we fix a set of the 7 free parameters in (3), then

Eq (4) is linear in fE and fI, and are easily solved—except for two undetermined quantities, �vE
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and �vI . For network neurons, �vE and �vI are emergent quantities that cannot be easily estimated

from the equations of evolution or parameters chosen.

Estimating mean voltages. We explain here the ideas that lead to the algorithm we use

for determining �vE and �vI , leaving technical details to Methods.

Our first observation is that the values of fE and fI computed from Eq (4) depend delicately

on �vE and �vI ; they can vary wildly with small changes in �vE and �vI . This ruled out the use of

(guessed) approximate values, and even called into question the usefulness of the MF equa-

tions. But as we demonstrate in Methods, if one collects mean voltages �vE and �vI from network

simulations and plug them into Eq (4) to solve for fE and fI, then one obtains results that agree

very well with actual network firing rates. This suggests Eq (4) can be useful, provided we cor-

rectly estimate �vE and �vI .
As it defeats the purpose of an MF approach to use network simulations to determine �vE

and �vI , we sought to use a pair of LIF-neurons, one E and one I, to provide this information.

To do that, we must create an environment for this pair of neurons that is similar to that

within the network, incorporating the biological features with the LIF neurons. For example,

one must use the same parameters and give them the same external drives, i.e., LGN, L6, and

ambient. But a good fraction of the synaptic input to neurons in L4 are generated from lateral

interactions; to simulate that, we would have to first learn what fE and fI are. The problem has

now come full circle: what we need are self-consistent values of fE and fI for the LIF-neurons, so

that their input and output firing rates coincide.

These and other ideas to be explained (e.g., efficiency and stability) go into the algorithm

proposed. In a nutshell, we use the aid of a pair of LIF-neurons to help tie down �vE and �vI , and

use the MF equations to compute fE and fI. This mean-field algorithm aided by voltage closures

(MF+v) is discussed in detail in Methods. We present next firing rate plots generated using

this algorithm.

2 Dependence of firing rates on system parameters

Even with a fast algorithm, so that many data points can be computed, discovery and represen-

tation of functions depending on more than 3 or 4 variables can be a challenge, not to mention

conceptualization of the results. In Sects. 2.1–2.3, we propose to organize the 7D parameter

space described in Sect. 1.2 in ways that take advantage of insights on how the parameters

interact: Instead of attempting to compute 6D level surfaces for fE and fI embedded in the 7D

parameter space, we identify a biologically plausible region of parameters called the “viable

region”, and propose to study parameter structures by slicing the 7D space with certain 2D

planes called “inhibition planes”. We will show that intersections of the viable region and inhi-

bition planes—called “good areas”—possess certain canonical geometric structures, and that

these structures offer a biologically interpretable landscape of parameter dependence. The

three terms, viable regions, inhibition planes and good areas, the precise definitions of which

are given in Sect. 2.1, are objects of interest throughout this section. In Sect. 2.4 we show com-

parison of firing rate computations from our algorithm and from actual network simulations.

2.1 Canonical structures in inhibition planes

We have found it revealing to slice the parameter space using 2D planes defined by varying the

parameters governing lateral inhibition, SIE and SEI, with all other parameters fixed. As we will

show, these planes contain very simple and stable geometric structures around which we will

organize our thinking about parameter space. Fig 1A shows one such 2D slice. We computed

raw contour curves for fE and fI on a 480 × 480 grid using the MF+v algorithm, with red curves

for fE and blue for fI.
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A striking feature of Fig 1A is that the level curves are roughly hyperbolic in shape. We

argue that this is necessarily so. First, note that in Fig 1A, we used SIE/SII as x-axis and SEI/SEE

as y-axis. The reason for this choice is that SIE/SII can be viewed as the degree of cortical excita-

tion of I-cells, and SEI/SEE the suppressive power of I-cells from the perspective of E-cells. The

product

SIE≔
SEI

SEE
�
SIE

SII

can therefore be seen as a suppression index for E-cells: the larger this quantity, the smaller fE.

This suggests that the contours for fE should be of the form xy = constant, i.e., they should have

the shape of hyperbolas. As E and I firing rates in local populations are known to covary, these

approximately hyperbolic shapes are passed to contours of fI.
A second feature of Fig 1A is that fI contours are less steep than those of fE at lower firing

rates. That I-firing covaries with E-firing is due in part to the fact that I-cells receive a large

portion of their excitatory input from E-cells through lateral interaction, at least when E-firing

is robust. When fE is low, fI is lowered as well as I-cells lose their supply of excitation from E-

cells, but the drop is less severe as I-cells also receive excitatory input from external sources.

Fig 1. Canonical structures in an inhibition plane. A. Firing rates contours computed from firing rate maps on a 480×480 grid, showing fE = 1 − 6 Hz

(red) and fI = 6 − 24 Hz (blue). The good area is indicated by the black dash lines (fE 2 (3, 5) Hz and fI/fE 2 (3, 4.25)); the reference point is indicated by

the purple star (?). The MF+v method becomes unstable and fails when the inhibitory index SIE is too low (the gray region). B. Firing rate maps of fE
(upper) and fI (lower), in which the good areas are indicated by white bands surrounded by black dash lines. The other five free parameters are as in

Table 1: SEE = 0.024, SII = 0.12, SElgn = 2 × SEE, SIlgn = 2 × SElgn, and FIL6 = 3 × FEL6.

https://doi.org/10.1371/journal.pcbi.1009718.g001
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This causes fI contours to bend upwards relative to the fE-hyperbolas at lower firing rates, a

fact quite evident from Fig 1.

We now define the viable region, the biologically plausible region in our 7D parameter

space, consisting of parameters that produce firing rates we deem close enough to experimen-

tally observed values. For definiteness, we take these to be [51]

fE 2 ð3; 5Þ Hz and fI=fE 2 ð3; 4:25Þ;

and refer to the intersection of the viable region with the 2D slice depicted in Fig 1A as the

“good area”. Here, the good area is the crescent-shaped set bordered by dashed black lines. For

the parameters in Fig 1, it is bordered by 4 curves, two corresponding to the fE = 3 and 5 Hz

contours and the other two are where fI/fE = 3 and 4.25. That such an area should exist as a nar-

row strip of finite length, with unions of segments of hyperbolas as boundaries, is a conse-

quence of the fact that fE and fI-contours are roughly but not exactly parallel. Fig 1B shows the

good area (white) on firing rate maps for fE and fI.
Hereafter, we will refer to 2D planes parametrized by SIE/SII and SEI/SEE, with all parameters

other than SIE and SEI fixed, as inhibition planes, and will proceed to investigate the entire

parameter space through these 2D slices and the good areas they contain. Though far from

guaranteed, our aim is to show that the structures in Fig 1A persist, and to describe how they

vary with the other 5 parameters.

Fig 1 is for a particular set of parameters. We presented it in high resolution to show our

computational capacity and to familiarize the reader with the picture. As we vary parameters

in the rest of this paper, we will present only heat maps for fE for each set of parameters stud-

ied. The good area, if there is one, will be marked in white, in analogy with the top panel of Fig

1B.

Finally, we remark that the MF+v algorithm does not always return reasonable estimates of

L4 firing rates. MF+v tends to fail especially for a low suppression index (gray area in Fig 1A),

where the network simulation also exhibits explosive, biologically unrealistic dynamics. This

issue is discussed in Methods and S1 Text.

2.2 Dependence on external drives

There are two main sources of external input, LGN and L6 (while ambient input is assumed

fixed). In both cases, it is their effect on E- versus I-cells in L4, and the variation thereof as

LGN and L6 inputs are varied, that is of interest here.

LGN-to-E versus LGN-to-I. Results from [50] suggest that the sizes of EPSPs from LGN

are * 2× those from L4. Based on this, we consider the range SElgn/SEE 2 (1.5, 3.0) in our

study. Also, data show that LGN produces somewhat larger EPSCs in I-cells than in E-cells

[52], though the relative coupling weights to E and I-cells are not known. Here, we index SIlgn

to SElgn, and consider SIlgn/SElgn 2 (1.5, 3.0).

Fig 2 shows a 3 × 4 matrix of 2D panels, each one of which is an inhibition plane (see Fig 1).

This is the language we will use here and in subsequent figures: we will refer to the rows and

columns of the matrix of panels, while x and y are reserved for the axes for each smaller panel.

We consider first the changes as we go from left to right in each row of the matrix in Fig 2.

With SIlgn/Elgn staying fixed, increasing SElgn/SEE not only increases LGN’s input to E, but also

increases LGN to I by the same proportion. It is evident that the rate maps in the subpanels are

all qualitatively similar, but with gradual changes in the location and the shape of the good

area. Specifically, as LGN input increases, (i) the center of mass of the good area (black cross)

shifts upward and to the left following the hyperbola, and (ii) the white region becomes wider.
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To understand these trends, it is important to keep in mind that the good area is character-

ized by having firing rates within a fairly narrow range. As LGN input to E increases, the

amount of suppression must be increased commensurably to maintain E-firing rate. Within

an inhibition plane, this means an increase in SEI, explaining the upward move of black crosses

as we go from left to right. Likewise, the amount of E-to-I input must be decreased by a suit-

able amount to maintain I-firing at the same level, explaining the leftward move of the black

crosses and completing the argument for (i). As for (ii), recall that the SIE measures the degree

of suppression of E-cells from within L4 (and L6, the synaptic weights of which are indexed to

those in L4). Increased LGN input causes E-cells to be less suppressed than their SIE index

would indicate. This has the effect of spreading the fE contours farther apart, stretching out the

picture in a northeasterly direction perpendicular to the hyperbolas and widening the good

area.

Going down the columns of the matrix, we observe a compression of the contours along

the same northeasterly axis and a leftward shift of the black crosses. Recall that the only source

of excitation of I-cells counted in the SIE-index is from L4 (hence also L6). When LGN to E is

fixed and LGN to I is increased, the additional external drive to I produces a larger amount of

suppression than the SIE-index would indicate, hence the compression. It also reduces the

Fig 2. Dependence of firing rate and good area on LGN synaptic strengths. A 3 × 4 matrix of panels is shown: each row corresponds to a fixed value

of SIlgn/Elgn and each column a fixed value of SElgn/SEE. Each panel shows a heat map for fE on an inhibition plane (color bar on the right); x and y-axes

are as in Fig 1. Good areas are in white, and their centers of mass marked by black crosses. The picture for SElgn/SEE = 2 and SIlgn/Elgn = 2 (row 2,

column 2) corresponds to the fE rate map in Fig 1. Other free parameters are SEE = 0.024, SII = 0.12, and FIL6 = 3 × FEL6.

https://doi.org/10.1371/journal.pcbi.1009718.g002
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amount of SIE needed to produce the same I-firing rate, hence the leftward shift of the good

area.

The changes in LGN input to E and to I shown cover nearly all of the biological range. We

did not show the row corresponding to SIlgn/S Elgn = 3 because the same trend continues and

there are no viable regions. Notice that even though we have only shown a 3 × 4 matrix of pan-

els, the trends are clear and one can easily interpolate between panels.

LGN-to-I versus L6-to-I. Next, we examine the relation between two sources of external

drive: LGN and L6. In principle, this involves a total of 8 quantities: total number of spikes and

coupling weights, from LGN and from L6, received by E and I-neurons in L4. As discussed in

Sect. 1.2, enough is known about several of these quantities for us to treat them as “fixed”, leav-

ing as free parameters the following three: SElgn, SIlgn and FIL6. Above, we focused on SIlgn/

SElgn, the impact of LGN on I relative to E. We now compare SIlgn/SElgn to FIL6/FEL6, the corre-

sponding quantity with L6 in the place of LGN.

As there is little experimental guidance with regard to the range of FIL6, we will explore a

relatively wide region of FIL6: Guided by the fact that

ð# presynaptic E to an I-cellÞ = ð# presynaptic E to an E-cellÞ � 3:5 � 4 ;

in L4 and the hypothesis that similar ratios hold for inter-laminar connections, we assume

FIL6/FEL6 2 (1.5, 6). We have broadened the interval because it is somewhat controversial

whether the effect of L6 is net-Excitatory or net-Inhibitory: the modeling work [53] on mon-

key found that it had to be at least slightly net-Excitatory, while [54] reported that it was net-

Inhibitory in mouse.

Fig 3 shows, not surprisingly, that increasing LGN and L6 inputs to I have very similar

effects: As with SIlgn/SElgn, larger FIL6/FEL6 narrows the strip corresponding to the good area

and shifts it leftwards, that is, going from left to right in the matrix of panels has a similar effect

as going from top to bottom. Interpolating, one sees, e.g., that the picture at (SIlgn/SElgn, FIL6/

FEL6) = (1.5, 4) is remarkably similar to that at (2, 1.5). In background, changing the relative

strengths of LGN to I vs to E has a larger effect than the corresponding changes in L6, because

LGN input is a larger component of the Excitatory input than L6. This relation may not hold

under drive, however, where L6 response is known to increase significantly.

2.3 Scaling with SEE and SII

We have found SEE and SII to be the most “basic” of the parameters, and it has been productive

indexing other parameters to them. In Fig 4, we vary these two parameters in the matrix rows

and columns, and examine changes in the inhibition planes.

We assume SEE 2 (0.015, 0.03). This follows from the conventional wisdom [41, 50] that

when an E-cell is stimulated in vitro, it takes 10–50 consecutive spikes in relatively quick suc-

cession to produce a spike. Numerical simulations of a biologically realistic V1 model sug-

gested SEE values lie well within the range above [55]. As for SII, there is virtually no direct

information other than some experimental evidence to the effect that EPSPs for I-cells are

roughly comparable in size to those for E-cells; see [56] and also S1 Text. We arrived at the

range we use as follows: With SII 2 (0.08, 0.2) and SIE/SII 2 (0.1, 0.25), we are effectively search-

ing through a range of SIE 2 (0.008, 0.05). As this interval extends quite a bit beyond the bio-

logical range for SEE, we hope to have cast a wide enough net given the roughly comparable

EPSPs for E and I-cells.

Fig 4 shows a matrix of panels with SEE and SII in these ranges and the three ratios SElgn/SEE

= 2.5, SIlgn/Elgn = 2 and FIL6/FEL6 = 3. As before, each of the smaller panels shows an inhibition
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plane. Good areas with characteristics similar to those seen in earlier figures varying from

panel to panel are clearly visible.

A closer examination reveals that (i) going along each row of the matrix (from left to right),

the center of mass of the good area (black cross) shifts upward as SEE increases, and (ii) going

down each column, the black cross shifts slightly to the left as SII increases, two phenomena we

now explain. Again, it is important to remember that firing rates are roughly constant on the

good areas.

To understand (i), consider the currents that flow into an E-cell, decomposing according to

source as follows: Let [4E], [6E], [LGN] and [amb] denote the total current into an E-cell from

E-cells in L4 and L6, from LGN and ambient, and let [I] denote the magnitude of the I-current.

As fE is determined by the difference (or gap) between the Excitatory and Inhibitory currents,

we have

Gap ¼ f½4E� þ ½6E� þ ½LGN� � ½I�g þ ½amb� :

It is an empirical fact that the quantity in curly brackets is strictly positive (recall that ambi-

ent alone does not produce spikes). An increase of x% in SEE will cause not only [4E] to

increase but also [6E] and [LGN], both of which are indexed to SEE, to increase by the same

percentage. If [I] also increases by x%, then the quantity inside curly brackets will increase by x

Fig 3. Dependence of firing rate and good area on LGN versus L6. A 3 × 4 matrix of panels is shown: each row corresponds to a fixed value of SIlgn/

SElgn and each column a fixed value of FIL6/FEL6. Smaller panels depict fE maps on inhibition planes and are as in Fig 2. The panel for FEL6/FIL6 = 3 and

SIlgn/SElgn = 2 (row 2, column 2) corresponds to the fE rate map in Fig 1. Other free parameters are SEE = 0.024, SII = 0.12, and SElgn = 2 × SEE.

https://doi.org/10.1371/journal.pcbi.1009718.g003
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% resulting in a larger current gap. To maintain E-firing rate hence current gap size, [I] must

increase by more than x%. Since I-firing rate is unchanged, this can only come about through

an increase in the ratio SEI/SEE, hence the upward movement of the black crosses.

To understand (ii), we consider currents into an I-cell, and let [� � �] have the same meanings

as before (except that they flow into an I-cell). Writing

Gap ¼ f½4E� þ ½6E� � ½I�g þ ½LGN� þ ½amb� ;

we observe empirically that the quantity inside curly brackets is slightly positive. Now we

increase SII by x% and ask how SIE should vary to maintain the current gap. Since [LGN] and

[amb] are unchanged, we argue as above that SIE must increase by < x% (note that 6E is also

indexed to SIE). This means SIE/SII has to decrease, proving (ii).

We have suggested that the inhibition plane picture we have seen many times is canonical,
or universal, in the sense that through any point in the designated 7D parameter cube, if one

takes a 2D slice as proposed, pictures qualitatively similar to those in Figs 2–4 will appear. To

confirm this hypothesis, we have computed a number of slices taken at different values of the

Fig 4. Dependence of firing rate and good area on SEE and SII. Smaller panels are as in Figs 2 and 3, with good areas (where visible) in white and black

crosses denoting their centers of mass. The picture for SEE = 0.024 and SII = 0.120 (row 2, column 3) corresponds to the fE rate map in Fig 1. Other free

parameters are SElgn = 2 × SEE, SIlgn = 2 × SElgn, and FIL6 = 3 × FEL6.

https://doi.org/10.1371/journal.pcbi.1009718.g004
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free parameters (see S1 Text), at

SEE 2 f0:021; 0:024; 0:027g; SII 2 f0:12; 0:16; 0:2g; FIL6=FEL6 2 f3:0; 4:5g :

For all 18 = 3 × 3 × 2 combinations of these parameters, we reproduce the 3 × 4 panel

matrix in Fig 2, i.e., the 4D slices of (SElgn/SEE, SIlgn/SII) × (SEI/SEE, SIE/SII), the first pair

corresponding to rows and columns of the matrix, and the second to the xy-axes of each

inhibition plane plot. All 18 plots confirm the trends observed above. Interpolating

between them, we see that the contours and geometric shapes on inhibition planes are

indeed universal, and taken together they offer a systematic, interpretable view of the 7D

parameter space.

2.4 Comparing network simulations and the MF+v algorithm

Figs 1–4 were generated using the MF+v algorithm introduced in Sect. 1.3 and discussed in

detail in Methods. Indeed, the same analysis would not be feasible using direct network simu-

lations. But how accurately does the MF+v algorithm reproduce network firing rates? To

answer that question, we randomly selected 128 sets of parameters in or near the good areas in

Figs 1–4, and compared the values of fE and fI computed from MF+v to results of direct net-

work simulations. The results are presented in Fig 5. They show that in almost all cases, MF+v

overestimated network firing rates by a little, with < 20% error for * 80% of the parameters

tested. In view of the natural variability of neuronal parameters, both within a single individual

under different conditions and across a population, we view of this level of accuracy as suffi-

cient for all practical purposes. Most of the larger errors are associated with network E-firing

rates that are lower than empirically observed (at about 2 spikes/sec).

Fig 5. Comparison of firing rates computed using the MF+v algorithm to those from direct network simulations. The scatter plots show results for

128 sets of parameters randomly chosen in or near the good areas in Figs 1–4. A. Comparison of fE. B. Comparison of fI. Solid lines: y = x. Dashed lines:

y = 0.8x. A majority of data points fall in the range of 20% accuracy.

https://doi.org/10.1371/journal.pcbi.1009718.g005

PLOS COMPUTATIONAL BIOLOGY A data-informed mean-field approach to mapping of cortical parameter landscapes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009718 December 23, 2021 15 / 30

https://doi.org/10.1371/journal.pcbi.1009718.g005
https://doi.org/10.1371/journal.pcbi.1009718


3 Other views of the viable region

We have shown in Sect. 2 that a systematic and efficient way to explore parameter dependence

is to slice the viable region using inhibition planes with rescaled coordinate axes, but there are

many other ways to view the 6D manifold that approximates the viable region. Here are some

examples.

Fig 6 shows two views of the viable region projected to two different low dimension sub-

spaces. The left panel shows the viable region as a surface parametrized by hyperbolas with

varying aspect ratios. This is how it looks in unscaled coordinates, compared to the panels in,

e.g., Fig 4, where we have uniformized the aspect ratios of the hyperbolas by plotting against

SIE/SII instead of SIE. The right panel of Fig 6 shows a bird’s-eye view of the same plot, with the

{fE = 4}-contours in the (unscaled) inhibition plane, giving another view of the SII dependence.

Table 1 gives a sense of how the viable region near the reference parameter point looks

when we cut through the 7D parameter cube with 1D lines. In Fig 7, we show several heat

maps for firing rates obtained by slicing the viable region with various 2D planes though the

same reference point. In the top row, we have chosen pairs of parameters that covary (posi-

tively), meaning to stay in the viable region, these pairs of parameters need to be increased or

decreased simultaneously by roughly constant proportions. The idea behind these plots is that

to maintain constant firing rates, increased coupling strength from the E-population must be

compensated by a commensurate increase in coupling strength from the I-population (left and

middle panels), and increased drive to E must be compensated by a commensurate increase in

drive to I (right panel). In the second row, we have selected pairs of parameters that covary neg-
atively, i.e., their sums need to be conserved to stay in the viable region. The rationale here is

that to maintain constant firing rates, total excitation from cortex and from LGN should be

conserved (left and middle panels), as should total drive from L6 and from LGN (right panel).

Thus, together with the results in Sect. 2, we have seen three different ways in which pairs

of parameters can relate: (i) they can covary, or (ii) their sums can be conserved, or, (iii) as in

the case of inhibition planes, it is the product of the two parameters that needs to be conserved.

Fig 6. Other views of the viable regions. A. A 2D surface approximating the viable region projected to the 3D-space defined by SIE × SEI × SII. Blue

lines are projections of contours for fE = 4 Hz intersected with the good areas, computed on 21 different inhibition planes. Parameters are fixed at SEE =

0.024, SElgn/SEE = 2, SIlgn/SElgn = 2, and FIL6/FEL6 = 2; SII varies from 0.22 for the top contour to 0.08 for the bottom contour. B. A bird’s eye view of the

left panel, with colors indicating corresponding locations of the projected E-contours.

https://doi.org/10.1371/journal.pcbi.1009718.g006
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Like (iii), which we have shown to hold ubiquitously and not just through this one parameter

point, the relations in (i) and (ii) are also valid quite generally.

Discussion

We began with some very rough a priori bounds for the 7 free parameters identified in Sect.

1.2, basing our choices on physiological data when available and casting a wide net when they

are not. We also identified a biologically plausible region (referred to as “the viable region”)

defined to be the set of parameters that lead to spontaneous E- and I-firing rates compatible

with experimental values, and sought to understand the geometry of this region of parameter

space. Our most basic finding is that the viable region as defined is a slightly thickened 6D sub-

manifold—the amount of thickening varies from location to location, and is so thin in places

that for all practical purposes the submanifold vanishes. This is consistent with Table 1, which

shows that varying certain parameters by as little as 1% can take us out of the viable region.

One can think of directions that show greater sensitivity in Table 1 as more “perpendicular” to

the slightly thickened 6D surface, while those that are more robust make a smaller angle with

its tangent plane. The codimension-1 property is largely a consequence of the E-I balance and

has a number of biological implications, the most important of which is that the parameters

giving rise to biologically plausible regimes are robust—provided one compensates appropri-

ately when varying parameters. Such compensation can come about from a variety of sources

in vivo, e.g., synaptic depression of I-neurons [57, 58]; increased thresholds for potential gener-

ation of E-spikes due to Kv currents [59]; and a host of other homeostatic mechanisms [60]. To

Fig 7. Slicing the 7D parameter space from other directions through the reference point. We compute the rate maps of fE and indicate viable regions

on six other 2D slices, namely, the planes of SEE × SEI, SIE × SII, SElgn × SIlgn, SEE × SElgn, SIE × SIlgn, and SIlgn × FIL6. Firing rates are as in the color bar,

and as usual the good area is in white.

https://doi.org/10.1371/journal.pcbi.1009718.g007
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a first approximation, one can view these mechanisms as regulating synaptic weights, and our

findings may be pertinent to anyone wishing to study homeostatic mechanisms governing

neuronal activity.

Our analysis offers a great deal more information on the structure of the viable region

beyond its being a thickened 6D manifold. We have found it profitable to slice the 7D parame-

ter cube with inhibition planes, 2D planes containing the parameter axes SEI and SIE. Each inhi-

bition plane intersects the viable region in a narrow strip surrounding a segment of a

hyperbola (noted as “good area” above). Moreover, in rescaled variables SEI/SEE and SIE/SII,
these hyperbolas are not only remarkably alike in appearance but their exact coordinate loca-

tions and aspect ratios vary little as we move from inhibition plane to inhibition plane, suggest-

ing approximate scaling relations for firing rates as functions of parameters.

Summarizing, we found that most points in the viable region have SEE 2 [0.02, 0.03] and SII

2 [0.1, 0.2]; the lower limits of these ranges were found in our parameter analysis and the

upper limits were a priori bounds. Our parameter exploration also shows that SEI/SEE 2 (1, 2),

and SIE/SII 2 (0.1, 0.15), SElgn/SEE 2 (1.5, 3), SIlgn/SElgn 2 (1.5, 2), and FIL6/FIL6 2 (3, 4.5). We

have further observed a strong correlation between degeneration of good areas and external

inputs to I being too large in relation to that of E. For example, when SElgn/SEE is too low, or

when SIlgn/Elgn or FIL6/FEL6 is too high, the hyperbolic strips in inhibition planes narrow, possi-

bly vanishing altogether. (See S1 Text.) We have offered explanations in terms of a suppression
index for E-cells.

Relation to previous work on MF

Since the pioneering work of Wilson, Cowan, Amari, and others [22–37, 61], MF ideas have

been used to justify the use of firing rate-based models to model networks of spiking neurons.

The basic idea underlying MF is to start with a relation between averaged quantities, e.g., an

equation similar or analogous to Eq (4), and supplement it with an “activation” or “gain” func-

tion relating incoming spike rates and the firing rate of the postsynaptic neuron, thus arriving

at a closed governing equation for firing rates. MF and related ideas have yielded valuable

mathematical insights into a wide range of phenomena and mechanisms, including pattern

formation in slices [25, 30], synaptic plasticity and memory formation [62–66], stability of

attractor networks [67–73], and many other features of network dynamics involved in neuro-

nal computation [31, 32, 34, 36, 61, 74–100]. However, as far as we are aware, MF has not been

used to systematically map out cortical parameter landscape.

Another distinction between our approach and most previous MF models has to do with

intended use. In most MF models, the form of the gain function is assumed, usually given by a

simple analytical expression; see, e.g., [39]. In settings where the goal is a general theoretical

understanding and the relevant dynamical features are insensitive to the details of the gain

function, MF theory enables mathematical analysis and can be quite informative. Our goals

are different: our MF models are computationally efficient surrogates for realistic biological

network models, models that are typically highly complex, incorporating the anatomy and

physiology of the biological system in question. For such purposes, it is essential that our MF

equations capture quantitative details of the corresponding network model with sufficient

accuracy. In particular, we are not free to design gain functions; they are dictated by the con-

nectivity statistics, types of afferents and overall structure of the network model. We have

termed our approach “data-informed MF” to stress these differences with the usual MF

theories.

We have tried to minimize the imposition of additional hypotheses beyond the basic MF

assumption of a closed model in terms of rates. As summarized in Results and discussed in
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depth in Methods and S1 Text, we sought to build an MF equation assuming only that the

dynamics of individual neurons are governed by leaky integrate-and-fire (LIF) equations with

inputs from lateral and external sources, and when information on mean voltage was needed

to close the MF equation, we secured that from synthetic data using a pair of LIF neurons

driven by the same inputs as network neurons. The resulting algorithm, which we have called

the “MF+v” algorithm, is to our knowledge novel and is faithful to the idea of data-informed

MF modeling.

As we have shown, our simple and flexible approach produces accurate firing rate estimates,

capturing cortical parameter landscape at a fraction of the cost of realistic network simulations.

It is also apparent that its scope goes beyond background activity, and can be readily general-

ized to other settings, e.g., to study evoked responses.

Contribution to a model of primate visual cortex

Our starting point was [41], which contains a mechanistic model of the input layer to the mon-

key V1 cortex. This model was an ideal proving ground for our data-informed MF ideas: it is a

large-scale network model of interacting neurons built to conform to anatomy. For this net-

work, the authors of [41] located a small patch of parameters with which they reproduced

many visual responses both spontaneous and evoked. Their aim was to show that such param-

eters existed; parameters away from this patch were not considered—and this is where they left

off and where we began: Our MF+v algorithm, coupled with techniques for conceptualizing

parameter space, made it possible to fully examine a large 7D parameter cube. In this paper,

we identified all the parameters in this cube for which spontaneous firing rates lie within cer-

tain acceptable ranges. The region we found includes the parameters in [41] and is many times

larger; it is a slightly thickened 6D manifold that is nontrivial in size. Which subset of this 6D

manifold will produce acceptable behavior when the model is stimulated remains to be deter-

mined, but since all viable parameters – viable in the sense of both background and evoked

responses—must lie in this set, knowledge of its coordinates should provide a head-start in

future modeling work.

Taking stock and moving forward

In a study such as the one conducted here, had we not used basic biological insight and other

simplifications (such as inhibition planes, rescaled parameters, viable regions, and good areas)

to focus the exploration of the 7D parameter space, the number of parameter points to be

explored would have been N7, where N is the number of grid points per parameter, and the

observations in Table 1 suggest that N ¼ Oð100Þmay be the order of magnitude needed.

Obtaining this many data points from numerical simulation of the entire network would have

been out of the question. Even after pruning out large subsets of the 7D parameter cube and

leveraging the insights and scaling relations as we have done, producing the figures in this

paper involved computing firing rates for*107 distinct parameters. That would still have

required significant effort and resources to implement and execute using direct network simu-

lations. In contrast, using the proposed MF+v algorithm, each example shown in this paper

can be implemented with moderate programming effort and computed in a matter of hours

on a modern computing cluster.

We have focused on background or spontaneous activity because its spatially and tempo-

rally homogeneous dynamics provide a natural testing ground for the MF+v algorithm. Hav-

ing tested the capabilities of MF+v, our next challenge is to proceed to evoked activity, where

visual stimulation typically produces firing rates with inhomogeneous spatial patterns across

the cortical sheet. The methods developed in this paper continue to be relevant in such studies:
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evoked activity is often locally constant in space (as well as in time), so our methods apply to

local populations, the dynamics of which form building blocks of cortical responses to stimuli

with different spatiotemporal structure.

Finally, we emphasize that while MF+v provides a tremendous reduction to the cost of esti-

mating firing rates given biological parameters, the computational cost of a parameter grid

search remains exponential in the number of parameters (“curse of dimensionality”). Never-

theless, we expect our MF+v-based strategy, in combination with more efficient representa-

tions of data in high dimensional spaces (e.g., sparse grids [101]) and the leveraging of

biological insight, can scale to systems with many more degrees of complexity.

Methods

As explained in Introduction and Results, we seek parsimonious phenomenological models

that are (i) simple and efficient; (ii) flexible enough to accommodate key biological features

and constraints; and (iii) able to faithfully capture mean firing rates and voltages of network

models across a wide range of parameters. We use for illustration a model of the monkey pri-

mary visual cortex, treating as “ground truth” the network model described in Sect. 1.1 of

Results. Here we elaborate on the MF+v scheme outlined in Sect. 1.3, applying it to study fir-

ing rates in Layer 4Cα (L4), an input layer to V1 in the network model.

M1 Mean-field rate-voltage relation

We begin by stating precisely and deriving the MF Eq (4) alluded to in Sect. 1.3 of Results.

Consider an LIF model (Eq (1)) for neuron i in L4 of the network model. We set Vrest = 0, Vth

= 1, and let t1, t2, . . .tn be the spiking times of neuron i on the time interval [0, T] for some

large T. Integrating Eq (1) in time, we obtain

NiðTÞ ¼ gL
Z

T
� viðtÞ dt þ

Z

T
gEi ðtÞðV

E � viðtÞÞ dt þ
Z

T
gIi ðtÞðV

I � viðtÞÞ dt ; ð5Þ

where T ¼ ½0;T�nR, i.e., the time interval [0, T] minus the union R ¼ [n
j¼1
½tj; tj þ tref � of all

refractory periods. Let fi = limT!1 Ni(T)/T denote the mean firing rate of the ith neuron. We

then have

fi � ð1 � fi � tref|fflffl{zfflffl}
ð?Þ

Þ � ½� gR�vi þ �gE
i ðV

E � �viÞ þ �g I
iðV

I � �viÞ�;
ð6Þ

where �x ¼ limT!1
1

jTj

R

TxðtÞ dt and jTj is the total length of T. The term (?) is the fraction of

time the ith neuron is in refractory, and �x is the conditional expectation of the quantity x(t)
given the cell is not refractory at time t. We have neglected correlations between conductances

and voltages, as is typically done in mean-field (MF) theories. See, e.g., [29].

The long-time averages �gEi and �g Ii reflect the numbers and sizes of E/I-kicks received by neu-

ron i. In our network model (see S1 Text for details), the only source of inhibition comes from

I-cells in L4, while excitatory inputs come from LGN, layer 6 (L6), ambient inputs (amb), and

recurrent excitation from E-cells in L4. Mean conductances can thus be decomposed into:

�gE
i ¼ Si;lgn � Fi;lgn þ Si;L6 � Fi;L6 þ Si;amb � Fi;amb þ Si;E � Fi;E; ð7aÞ

�g I
i ¼ Si;I � Fi;I ; ð7bÞ

where for P 2 { lgn, L6, amb, E, I}, Si,P is the synaptic coupling weight from cells in P to neuron

i, and Fi,P is the total number of spikes per second neuron i receives from source P, i.e., from

all of its presynaptic cells in P combined. Here and in the rest of Methods, “E” and “I” refer to
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L4, the primary focus of the present study, so that Fi, E, for example, is the total number of

spikes neuron i receives from E-cells from within L4.

As discussed in the main text, we are interested in background or spontaneous activity.

During spontaneous activity, we may assume under the MF limit that all E-cells in L4 receive

statistically identical inputs, i.e., for each P, (Si,P, Fi,P) is identical for all E-cells i in L4. We

denote their common values by (SEP, FEP), and call the common firing rate of all E-cells fE.

Corresponding quantities for I-cells are denoted (SIP, FIP) and fI. Combining Eqs 6 and 7, we

obtain the MF equations for E/I-cells:

fE ¼ f½SElgnFElgn þ SEL6FEL6 þ SEambFEamb þ SEENEEfE � ð1 � pfailÞ� � ðVE � �vEÞ

þðSEINEIfIÞ � ðVI � �vEÞ � gLE � �vEg � ð1 � fE � trefÞ; ð8aÞ

fI ¼ f½SIlgnFIlgn þ SIL6FIL6 þ SIambFIamb þ SIENIEfE� � ðVE � �vIÞ

þðSIINIIfIÞ � ðVI � �vIÞ � gLI � �vIg � ð1 � fI � trefÞ : ð8bÞ

In Eq (8), gLE and gLI are leakage conductances; NQ0Q represents the average number of type-

Q neurons in L4 presynaptic to a type-Q0 neuron in L4. These four numbers follow estimations

of neuron density and connection probability of Layer 4Cα of the monkey primary visual cor-

tex. Refractory periods are tref , and E-to-E synapses are assumed to have a synaptic failure rate

pfall, also fixed. Details are discussed in S1 Text.

We seek to solve Eq (8) for (fE, fI) given network connections, synaptic coupling weights

and external inputs. That is, we assume all the quantities that appear in Eq (8) are fixed, except

for fE; fI; �vE and �vI . The latter two, the mean voltages �vE and �vI , cannot be prescribed freely as

they describe the sub-threshold activity of L4 neurons once the other parameters are specified.

Thus what we have is a system that is not closed: there are four unknowns, and only two

equations.

A second observation is that once �vE and �vI are determined, Eq (8) has a very simple struc-

ture. To highlight this near-linear structure, we rewrite Eq (8) in matrix form as

~f ¼ Rð~f Þ � ½Mð~vÞ �~f þ~sð~vÞ�: ð9Þ

Here~f ¼ ðfE; fIÞ,~v ¼ ð�vE; �vIÞ, Mð~vÞ is a (voltage-dependent) linear operator acting on L4

E/I firing rates,~s includes inputs from external sources and leakage currents, and R accounts

for refractory periods. (See S1 Text.) Neglecting refractory periods, Eq (9) is linear in~f assum-

ing Mð~vÞ and~sð~vÞ are known. At typical cortical firing rates in background, the refractory fac-

tor R contributes a small nonlinear correction.

To understand the dependence on~v, we show in Fig 8A the level curves of fE and fI as func-

tions of ð�vE; �vIÞ from the mapping defined by Eq (8). As expected, (fE, fI) vary with ð�vE; �vIÞ, the

nearly straight contours reflecting the near-linear structure of Eq (9). One sees both fE and fI
increase steadily (in a nonlinear fashion) as we decrease �vE and increase �vI , the dependence on

ð�vE; �vIÞ being quite sensitive in the lower right part of the panels. The sensitive dependence of

fE and fI on ð�vE; �vIÞ rules out arbitrary choices on the latter in a MF theory that aims to repro-

duce network dynamics. How to obtain reasonable information on ð�vE; �vIÞ is the main issue

we need to overcome.

We propose in this paper to augment Eq (8) with values of ð�vE; �vIÞ informed by (synthetic)

data. To gauge the viability of this idea, we first perform the most basic of all tests: We collect

firing rates and mean voltages (averaged over time and over neurons) computed directly from

network simulations, and compare the firing rates to fE and fI computed from Eq (8) with

ð�vE; �vIÞ set to network-computed mean voltages. The results for a range of synaptic coupling
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constants are shown in Fig 8B, and the agreement is excellent except when firing rates are very

low or very high.

M2 The MF+v algorithm

Simulating the entire network to obtain ð�vE; �vIÞ defeats the purpose of MF approaches, but the

results in Fig 8B suggest that we might try using single LIF neurons to represent typical net-

work neurons, and use them to estimate mean voltages.

The idea is as follows: Consider a pair of LIF neurons, one E and one I, and fix a set of

parameters and external drives. In order for this pair to produce ð�vE; �vIÞ similar to the mean

voltages in network simulations, we must provide these cells with surrogate inputs that mimic

what they would receive if they were operating within a network. However, the bulk of the

input into L4 cells are from other L4 cells. This means that in addition to surrogate LGN, L6,

and ambient inputs, we need to provide our LIF neurons surrogate L4 inputs (both E and I)

commensurate with those received by network cells. Arrival time statistics will have to be pre-

sumed (here we use Poisson), but firing rates should be those of L4 cells—the very quantities

we are seeking from our MF model. Thus there is the following consistency condition that

must be fulfilled: For suitable parameters and external inputs, we look for values �vE, �vI , fE, and

fI such that

• given �vE and �vI , Eq (8) returns fE and fI as firing rates; and

Fig 8. MF approximations. A. Contours of E/I firing rates as functions of ð�vE; �vIÞ. B. Comparison of network firing rates (black) and (fE, fI) computed

from Eq (8) using network-computed mean voltages (green).

https://doi.org/10.1371/journal.pcbi.1009718.g008
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• when L4 firing rates of fE and fI are presented to the LIF pair along with the stipulated param-

eters and external inputs, direct simulations of this LIF pair return values of �vE and �vI .

If we are able to locate values of �vE, �vI , fE, and fI that satisfy the consistency relations above,

it will follow that the LIF pair, acting as surrogate for the E and I-populations in the network,

provide mean voltage data that enable us to determine mean network firing rates in a self-con-

sistent fashion.

A natural approach to finding self-consistent firing rates is to alternate between estimating

mean voltages using LIF neurons receiving surrogate network inputs—including L4 firing

rates from the previous iteration—and using the MF formula (Eq (4)) to estimate L4 firing

rates using voltage values from the previous step. A schematic representation of this iterative

method is shown in Fig 9A. In more detail, let~vp and~f p be the mean voltage and firing rate

estimates obtained from the pth iteration of the cycle above. In the next iteration, we first sim-

ulate the LIF cells for a prespecified duration tLIF, with L4 firing rate set to~f p, to obtain an esti-

mate~vpþ1 ¼ LIFð~f p; tLIFÞ of the mean voltage. We then update the rate estimate by solving

~f pþ1 ¼ Rð~f pÞ � ½Mð~vpþ1Þ �
~f pþ1 þ~sð~vpþ1Þ� ð10Þ

for~f pþ1, leading to

~f pþ1 ¼ MFð~vpþ1;
~f pÞ ≔ ½I � Rð~f pÞMð~vpþ1Þ�

� 1
� Rð~f pÞ~sð~vpþ1Þ: ð11Þ

When the iteration converges, i.e., when~f p ¼~f pþ1 ¼
~f and~vp ¼~vpþ1 ¼~v, we have a solu-

tion ð~f ;~vÞ of Eq (9).

Fig 9B shows 500 iterations of this scheme in~f p-space. Shown are iterations and running

means (green crosses). Observe that after transients, the~f p settle down to what appears to be a

narrow band of finite length, and wanders back and forth along this band without appearing

to converge. We have experimented with doubling the integration time tLIF and other mea-

sures to increase the accuracy of the voltage estimates~f p, but they have had no appreciable

impact on the amplitudes of these oscillations. A likely explanation is that the contours of the

E/I firing rates (Fig 8A) are close to but not exactly parallel: Had they been exactly parallel, a

long line of~v would produce the same~f , implying the MF Eq (8) do not have unique solutions.

The fact that they appear to be nearly parallel then suggests a large number of near-solutions,

explaining why our attempt at fixed point iteration cannot be expected to converge in a rea-

sonable amount of time.

However, the oscillations shown in Fig 9B are very stable and well defined, suggesting a

pragmatic way forward: After the iterations settle to this narrow band, we can run a large num-

ber of iterations and average the~f p to produce a single estimate. Specifically, we first carry out

a number of “training” iterations, and when the firing rate estimates settle to a steady state by a

heuristic criterion, we compute a long-time average and output the result. Combining this

with the MF formula (4) yields the MF+v algorithm. See S1 Text for more details.

Fig 9C compares MF+v predictions with network simulations. As one would expect, aver-

aging significantly reduces variance. The results show strong agreement between MF+v pre-

dictions and their target values given by direct network simulations.

Finally, we remark that a natural alternative to our MF+v algorithm might be to forgo the

MF equation altogether, and construct a self-consistent model using single LIF neurons. We

found that such an LIF-only method is much less stable than MF+v. (See S1 Text.) This is in
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Fig 9. The MF+v algorithm. A. Schematic of the algorithm. We begin by choosing initial values f 0
E and f 0

I . These values are used to drive a pair

of LIF neurons for 20 seconds (biological time). The resulting membrane voltages are then fed into the MF Eq (8), which gives us firing rates for

the next iteration. This is repeated until certain convergence criteria are met (see text). In the above, all dashed lines are modeled by Poisson

processes. B. 500 training iterations of the MF+v. The means of every 100 iterations are indicated by green crosses, stability properties of which

are quite evident. C. Comparison of network (black) and MF+v computed (red) firing rates.

https://doi.org/10.1371/journal.pcbi.1009718.g009
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part because firing rates require more data to estimate accurately: For each second of simulated

activity, each LIF neuron fires only 3–4 spikes, whereas we can collect a great deal more data

on voltages over the same time interval.

M3 Issues related to implementation of MF+v

The hybrid approach of MF+v, which combines the use of the MF formula (4) with voltage

estimates from direct simulations of single neurons, has enabled us to seamlessly incorporate

the variety of kick sizes and rates from L6, LGN, and ambient inputs while benefiting from the

efficiency and simplicity of Eq (4). Nevertheless there are some technical issues one should be

aware of.

Failure to generate a meaningful result. We have found that MF+v iterations can fail to

give meaningful answers in the following two situations. First, in some parameter regimes, the

linear operator Mð~vÞ can become singular, which can result in unreasonably low or even nega-

tive values of~f p in the MF+v algorithm (see S1 Text). Second, when firing rates are too low

(e.g., fE< 0.1 Hz), the low rate of L4 kicks to the LIF neurons in the MF+v model can result in

large fluctuations of~vp, which can destabilize the computed~f p unless the integration time tLIF

is sufficiently large.

In Results, whenever MF+v fails, we exclude the parameter set and label it with a gray pixel

in the canonical picture; see, e.g., Fig 1.

Computational cost. The majority of computation in MF+v is spent on collecting the

mean voltages~vp in each iteration, which can be time-consuming depending on the time-scale

and accuracy of LIF-neuron simulation. By repeating for M iterations, the computational cost

of MF+v is O(MtLIF), where a general choice of tLIF 2 (5, 40)s. If we simulate each neuron for

tLIF 20s per iteration for up to M = 100 iterations, we typically obtain a firing rate estimate

within * 20% accuracy of the network firing rate in* 1.5s. In contrast, the cost of simulating

a large network with N neurons typically grows at least as fast as N, and may even grow nonli-

nearly in N. With the parameters in this paper, a typical network simulation using N� 4 × 104

cells may require up to* 60 seconds, which is substantial when used to map a 7-dimensional

parameter grid. The MF+v algorithm thus represents an * 40-fold speedup over the corre-

sponding large network simulation in contemporary computing environments. (Both network

simulations and MF+v computations are implemented using MATLAB 2020B with Intel Xeon

Platinum 8268 24Core 2.9GHz processors).

It is possible to further reduce the computational cost of MF+v. First, instead of the simple

iteration scheme we used in MF+v (i.e., Picard iteration), one can use a stochastic variant of a

higher-order method (see, e.g., [102]). Second, one need not make an independent computa-

tion of the mean voltages~vp for each iteration. Instead, we can precompute the mean voltages

for a coarse grid in (fE, fI) space, then, by interpolation and smoothing, construct a table of val-

ues of mean voltages as functions of L4 rates. This approximation can then be used as a surro-

gate for the Monte Carlo simulation presently used in MF+v. In certain regimes, it may also be

possible to compute~vp in a more analytical manner, e.g., via the Fokker-Planck equation for

LIF neurons.

Supporting information

S1 Text. Supplementary information for A data-informed mean-field approach to map-

ping of cortical parameter landscapes.

(PDF)
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tions in local cortical circuits. Nature. 2020; 579(7798):256–259. https://doi.org/10.1038/s41586-020-

2062-x PMID: 32132709

20. Niell CM, Scanziani M. How Cortical Circuits Implement Cortical Computations: Mouse Visual Cortex

as a Model. Annual Review of Neuroscience. 2021; 44. https://doi.org/10.1146/annurev-neuro-

102320-085825 PMID: 33914591

21. Mochol G, Hermoso-Mendizabal A, Sakata S, Harris KD, De la Rocha J. Stochastic transitions into

silence cause noise correlations in cortical circuits. Proceedings of the National Academy of Sciences.

2015; 112(11):3529–3534. https://doi.org/10.1073/pnas.1410509112 PMID: 25739962

22. Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons.

Biophysical journal. 1972; 12(1):1–24. https://doi.org/10.1016/S0006-3495(72)86068-5 PMID:

4332108

23. Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic ner-

vous tissue. Kybernetik. 1973; 13(2):55–80. https://doi.org/10.1007/BF00288786 PMID: 4767470

24. Amari Si. Dynamics of pattern formation in lateral-inhibition type neural fields. Biological cybernetics.

1977; 27(2):77–87. https://doi.org/10.1007/BF00337259 PMID: 911931

25. Ermentrout GB, Cowan JD. A mathematical theory of visual hallucination patterns. Biological cybernet-

ics. 1979; 34(3):137–150. https://doi.org/10.1007/BF00336965 PMID: 486593

26. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities.

Proceedings of the national academy of sciences. 1982; 79(8):2554–2558. https://doi.org/10.1073/

pnas.79.8.2554 PMID: 6953413

27. Cohen MA, Grossberg S. Absolute stability of global pattern formation and parallel memory storage by

competitive neural networks. IEEE transactions on systems, man, and cybernetics. 1983;(5):815–826.

https://doi.org/10.1109/TSMC.1983.6313075

28. Hopfield JJ. Neurons with graded response have collective computational properties like those of two-

state neurons. Proceedings of the national academy of sciences. 1984; 81(10):3088–3092. https://doi.

org/10.1073/pnas.81.10.3088 PMID: 6587342

29. Treves A. Mean-field analysis of neuronal spike dynamics. Network: Computation in Neural Systems.

1993; 4(3):259. https://doi.org/10.1088/0954-898X_4_3_002

30. Ermentrout B. Neural networks as spatio-temporal pattern-forming systems. Reports on progress in

physics. 1998; 61(4):353. https://doi.org/10.1088/0034-4885/61/4/002

31. Brunel N, Hakim V. Fast global oscillations in networks of integrate-and-fire neurons with low firing

rates. Neural computation. 1999; 11(7):1621–1671. https://doi.org/10.1162/089976699300016179

PMID: 10490941

32. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC. Geometric visual hallucinations,

Euclidean symmetry and the functional architecture of striate cortex. Philosophical Transactions of the

Royal Society of London Series B: Biological Sciences. 2001; 356(1407):299–330. https://doi.org/10.

1098/rstb.2000.0769 PMID: 11316482

33. Gerstner W. Population dynamics of spiking neurons: fast transients, asynchronous states, and lock-

ing. Neural computation. 2000; 12(1):43–89. https://doi.org/10.1162/089976600300015899 PMID:

10636933

34. Coombes S. Waves, bumps, and patterns in neural field theories. Biological cybernetics. 2005; 93

(2):91–108. https://doi.org/10.1007/s00422-005-0574-y PMID: 16059785

35. Mattia M, Del Giudice P. Population dynamics of interacting spiking neurons. Physical Review E.

2002; 66(5):051917. https://doi.org/10.1103/PhysRevE.66.051917 PMID: 12513533

36. El Boustani S, Destexhe A. A master equation formalism for macroscopic modeling of asynchronous

irregular activity states. Neural computation. 2009; 21(1):46–100. https://doi.org/10.1162/neco.2009.

02-08-710 PMID: 19210171

37. Faugeras OD, Touboul JD, Cessac B. A constructive mean-field analysis of multi population neural

networks with random synaptic weights and stochastic inputs. Frontiers in computational neurosci-

ence. 2009; 3:1. https://doi.org/10.3389/neuro.10.001.2009 PMID: 19255631

38. Parr T, Sajid N, Friston KJ. Modules or mean-fields? Entropy. 2020; 22(5):552.

PLOS COMPUTATIONAL BIOLOGY A data-informed mean-field approach to mapping of cortical parameter landscapes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009718 December 23, 2021 27 / 30

https://doi.org/10.1016/j.neunet.2009.07.023
http://www.ncbi.nlm.nih.gov/pubmed/19635656
https://doi.org/10.1016/j.conb.2014.01.017
http://www.ncbi.nlm.nih.gov/pubmed/24658059
https://doi.org/10.1038/s41586-020-2062-x
https://doi.org/10.1038/s41586-020-2062-x
http://www.ncbi.nlm.nih.gov/pubmed/32132709
https://doi.org/10.1146/annurev-neuro-102320-085825
https://doi.org/10.1146/annurev-neuro-102320-085825
http://www.ncbi.nlm.nih.gov/pubmed/33914591
https://doi.org/10.1073/pnas.1410509112
http://www.ncbi.nlm.nih.gov/pubmed/25739962
https://doi.org/10.1016/S0006-3495(72)86068-5
http://www.ncbi.nlm.nih.gov/pubmed/4332108
https://doi.org/10.1007/BF00288786
http://www.ncbi.nlm.nih.gov/pubmed/4767470
https://doi.org/10.1007/BF00337259
http://www.ncbi.nlm.nih.gov/pubmed/911931
https://doi.org/10.1007/BF00336965
http://www.ncbi.nlm.nih.gov/pubmed/486593
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
https://doi.org/10.1109/TSMC.1983.6313075
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1073/pnas.81.10.3088
http://www.ncbi.nlm.nih.gov/pubmed/6587342
https://doi.org/10.1088/0954-898X_4_3_002
https://doi.org/10.1088/0034-4885/61/4/002
https://doi.org/10.1162/089976699300016179
http://www.ncbi.nlm.nih.gov/pubmed/10490941
https://doi.org/10.1098/rstb.2000.0769
https://doi.org/10.1098/rstb.2000.0769
http://www.ncbi.nlm.nih.gov/pubmed/11316482
https://doi.org/10.1162/089976600300015899
http://www.ncbi.nlm.nih.gov/pubmed/10636933
https://doi.org/10.1007/s00422-005-0574-y
http://www.ncbi.nlm.nih.gov/pubmed/16059785
https://doi.org/10.1103/PhysRevE.66.051917
http://www.ncbi.nlm.nih.gov/pubmed/12513533
https://doi.org/10.1162/neco.2009.02-08-710
https://doi.org/10.1162/neco.2009.02-08-710
http://www.ncbi.nlm.nih.gov/pubmed/19210171
https://doi.org/10.3389/neuro.10.001.2009
http://www.ncbi.nlm.nih.gov/pubmed/19255631
https://doi.org/10.1371/journal.pcbi.1009718


39. Ermentrout GB, Terman DH. Mathematical Foundations of Neuroscience. vol. 35. Springer Science

& Business Media; 2010.

40. Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal Dynamics: From Single Neurons to Networks

and Models of Cognition. Cambridge University Press; 2014.

41. Chariker L, Shapley R, Young LS. Orientation selectivity from very sparse LGN inputs in a comprehen-

sive model of macaque V1 cortex. Journal of Neuroscience. 2016; 36(49):12368–12384. https://doi.

org/10.1523/JNEUROSCI.2603-16.2016 PMID: 27927956

42. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s

visual cortex. The Journal of physiology. 1962; 160(1):106–154. https://doi.org/10.1113/jphysiol.1962.

sp006837 PMID: 14449617

43. Callaway EM. Local circuits in primary visual cortex of the macaque monkey. Annual review of neuro-

science. 1998; 21(1):47–74. https://doi.org/10.1146/annurev.neuro.21.1.47 PMID: 9530491

44. Lund JS. Anatomical organization of macaque monkey striate visual cortex. Annual review of neurosci-

ence. 1988; 11(1):253–288. https://doi.org/10.1146/annurev.ne.11.030188.001345 PMID: 3284442

45. Douglas RJ, Martin KA. Neuronal circuits of the neocortex. Annu Rev Neurosci. 2004; 27:419–451.

https://doi.org/10.1146/annurev.neuro.27.070203.144152 PMID: 15217339

46. Angelucci A, Levitt JB, Walton EJ, Hupe JM, Bullier J, Lund JS. Circuits for local and global signal inte-

gration in primary visual cortex. Journal of Neuroscience. 2002; 22(19):8633–8646. https://doi.org/10.

1523/JNEUROSCI.22-19-08633.2002 PMID: 12351737

47. Lapicque L. Recherches quantitatives sur l’excitation electrique des nerfs traiteé comme une polariza-
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