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Background: Tumour microenvironment (TME) is critical for the regulation of cancer development as well as
therapy. The objective of the current study was the development of a robust prognostic model based on TME-
relevant genes.
Methods: Five publicmicroarray datasets providing clinical informationwere obtained. The least absolute shrink-
age and selection operator regression method was used to reduce the dimensionality of robust prognostic genes
identified via the bootstrap method.
Findings: We established a prognostic panel, designated as tumour microenvironment risk score (TMRS),
consisting of 100 genes. With specific risk score formulae, the TMRS panel possesses a strong ability to predict
relapse-free survival and overall survival through both univariate and multivariate analyses. Compared with
the TNM stage, the TMRS panel showedmuch higher predictive accuracy. Further analysis revealed that patients
with higher TMRS scores exhibited no therapeutic benefits from adjuvant chemotherapy, probably due to the ac-
tivation of stromal relevant pathways and infiltration of stromal cells. Besides colon cancer, the TMRS panel was
also revealed to be a reliable tool for prognostic prediction and chemotherapeutic decision-making in gastric can-
cer. Its value in predicting immunotherapy outcomes was also confirmed in two other cohorts consisting ofmet-
astatic urothelial carcinoma patients and melanoma patients.
Interpretation:Our TMRSpanelmay be an effective tool for survival prediction and treatment guidance in patients
with stage I–III colon cancer.
Fund: Thisworkwas supported by the National Natural Science Foundation of China (No. 81772580) and Guang-
zhou Planed Project of Science and Technology (No. 201803010070).
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
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1. Introduction

Colon cancer is amajor source ofmorbidity andmortalityworldwide
[1]. Currently, the AJCC staging system and histologic classification re-
main the most important guidelines for stratifying patients and making
clinical decisions [2]. However, due to the high levels of heterogeneity
found in colon cancer, prognoses may vary widely between patients
with similar clinical features. Therefore, in order to stratify patients
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more precisely, it becomes necessary to consider other prognostic fac-
tors in addition to clinical factors.

The tumour microenvironment (TME), consisting of multiple im-
mune cells and stromal cells, is critical for the regulation of cancer initi-
ation and development as well as cellular response to chemotherapy
[3,4]. In recent years, the rise of immunotherapy, including immune
checkpoint inhibitors, has shown assessment of TME landscape hetero-
geneity and reshaping of immune microenvironment to be promising
avenues for future cancer management [5]. In colon cancer, assessing
amounts of tumour-infiltrating lymphocytes based on IHC staining of
CD3andCD8, via an “immunoscore”, is considered an important supple-
mentalmarker in the TNM staging system for relapse andmortality pre-
diction [6,7]. Unfortunately, the accuracy of prognosis prediction using
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Research in context

Evidence before this study

The heterogeneity of tumour microenvironment (TME) contains
multiple dimensions of information on patient prognosis and treat-
ment response. Currently, several signatures based on TME genes
have been reported. However, as the genes included in these sig-
natures were not all correlated with prognosis, the clinical practi-
cality of these signatures was not satisfactory. In colon cancer,
recent advances in high-throughput gene testing technology
have led to the development of some molecular signatures for
prognosis prediction and personalisation of treatment paradigms.
However, to the best of our knowledge, none of these signatures
were established based on TME-relevant genes. In addition, an
immunoscore system has been developed based on IHC staining
of CD3 andCD8.Unfortunately, the accuracy of prognosis predic-
tion using the immunoscore systemwas found to be limited, as re-
ported by the latest multi-central clinical research. Therefore, it is
necessary to.
develop a novel TME-related prognostic model to improve predic-
tive accuracy and identify patients forwhomchemo- and immuno-
therapies may be more beneficial.

Added value of this study

We developed a robust prognostic panel utilising the machine
learning method based on TME-relevant genes for stage I–III
colon cancer patients, designated as the “tumour microenviron-
ment risk score (TMRS)”. This panel not only accurately predicted
relapse-free survival and overall survival among colon cancer pa-
tients, but also served as a biomarker for identifying patients
that could potentially benefit from adjuvant chemotherapy. In ad-
dition to colon cancer, the TMRS panel was also revealed to be a
reliable tool for prognostic prediction and chemotherapeutic
decision-making in gastric cancer. Furthermore, we also found
that the TMRS panel enabled prediction of anti-PD-L1 and anti-
PD-1 immunotherapy outcomes in urothelial carcinoma patients
and melanoma patients.

Implications of all the available evidence

The TMRS gene panel represents a potentially robust tool for sur-
vival prediction and treatment guidance in patients with stage I–III
colon cancer andmay also be applicable to other types of cancers.
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the immunoscore systemwas found to be limited. Amulti-central study
conducted by Galon et al. [6] indicated that the c-indexes of the
immunoscore for relapse-free survival (RFS) and overall survival (OS)
were 0·62 and 0·58, respectively. Therefore, a novel TME-related prog-
nostic model may be needed to improve predictive accuracy and iden-
tify patients, for whom chemo- and immunotherapies may be more
beneficial.

Recent advances in high-throughput gene testing technology have
provided an opportunity to define the genetic landscape of colon cancer
and led to the development of manymolecular signatures for prognosis
prediction and personalisation of treatment paradigms [8–11]. How-
ever, some of these signatures were frequently ill-defined, having
been generated from unspecified genetic backgrounds. To the best of
our knowledge, prognostic signatures based on TME-relevant genes in
colon cancer have not yet been proposed. The objective of the current
study was to develop a robust prognostic gene panel utilising the ma-
chine learning method, designated as the “tumour microenvironment
risk score (TMRS)”, to improve the risk stratification of patients with
stage I–III colon cancer. Furthermore, we assessed the ability of this
panel to predict patient response to chemotherapy and immune-
checkpoint inhibitors.

2. Materials and methods

2.1. Transcriptome data acquisition and pre-processing

The Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo/) was searched for eligible colon cancer datasets that fulfilled the
following criteria: samples were hybridised to the Affymetrix HG-
U133 Plus 2·0 (GEO accession number GPL570) platforms; N50 stage
I–III colon cancer patients were included in each dataset; and informa-
tion on the TNM stage was available. In order to explore the role of
ourmodel in gastric cancer, we downloaded the “GSE62254” dataset, si-
multaneously containing RFS and OS information generated via the
GPL570platform. Finally, for the immunotherapeutic efficiency analysis,
two transcriptomic datasets from patients with metastatic urothelial
cancer (mUC) treated with anti-PD-L1 agents (atezolizumab, IMvigor
dataset, retrieved via R software using “IMvigor” package) [12], and pa-
tients with metastatic melanoma treated with anti-PD-1 agents
(pembrolizumab or nivolumab, GSE78220, downloaded from GEO
website) were downloaded. Expression profiles of these two cohorts
were generated via high throughput sequencing. Raw “CEL” files of mi-
croarray data were downloaded and normalised using a robust
multiarray averaging method with “affy” and “simpleaffy” packages
[13]. RNA sequencing datawas transformed using the “voom” algorithm
in order to convert count data to values similar to those resulting from
microarrays [14]. The “ComBat” algorithm was applied to reduce the
likelihood of batch effects from non-biological technical biases. A sum-
mary of the information of all datasets used in this study is provided
(Supplement Table S1).

2.2. Study population and clinicopathological variables

Samples were randomly separated into training and validation (7:3)
sets for prognostic analyses based on cohorts, in order to identify and
evaluate themodels as we described before using “createDataPartition”
function of the “caret” package [15]. Clinical information was retrieved
using the “GEOquery” package for GEO datasets and the “IMvigor” pack-
age for the IMvigor cohort. The endpoints analysed in this study were
RFS, defined as the interval between thedate of diagnosis anddate of tu-
mour relapse, and OS, defined as the interval between the date of diag-
nosis and death.

2.3. Robust tumour microenvironment prognostic gene identification

TME-relevant genes were obtained from 12 published studies
[16–27], which provided transcriptomic signatures for multiple im-
mune and stromal cell populations. Robust prognostic genes were iden-
tified using two steps: first, we assessed the correlation between the
relative expression value (z-transformed) of each gene and RFS via
Cox univariate regression analysis in the entire cohort, where genes
with P b 0·05 were selected for further analysis; next, we used
bootstrapping to test the genes which passed initial filtering for robust-
ness as follows: 70% patients randomly extracted from the training co-
hort were assessed for survival impact of their genes. This procedure
was repeated 1000 times and the genes that were incorporated in 70%
of resample runs (achieved P b 0·05 in robustness testing)were consid-
ered as robust prognostic genes and selected for further analysis.

2.4. TMRS gene panel generation using LASSO Cox regression

The Cox regression model, with least absolute shrinkage and selec-
tion operator (LASSO) penalty, was implemented to reduce
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dimensionality and select the most useful prognostic markers among
the robust prognostic genes identified before [28,29]. Notably, all gene
expression valueswere dichotomised before entering the LASSOCox re-
gression, and the “surv_cutpoint” function of the “survminer” R package
was used to determine the optimal cut-off point of each gene based on
the maximally selected log-rank statistics. Moreover, we set the
“minprop” parameter of the “surv_cutpoint” function (referring to the
minimal proportion of observations per group) to 30% to avoid the
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occurrence of too few patients in a certain group. Genes represented by
optimal values of the penalty parameter λ, which were determined by
ten-fold cross-validations, constituted the TMRS panel in this study.
Risk scores based on the TMRS panel were also constructed using the
dichotomised expression value of selected genes (a value of one or
two was given to represent an expression value higher or lower than
the cut-off value) via a Cox regression analysis in the training cohort.
Among these, the risk score was named TMRS-RFS when RFS was
used as the endpoint variable to generate the cut-off values and
analysed by Cox regression, and correspondingly, the risk score was
named TMRS-OS when OS was used as the endpoint.

2.5. Estimation of immune infiltration

An immune infiltration estimation was conducted using the “Micro-
environment Cell Populations-counter (MCP-counter)” method, which
allows robust quantification of the absolute abundance of ten immune
and stromal cell populations in heterogeneous tissues from
transcriptomic data [18]. The R package “MCPcounter” was applied to
achieve the transformation of mRNA data to the level of non-tumour
cell infiltration in the tumour microenvironment, and gene expression
profiles were prepared using standard annotation files prior to MCP-
counter analysis. The stromal score, immune score, and tumour
purity were estimated by applying the “ESTIMATE” R package devel-
oped by Yoshihara et al. [30](https://sourceforge.net/projects/
estimateproject/).

2.6. Gene set variation analysis (GSVA)

GSVA is a gene set enrichment method that estimates the varia-
tion of pathway and biological process activity over a sample popula-
tion in an unsupervised manner [31]. The gene set files of “c2.cp.
kegg.v6.2.symbols” and “h.all.v6.2.symbols,” downloaded from the
“Molecular Signatures Database,” were employed for GSVA using
“GSVA” packages for R. The significance threshold was set at an ad-
justed P b 0·05.

2.7. Statistical analysis

The normality of the variables was tested via the Shapiro-Wilk nor-
mality test for comparisons of two groups. The statistical significance of
differences between normally distributed variableswas estimated using
the unpaired Student's t-test, and non-normally distributed variables
were analysed via the Mann-Whitney U test. For comparisons of more
than two groups, Kruskal-Wallis and one-way ANOVA tests were used
as non-parametric and parametric methods, respectively. Correlation
was computed using Spearman's and distance correlation analyses. Sur-
vival rateswere calculated using theKaplan–Meiermethod, and the sig-
nificance of differences between survival curves was determined using
the log-rank test. In regard to the heterogeneity between different
types of cancers, the best cut-off values for each continuous prognostic
marker were recalculated using the “survminer” R package separately
for different tumour types. Uni- and multivariate analyses were per-
formed using Cox proportional hazard models with the stepwise
method “LR forward”. Nomogramconstruction and validationwere per-
formed using Iasonos' guide [32]. Survival predictive accuracy of prog-
nostic models was assessed based on a time-dependent receiver
operating characteristic curve (ROC) analysis and Harrell's concordance
index (c-index) analysis. All statistical analyses were conducted using
Fig. 1. Consensus clustering of tumour microenvironment (TME) genes in colon cancer. (a) Con
two subtypes based on unsupervised analysis and hierarchical clustering of 797 robust progn
yellow) are indicated above the heatmap; (c–d) Differences in patient overall survival (c)and
the biological processes in different TME-relevant clusters; (f) Violin plot of the comparison
(g) Sankey chart displaying the distribution of the TME-relevant clusters in C1–C6 subtypes a
deficient mismatch repair; pMMR, proficient mismatch repair; CIMP, CpG island methylator pheno
EMT, epithelial-mesenchymal transition; CTL, cytotoxic lymphocyte; NK, natural killer; DC, dendriti
the R software (version 3.5.0) and SPSS software (version 25.0) and P
values were two-tailed. Statistical significance was set at P b 0·05.

3. Results

3.1. Colon cancer patient characteristics and robust prognostic gene
identification

A summary of the information of all datasets used in this study is
provided(Supplement Table S1). Detailed patient characteristics are
listed (Supplemental Table S2). A total of 990 patients diagnosed with
stage I–III colon cancer from five GEO datasets (GSE17538, GSE33113,
GSE37892, GSE38832, and GSE39582) were retrospectively analysed
in this study. The median age at diagnosis was 69·0 years (range,
22·0–97·0 years) and 481 (48·6%) of the patients were male. Among
them, RFS information was available for 990 patients, wherein mean
survival was 146 months. OS information was documented in 678 pa-
tients and themean survival was 130months. Through the 2-step anal-
ysis described in the “Materials and methods”, 1746 of 5952 genes
passed the first filter and 797 genes, the expression levels of which
were stably and significantly correlatedwith prognosis,were eventually
identified and defined as robust prognostic genes (Supplemental
Table S3).

3.2. Construction of molecular subgroups using TME-relevantrobust prog-
nostic genes

First, we used unsupervised clustering methods in order to classify
990 tumour samples into different molecular subgroups based on
797 robust prognostic genes. The “ConsensusClusterPlus” package
was used to evaluate clustering stability and select the optimal cluster
number. Two distant patient clusters, termed as the tumour
microenvironment cluster 1 (TMEC1) and TMEC2, were finally identi-
fied (Fig. 1a–b), and comparison of the proportion of patients from dif-
ferent GEO series between two TMEC clusters showed no significant
differences (Supplemental Table S4). Via the log-rank test, the
Kaplan–Meier curve indicated significant survival differences between
the two clusters for both OS (Fig. 1c) and RFS (Fig. 1d). We further fo-
cused on GSE39582 datasets, which provided the most comprehensive
patient information, characterising biological and clinical differences
among these clusters. Samples in TMEC2 exhibited amore advanced tu-
mour stage and proficient mismatch repair (pMMR) status (Fig. 1e and
Supplemental Table S5). No significant distribution difference was
found in terms of the CpG island methylator phenotype, chromosome
instability status, and genetic mutations (KRAS, BRAF, and P53). With
regards to biological behaviour (Fig.1e), pathways involved in DNA rep-
lication and repair, oxidative phosphorylation (OXPHOS), cell cycle, and
one carbon metabolism were activated in TMEC1 (favourable survival),
whereas TMEC2 (worse survival), as expected, showed enrichment of
pathways related to stromal activation and cancer progression, such as
angiogenesis and epithelial-mesenchymal transition (EMT). As con-
firmed by subsequent cell infiltration analysis, TMEC2 patients showed
an obvious increase in infiltration by stromal cells, including neutro-
phils, endothelial cells, and fibroblasts (Fig. 1f). Interestingly, it was
also observed that in TMEC2 patients, the enrichment of immune rele-
vant pathwayswas accompanied by an increase in the expression of im-
mune checkpoint genes. Finally, the distribution of TMEC relative to
that of other established colon cancer molecular subtypes was com-
pared. The result demonstrated that TMEC2 patients were mainly
sensus matrices of colon cancer patients for k= 2; (b) Colon cancer cases are divided into
ostic genes. Months of relapse-free survival and relapse status (relapse, red; censor, light
relapse-free survival (d) with two clusters; (e) Heatmap showing the activation status of
of immune and stromal cell infiltration between the different TME-relevant clusters;

nd CMS subtypes. TMEC, tumour microenvironment cluster;MMR, mismatch repair; dMMR,
type; CIN, chromosome instability; MT, mutant type; WT, wild type; IC, immune check point;
c cell; EC, endothelial cells;CMS, consensus molecular subtypes.
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Table 1
Harrell's concordance indexes of the TMRS model and stage in different cohorts.

Cohort TMRS-RFSa TMRS-RFSb TMRS-OSa TMRS-OSb Stage6th

RFS
Training 0.86 ± 0.02 0.82 ± 0.02 / / 0.64 ± 0.02
Validation 0.80 ± 0.04 0.76 ± 0.03 / / 0.61 ± 0.03

OS
Entire / / 0.80 ± 0.02 0.75 ± 0.02 0.56 ± 0.02

Abbreviation: TMRS, tumour microenvironment risk score; RFS, relapse-free survival; OS,
overall survival.

a Continuous variables.
b Category variables.

Fig. 2. TMRS panel is a prognostic marker. (a–b) Kaplan–Meier curves (left) and ROC curves (right) of relapse-free survival according to TMRS-RFS groups in the training cohort (a) and
validation cohort (b); (c) Kaplan–Meier curves (upper) and ROC curves (down) of overall survival according to TMRS-OS groups; (d–e) Forest plots of the associations between TMRS-RFS
and relapse-free survival (d) and the associations between TMRS-OS and overall survival (e) in various subgroups. UnadjustedHRs (boxes) and 95% confidence intervals (horizontal lines)
are depicted. TMRS, tumour microenvironment risk score; RFS, relapse-free survival; OS, overall survival; HR, hazard ratio; CI, confidence interval; CMS, consensus molecular subtypes.
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concentrated in the C4, C6, and CMS4 subtypes, mostly representing
mesenchymal phenotypes, while TMEC1 patients were mainly concen-
trated in the C1, C3, and CMS2 subtypes, mostly displaying epithelial
phenotype characteristics (Fig. 1g, Supplemental Table S5) [33,34].

3.3. Construction of prognostically relevant TMRS gene panel

In order to develop a gene panel practical for clinical use, we applied
the LASSO Cox regression model to the 797 robust prognostic genes for
dimension reduction. Patients were randomly regrouped into training
and validation cohorts for prognostic analyses as described in the “Mate-
rials and methods” section. Comparison of patient characteristics be-
tween the two groups showed no significant differences (Supplemental
Table S2). Through the LASSO model (Supplemental Fig. S2), we gener-
ated a TMRS gene panel consisting of 100 genes (Supplemental
Table S6) and built two prognostic models using Cox analysis based on
RFS (TMRS-RFS) and OS (TMRS-OS) information separately. Patients
were stratified into two groups based on TMRS-RFS and TMRS-OS values,
respectively, using a cut-off value calculated in theentire cohort (2·26 for
TMRS-RFS and 3·02 for TMRS-OS). In both training and validation sets,
Kaplan–Meier curves indicated that patients in the high-TMRS-RFS
group had a significantly higher risk of relapse (Fig. 2a–b). In ROC
(Fig. 2a–b) and c-index analyses (Table 1), the TMRS-RFSmodel showed
amuchhigherpredictive ability than that of the TNMstage, considered as
a continuousvariable, in the training andvalidationcohorts. Since stage is
a categorical variable,we converted TMRS-RFS fromcontinuous to three-
classified variables to enhance comparability, and the superior predictive
accuracy of TMRS-RFS was sustained even as a categorical variable (Sup-
plemental Fig. S3a–c and Table 1). Usingmultivariate analysis, the TMRS-
RFS model was also found to be a strong independent risk factor when
treated as a continuous variable in all patient cohorts (Table 2). Similar
resultswere also found for the TMRS-OSmodel in 678 patientswith doc-
umented OS information (Fig. 2c, Supplemental Fig. S3d–e, Tables 1–2).



Table 2
Univariate and multivariate survival analyses of TMRS-RFS, TMRS-OS and clinical variables.

UVA (RFS) UVA (OS) MVA (RFS) MVA (OS)

Entire p-Value Entire p-Value Training p-Value Validation p-Value Entire p-Value

Agea 1.00 (0.99–1.01) 0.996 1.04 (1.02–1.05) b 0.001 NE NE 1.03 (1.01–1.04) b 0.001
Gender (vs. Male) 0.73 (0.59–0.90) 0.003 0.82 (0.62–1.09) 0.176 NE NE 0.66 (0.48–0.90) 0.009
TMRS-RFSa 2.32 (2.13–2.53) b 0.001 / 2.70 (2.33–3.13) b 0.001 1.71 (1.43–2.04) b 0.001 /
TMRS-OSa / 2.73 (2.38–3.12) b 0.001 / / 2.67 (2.30–3.10) b 0.001
Stage(vs. stage I) 0.015 NE NE
Stage II 8.24 (2.03–33.39) 0.003 1.74 (0.91–3.34) 0.097 5.27 (0.72–38.64) 0.101
Stage III 17.97 (4.45–72.55) b 0.001 2.30 (1.20–4.41) 0.012 7.00 (0.96–50.97) 0.055
CMS (vs. CMS4) NE NE NE
CMS1 0.55 (0.35–0.86) 0.009 0.96 (0.63–1.45) 0.846
CMS2 0.59 (0.41–0.84) 0.003 0.63 (0.44–0.92) 0.015
CMS3 0.422 (0.25–0.73) 0.002 0.38 (0.20–0.72) 0.003

Abbreviation: TMRS, tumourmicroenvironment risk score, UVA, univariate analysis, MVA,multivariate analysis; RFS, relapse-free survival; OS, overall survival; CMS, consensusmolecular
subtypes; NE, not enter.

a Continuous variable.
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The predictive power of the TMRS-RFS and TMRS-OS models was
next tested in various subgroups stratified by patient dataset, age, gen-
der, stage, tumour site, and CMS subtype in the entire cohort, respec-
tively, where TMRS-RFS and TMRS-OS were both analysed as
continuous variables. Forest plots indicated that, for both models, a
higher value could significantly identify the patients with worse prog-
noses in all subgroups (Fig. 2d–e).

3.4. TMRS panel predicts therapeutic benefit of chemotherapy in colon
cancer

Adjuvant chemotherapy (ADJC) is the main treatment strategy for
non-metastatic colon cancer patients [35]. Since only the GSE39582
dataset recorded chemotherapy information of patients, we analysed
the relationship between the TMRS panel and ADJC benefits in this
dataset, where OSwas used as the treatment outcome. Survival benefits
of low-TMRS-RFS and low-TMRS-OS were maintained regardless of
ADJC conduction (Fig. 3a–b). Interestingly, it was observed that ADJC
significantly reduced the mortality risk of patients only in low-TMRS-
RFS and low-TMRS-OS groups but did not confer survival benefits to pa-
tients in high-TMRS-RFS or high-TMRS-OS groups (Fig. 3c). Further-
more, the results of stratified analysis of each stage (Supplemental
Fig. S4), showed that treatment benefits of ADJC were higher for pa-
tients in groups with low scores, in either Stage II or III. To develop a
clinically relevant quantitative method for predicting the probability
of patient mortality, we constructed two nomograms (Fig. 3d–e) inte-
grating both TMRS panel derived scores and independent clinical prog-
nostic factors in the GSE39582 dataset (Supplemental Table S7). The
calibration plots showed that the derived nomograms performed well
compared to the performance of an ideal model (Fig. 3f–g). Decision
curve analysis revealed that clinical usefulness of the nomograms signif-
icantly overwhelmed the TNM stage (Fig. 3h–i).

3.5. Identification of TMRS-RFS and TMRS-OS related biological pathways
and processes

The correlations between TMRS panel derived scores with clinical
characteristics and molecular subtypes were further investigated in
the GSE39582 series (Fig. 4a–b). In terms of clinical characteristics,
both TMRS-RFS and TMRS-OS were increased in patients withmore ad-
vanced stages and patients who had relapsed and died due to the dis-
ease. Furthermore, while gender influenced the value of TMRS-RFS,
that of TMRS-OS varied between age and tumour site. In terms ofmolec-
ular characteristics, we observed that KRAS mutation simultaneously
up-regulated the values of TMRS-OS and TMRS-RFS, and patients inmo-
lecular subtypes C4, C6, and CMS4 exhibited significantly higher values
of TMRS models than others. However, mismatch repair status was sig-
nificantly correlated only with the TMRS-RFS level. Next, we used GSVA
to study the association between potential biological phenotypes and
the two TMRS models. The result showed that the biological behaviour
of TMRS-OS and TMRS-RFS was similar to each other to some extent
(Fig. 4c). The two models were both positively correlated with stromal
activation relevant pathways, but negatively correlated with those of
DNA replication and repair, OXPHOS, and one carbon metabolism. Cell
infiltration analysis indicated that infiltration by multiple stromal cell
types significantly increasedwith rising TMRS-OS and TMRS-RFS scores,
while some immune cells, such as cytotoxic lymphocytes and NK cells,
were negatively correlated with TMRS-RFS scores (Fig. 4d).

3.6. The TMRS panel could be used for prognostic prediction and tailoring
therapies in gastric cancer

Reportedly, TME plays an important role in the initiation and pro-
gression of multiple tumour types [3,4]. Therefore, the current study in-
vestigated whether the TMRS panel can predict prognoses in patients
with stage I–III gastric cancer. The GSE62254 series downloaded from
GEO datasets indicated that in both OS (Fig. 5a) and RFS (Fig. 5b),
TMRS panel derived scores were predictive of a poor outcome and
acted as independent prognostic factors in gastric cancer patients (Sup-
plemental Table S8). A subsequent ROC analysis further confirmed
that the TMRS panel derived score models exhibited much better pre-
dictive accuracy in gastric cancer compared to those of the TNM stage
(Fig. 5a–b). Additionally, we found that the TMRS-RFS model, but not
the TMRS-OS model, could be used to screen gastric cancer patients
who could benefit from ADJC (Fig. 5c–d). Subsequent cell infiltration
(Fig. 5e) and GSVA analyses (Fig. 5f) showed that, compared with
TMRS-OS model, the TMRS-RFS model in gastric cancer is markedly
more related to stromal cell infiltration and the activation level
of stromal-relevant biological processes, such as EMT and angiogenesis.
Finally, the distribution of TMRS scores in patients of different ACRG
subtypes was compared [36]. The result showed that both TMRS-OS
and TMRS-RFS models have the highest scores in the “EMT” subtype,
while the lowest scored were observed in the “MSI” subtype (Fig. 5g).

3.7. TMRS panel predicts immunotherapeutic benefit

Currently, effective predictive markers for immune therapy are lim-
ited. The identification of novel predictive markers is crucial for further
advancing precision immunotherapy. We retrieved two immuno-
therapy datasets (Imvigor210, GSE78220) with the transcriptome
data released to explore whether TMRS panel could predict immuno-
therapeutic benefit. Imvigor210 documented expression data in
human mUC samples from patients who did or did not respond to
anti-PD-L1 immunotherapy, and GSE78220 is a malignant melanoma
dataset of patients who received anti-PD-1 therapy. The Kaplan–Meier
curve (Fig. 6a) revealed that a higher TMRS-OS value was associated



Fig. 3. (a–b) Kaplan–Meier curves of overall survival for patients in subgroups stratified by both TMRS-RFS (a)/TMRS-OS (b), and receipt of adjuvant chemotherapy; (c) Forest plot
showing the benefit of adjuvant chemotherapy in different TMRS groups; (d–e) Nomograms for predicting the probability of patient mortality based on TMRS-RFS (d), TMRS-OS
(e) and clinical variables; (f–g) Plots depict the calibration of nomograms based on TMRS-RFS (f) and TMRS-OS (g) in terms of agreement between predicted and observed 2-year, 3-
year, and 5-year outcomes. Nomogram performance is shown by the plot, relative to the 45-degree line, which represents the ideal prediction; (h–i) Decision curve analyses of the
nomograms based on TMRS-RFS (h) and TMRS-OS (i) for 2-year, 3-year, and 5-year risk. ADJC, adjuvant chemotherapy; TMRS, tumour microenvironment risk score; RFS, relapse-free
survival; OS, overall survival; Pr, probability; Nomo, nomogram.
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withmuch poorer survival in mUC patients who received immunother-
apy. A violin plot further demonstrated that TMRS-OS values succes-
sively and significantly increased in patient groups with complete or
partial response to stable disease and progressive disease(Fig. 6b). In
total, 57 (46·3%) responders of immunotherapy in the low-risk group
and 11 (6·3%) responders in the high-risk group (P = 3·0 × e−16, Chi
square test, Fig. 6c) were identified. Notably, the TMRS-OS model en-
abled the classification of responders and non-responders with a con-
siderably higher predictive power (AUC = 0·84, Fig. 6d) than both
neoantigen (AUC = 0·77) and tumour mutation burden (TMB, AUC
= 0·73). A complex model, combining the TMRS-OS, neoantigen, and
TMB models using logistic regression, identified treatment response
with a level of accuracy as high as 88% (Fig. 6d). PD-L1 expression in im-
mune cells, but not tumour cells, was associated with the response of
mUC patients towards anti-PD-L1 therapy [12]. Coincidently, a signifi-
cant negative correlation between the TMRS-OS value and PD-L1 ex-
pression in immune cells was also observed (Fig. 6e). In addition,
immune phenotype analysis demonstrated that the TMRS-OS value de-
creased with the activation of inflammation, although the P value was
not significant (P = 0·280, one-way ANOVA tests). The correlation



Fig. 4. Clinical significance and biological function of TMRSpanel. (a–b) TMRS-RFS (a) and TMRS-OS (b) values in different clinical subgroups. Boxes represent 25–75% of values, black lines
in boxes represent median values, whiskers represent 1.5 interquartile ranges, and black dots represent outliers; (c) Correlation matrix of TMRS-RFS, TMRS-OS values and the activation
levels of biological process. Shading colour represents the value of corresponding correlation coefficients and nonsignificant correlations are denoted by “x”; (d) Bubble plot showing the
correlations between TMRS-RFS, TMRS-OS values and cell infiltration. TMRS, tumour microenvironment risk score; RFS, relapse-free survival; OS, overall survival; RS, relapse status; LS, live
status;MMR, mismatch repair; CIMP, CpG island methylator phenotype; CIN, chromosome instability; MT, mutant type; WT, wild type; CS, c subtype; CMS, consensus molecular subtypes; APP,
antigen processing and presentation; HCL, hematopoietic cell lineage; TCR, T cell receptor; TCA, tricarboxylic acid; PM, pyruvate metabolism; OXPHOS, oxidative phosphorylation; PUM, purine
metabolism; PYM, pyrimidine metabolism; CYS, cysteine; OC, one carbon; BER, base excision repair; NER, nucleotide excision repair; MMR, mismatch repair; HR, homologous recombination;
NHEJ, non-homologous end joining; EMT, epithelial-mesenchymal transition; NK, natural killer; NS, not significant.
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test showed a negative correlation between TMRS-OS and immune cell
infiltration, TMB, and neoantigen, respectively. Unfortunately, infiltra-
tion of stromal cells was not significantly associated with TMRS-OS
value (data not shown). Finally, the GSE78220 dataset was used to fur-
ther verify predictive effect of TMRS panel on treatment outcome of
melanoma immunotherapy. The result also showed that the TMRS
panel could discriminate the prognoses of different patients (Supple-
mental Fig. S5a), and that patient scores were well connected to the
treatment effect (Supplemental Fig. S5b–c), with the AUC reaching a
value of 0·86 (Supplemental Fig. S5d). Of note, since information of
only 27 patients was included in the GSE78220 series, the use of the
TMRS panel containing 100 genes for the scoring might result in an
overfitting problem. Thus, cautionmust be exercised when interpreting
the relevant results.

4. Discussion

The heterogeneity of TME contains multiple dimensions of informa-
tion on patient prognosis and treatment response. Currently, several
signatures based on TME have been reported [20,21,37]. However, as
the genes included in these signatures were not all correlated with
prognosis, the prognostic prediction ability of these signatures were
not satisfactory. In colon cancer, Galon et al [38]. developed an
immunoscore system based on the density of CD3+, CD8+, or



Fig. 5. Exploration of the role of the TMRS panel in gastric cancer cohort. (a–b) Kaplan–Meier curves (left) and ROC curves (right) of overall survival according to TMRS-OS groups (a) and
relapse-free survival according to TMRS-RFS groups (b); (c–d) Kaplan–Meier curves of overall survival for gastric cancer patients in subgroups stratified by both TMRS-OS (c), TMRS-RFS
(d), and receipt of adjuvant chemotherapy; (e) Bubble plot showing the correlations between TMRS-RFS, TMRS-OS values and cell infiltration in GSE62254 series; (f) Heatmap showing
the correlation between TMRS-RFS, TMRS-OS and biological process in GSE62254 series; (g) Violin plot displayed the distribution of the TMRS-OS value (up) and TMRS-RFS value (down)
in different ACRG molecular subtypes of gastric cancer. P value for TMRS-OS comparison marked in red, and TMRS-RFS comparison marked in yellow. Boxes represent 25–75% of values,
black lines in boxes represent median values, white dots represent mean values, and whiskers represent 1.5 interquartile ranges. TMRS, tumour microenvironment risk score; RFS, relapse-
free survival; OS, overall survival; ADJC, adjuvant chemotherapy; NK, natural killer; NS, not significant; OXPHOS, oxidative phosphorylation; TCA, tricarboxylic acid; APP, antigen processing and
presentation; TCR, T cell receptor; BER, base excision repair; NER, nucleotide excision repair; MMR, mismatch repair; HR, homologous recombination; NHEJ, non-homologous end joining; EMT,
epithelial-mesenchymal transition; MSI, microsatellite instability; MSS, microsatellite stability.
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CD45RO+ lymphocytes in the central- and peri- tumoral areas, as repre-
sented by the intensity of IHC staining, and found that the prognostic
ability of the immunoscore was stronger than, and could potentially re-
place, the TNM stage. However, the latest multi-central clinical research
reported that the accuracy of the immunoscorewas only approximately
60% [6]. As such, although the prognostic ability of the immunoscore is
higher than that of the TNM stage, there is still room for improvement
in prediction accuracy. Neglecting the assessment of stromal cell infil-
tration may limit immunoscore prediction accuracy. When comparing
the cell infiltration status of TMEC1 and TMEC2, we found that both
stromal cell and immune cell infiltration significantly increased in the
TMEC2 type, and the level of increase in the former was far higher
than the latter. Further, the activation level of some stromal pathways
and expression of immune checkpointmoleculeswere also significantly
higher in the TMEC2 type. This indicated that large amounts of stromal
cell infiltration not only reversed the survival benefit of immune infil-
tration, but also kept the infiltrated immune cells in a state of exhaus-
tion, with inhibited functions, through up-regulation of immune
checkpoint molecules [39]. Under such circumstances, the prediction
accuracy of immunoscore may greatly decrease. In contrast to the
immunoscore, the TMRS panel we developed was based on genes
from 12 previously published studies, which provided transcriptomic
signatures of multiple non-cancerous cell types located in TME. These
cells included not only immune cells of various functional subtypes,
but also multiple stromal cells, such as endothelial cells, adipose cells,
and fibroblasts. Meanwhile, the successive application of the bootstrap
method to identify robust prognostic genes, and the machine-learning
method, LASSO regression, to screen the optimal combination of
genes, markedly raised the accuracy of the TMRS panel in predicting re-
lapse and mortality risks in colon cancer patients. Thus, this model may
have a strong clinical transformation value. However, microarrays
based on whole transcriptomes are not practical clinically. According
to the guidelines established byAltman et al. [40], before the gene signa-
ture is applied as a clinical grade assay, identification of an appropriate
approach to quantify the expression (microarray) and the design of spe-
cific probes based on the sequences tested in the microarray chips are
two necessary steps. Therefore, to make the TMRS signature more clin-
ically applicable, we plan to use a nanostring technique to develop a
gene detection kit based on these 100 genes and re-standardise the
gene expression value and the cut-off value. Finally, only signatures val-
idated in independent cohorts of patients with full clinical annotation
could be applied clinically, which will be reported in a future paper.
We will first validate the prognostic value of this model at our centre.

Chemotherapy is currently the main treatment strategy for cancer.
Detecting patients that could potentially benefit from chemotherapy is
an important step in precision treatment. Through analysis of the
GSE39582 dataset, we found that the TMRS panel could effectively
screen patients who were responsive to ADJC. Patients in the lower
TMRS score group may benefit significantly more than patients in the
higher TMRS score group. Several studies have reported that the EMT
and angiogenesis are themain factors influencing the efficacy of chemo-
therapy [41–43]. Correspondingly, we found that the above-mentioned



Fig. 6. TMRSpanel could be used for predicting immunotherapeutic benefit. (a) Kaplan–Meier curves of overall survival according to TMRS-OS groups in IMvigor210 cohort; (b) Violin plot
showing the correlation of TMRS-OS value and immunotherapeutic effectiveness in the Imvigor cohort. Boxes represent 25–75% of values, black lines in boxes represent median values,
white dots represent mean values, and whiskers represent 1.5 interquartile ranges; (c) Rate of clinical response to anti-PD-L1 immunotherapy in high or low TMRS-OS groups. (d) ROC
curves of immunotherapy response predictions according to different biomarkers; (e) Box plot displaying the distribution of TMRS-OS values in patients with different immune cell and
tumour cell PD-L1 status, aswell as immune phenotypes. Boxes represent 25–75% of values, black lines in boxes represent median values, whiskers represent 1.5 interquartile ranges, and
black dots represent outliers; (f)The correlation chord chart showing the mutual correlation between TMRS-OS value, TMB, NEO, and immune cell infiltration. TMRS, tumour
microenvironment risk score; OS, overall survival; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; NEO, neoantigen, TMB, tumour mutation burden; IC,
immune cell; TC, tumour cell; CTL, cytotoxic lymphocyte; NK, natural killer.
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pathways were significantly more activated in colon cancer patients
with higher TMRS scores than in patientswith lower scores. Thisfinding
has also been confirmed in gastric cancer datasets where TMRS-RFS,
with significant relevance to stromal pathway activation level, could
be used to discriminate patients who could benefit from ADJC, while
TMRS-OS, with no such significant relevance, did not display this func-
tion. Of note, due to limitation of the sample size in the datasets, addi-
tional prospective studies are required to further verify these findings.

Recently, clinical results from trials investigating checkpoint block-
ade inhibitors have attracted high interests in this therapeutic modality
[5]. However, the selection criteria for candidates who are likely to ben-
efit from such regimens requires further investigation. Encouragingly,
the risk score generated by TMRS panel was also found to be predictive
of outcome after anti-PDL1 inmUC and anti-PD1 inmelanoma. The pre-
diction accuracy of both patient cohorts reach approximately 85%,
which is significantly higher than the tumour mutation burden and
abundance of neoantigens models, which are biomarkers that predict
patient's response to immunotherapy [44,45]. Currently, in colon cancer
patients, the mismatch repair status is the only marker which predicts
whether the patient should receive immunotherapy, and only patients
with dMMR could possibly benefit [46]. As our study also revealed sig-
nificant variation of the TMRS-RFS value between patients with differ-
ent mismatch repair status, it may be speculated that immunotherapy
might also be a preferable choice for patients in the low-TMRS-
RFS group. Further investigation on the association between TMRS
panel and immunotherapy efficiency in colon cancer patients are
warranted.

Therewere some limitations to the present study. Firstly, the patient
population was heterogeneous because of the retrospective nature of
this study. Secondly, all colon cancer transcriptome profiling used for
panel construction was produced by the GPL570 platform. Therefore,
caution should be exerted when applying the panel to samples tested
using platforms other than GPL570. Thirdly, since gene expression
data was entered into Cox regression as categorical variables, the opti-
mal cut-off value needs to be further verified in future studies.

In conclusion, the TMRS gene panel is a robust tool for survival pre-
diction and treatment guidance in patients with stage I–III colon cancer.
Further, prospective clinical trials arewarranted to validate ourfindings.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.03.043.
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