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Abstract: We address the applicability of quantum key distribution with continuous-variable coherent
and squeezed states over long-distance satellite-based links, considering low Earth orbits and taking
into account strong varying channel attenuation, atmospheric turbulence and finite data ensemble
size effects. We obtain tight security bounds on the untrusted excess noise on the channel output,
which suggest that substantial efforts aimed at setup stabilization and reduction of noise and loss are
required, or the protocols can be realistically implemented over satellite links once either individual
or passive collective attacks are assumed. Furthermore, splitting the satellite pass into discrete
segments and extracting the key from each rather than from the overall single pass allows one
to effectively improve robustness against the untrusted channel noise and establish a secure key
under active collective attacks. We show that feasible amounts of optimized signal squeezing can
substantially improve the applicability of the protocols allowing for lower system clock rates and
aperture sizes and resulting in higher robustness against channel attenuation and noise compared to
the coherent-state protocol.

Keywords: quantum cryptography; quantum optics; quantum key distribution; continuous variables;
coherent states; squeezed states; satellite; low Earth orbit

PACS: 03.67.Hk; 03.67.Dd; 84.40.Ua

1. Introduction

Quantum key distribution (QKD) [1–3] is well known to have its goal in developing
methods (protocols) for sharing a secret key between legitimate users, who can lately use
the key for the confidential information transfers. First started with the discrete-variable
protocols based on direct detection of single-photon states (and their emulation using weak
coherent pulses or entangled photon pairs [4]), QKD was later extended to the realm of
continuous variables (CV) [5] based on efficient and low-noise homodyne detection of
multiphoton coherent or squeezed states of light.

One of the important applications of QKD is in the extra-terrestrial channels, which
potentially allow extremely long-distance secure communication enabled by QKD over
a satellite. While discrete-variable protocols were recently successfully tested over the satel-
lite links [6–9], the applicability of satellite-based CV QKD remains less studied. Indeed,
it was considered in the asymptotic regime of the infinitely many quantum states [10,11],
which however is never the case in practice. Moreover, CV QKD may have an important
practical advantage in free-space applications and particularly in the satellite-based chan-
nels because a homodyne detector, in which the signal is coupled to a narrow-band local
oscillator (bright coherent beam used as a phase reference), intrinsically filters out the back-
ground radiation at unmatched wavelengths [12]. Thus CV QKD can operate in conditions
of strong stray light and potentially at daytime, which, in the case of discrete-variable
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protocols, would require additional filtering, increasing attenuation and complexity of the
set-up. Recently, the feasibility of coherent-state CV QKD over satellite links was discussed
in [13]. In the current work we analyze applicability of CV QKD over satellite-based
channels considering also squeezed signal states. As the feasible squeezing up 10 dB,
achievable with current technology [14], is known to improve robustness of CV QKD to
noise [15–17], we confirm its usefulness in the satellite-based links as well. We build the
channel model on the assumption of normal fluctuation of deflected signal beam center
around the receiving aperture center and study applicability of CV QKD, taking into ac-
count the finite data ensemble size. We show that in this regime the protocols appear to be
extremely sensitive to strong channel attenuation and large amounts of data are required
for successful realization of CV QKD over satellites, which contradicts relatively short
passage times. Possible solutions to circumvent the problem can be (i) use of squeezed
states, that reduce requirements on the data ensemble size and can tolerate stronger atten-
uation and channel noise; (ii) relaxation of security assumptions considering individual
attacks or passive eavesdropping, introducing no excess noise; (iii) increase of the link
transmittance using larger telescopes in the downlink regime; (iv) increase of the repetition
rate of the system in order to accumulate larger statistics. Our results reveal substantial
challenges for implementing CV QKD over satellites but shows no fundamental limits
for such realizations. Already under the strict assumption of collective eavesdropping
attacks and untrusted channel noise, CV QKD protocols using feasible squeezing should
be applicable with low-orbit satellites, while in the assumption of passive eavesdropping
squeezed-state CV QKD can tolerate up to 43 dB of channel attenuation, which paves the
way towards realization over geostationary satellites.

2. Security of CV QKD

We address satellite-based implementation of Gaussian CV QKD protocols [18] using
coherent or squeezed states of light as shown in Figure 1a. We describe the quantum
states of light in a given mode of electromagnetic radiation using two complementary
observables, namely quadratures, being analogues of position and momentum operators
of a single particle, and expressed through mode’s quantum operators as x̂ = â† + â and
p̂ = i[â† − â]. The sender Alice prepares coherent or squeezed states using respectively
a laser source or an optical parametric oscillator [19] and modulates the states by applying
quadrature displacements, governed by independent zero-centered Gaussian distribu-
tions, by using quadrature modulators. This way Alice prepares the states described
by the quadratures x̂A = x̂S + x̂M and p̂A = p̂S + p̂M, where x̂S and p̂S with variances
Var(x̂S) = VS and Var( p̂S) = 1/VS (we define variance of an operator r̂ with zero mean
value as Var(r̂) = 〈r̂2〉) are the quadrature values of the signal (so that either VS = 1 for
coherent states or with no loss of generality we assume x−quadrature squeezed states
with VS < 1). x̂M and p̂M with Var(x̂M) = Var( p̂M) = VM are the displacements known
to Alice, which constitute her classical data contributing to the final secret key. The signal
then travels through a generally noisy and lossy quantum channel, which can be opti-
mally [20,21] represented as a Gaussian channel resulting in the output state described
by the quadratures x̂B =

√
ηx̂A +

√
1− ηx̂0 + x̂N , where η is the channel transmittance,

x̂0 with Var(x̂0) = 1 is the variance of the vacuum noise concerned with the channel
attenuation, and x̂N is the contribution from the excess noise on the channel output with
Var(x̂N) = ε, similarly for p−quadrature with the same η and ε, as the free-space chan-
nel is typically phase-insensitive. Trusted parties use a beacon laser for signal acquiring,
tracing and pointing, as well as for timing synchronization [22]. The receiving side Bob is
performing homodyne detection on the incoming mode by measuring x̂B or p̂B (bases have
to be randomly switched between in order to fully characterize channel loss and excess
noise). Preferably such measurement is made using locally generated local oscillator [23,24],
that despite additional noise contribution from signal wavefront aberration [25] and phase
noise due to relative phase drift [26–28], allows for one to avoid phase reference pulse
attenuation in a strongly lossy satellite link and provides enhanced security of the protocol
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by ruling out the attacks on the local oscillator. After accumulating a certain amount of data
points N from state preparation and measurement, parties use N − n of these to estimate
the channel parameters η and ε, from which the security of the protocol can be assessed as
described below. The remaining n points are processed using error correction and privacy
amplification algorithms [4] in order to obtain the resulting provably secure key which
can then be used for classical encryption. The ratio n/N can be optimized [29], here for
simplicity we assume it to be 1/2 (which is close to optimal except for the low repetition
rates) and resulting estimates to be perfectly accurate i.e., with infinitesimal confidence
intervals (or already being pessimistic lower bounds complying with a given probability
of failure of the channel estimation procedure). We assume that the remote trusted side
(Bob) is the reference side for the error correction algorithms, thus using so-called reverse
reconciliation, which was shown robust against any level of pure channel loss [30] and is
applicable in the strongly attenuating links with η� 1.

Figure 1. (a) CV QKD scheme based on a signal state preparation using a Source (laser or optical
parametric oscillator for preparation of coherent or squeezed states respectively) and a quadrature
Modulator (driven by the data xM, pM) on the side of Alice and on a homodyne detection on
the side of Bob, resulting in measurement outcomes xB or pB after the propagation through an
untrusted quantum channel with transmittance η and excess noise ε related to the channel output;
(b) Theoretical purification scheme of the state preparation on the side of Alice based on generation of
two oppositely squeezed states with variances (3) on optical parametric oscillators (squeezers) S1 and
S2, coupling squeezed states on a balanced beamsplitter, and local homodyne measurement on the
Alice’s side resulting in xA or pA on one of the modes (equivalent to modulation of squeezed states;
in the case of coherent-state protocol, a heterodyne detection, resulting in xA and pA, is considered at
Alice’s side), while the other mode is sent to the channel towards Bob, the rest of the scheme is an
in (a).

Security of CV QKD was established against two main types of attacks, namely
individual, when an eavesdropper is able to interact optimal probe states with the signal
states and then individually measure the probes, and collective, when the probes are
assumed to be stored in a quantum memory after the interaction and then optimally
collectively measured, which increases the amount of information that can be potentially
obtained by an eavesdropper [31]. Security of the coherent-state protocol with heterodyne
detection against collective can be extended to security against general attacks using de
Finetti reduction [32], similar extensions for the squeezed-state protocol and homodyne
detection being more demanding [33,34].

We study security of the above described protocol by evaluating the lower bound
on secure key rate per channel use, which in the finite-size regime, reverse reconciliation
scenario and firstly assuming collective attacks, performed by an eavesdropper, reads

K = max
{

0,
n
N

[
βIAB − χBE − δ(n)

]}
, (1)

where β ∈ [0, 1] is postprocessing efficiency representing how close the trusted parties are
able to reach the Shannon mutual information IAB using realistic error correction codes,
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χBE is the Holevo bound [35], giving the upper bound on an eavesdropper’s information

on the measurement results at the remote receiving side, Bob, and δ(n) ≈ 7
√

log2 (2/ε̄)
n is

the correction parameter related to the finite-size effects [36], where ε̄ is the smoothing
parameter that contributes to the overall failure probability of the protocol and is set further
to 10−10.

The mutual information between the trusted parties IAB = 1/2 log2 VB/VB|A for the
Gaussian-distributed data can be expressed through variances and correlations between
the measurement outcomes, i.e., through the variance of Bob’s measurement VB = ηV +
(1− η) + ε, where V ≡ VS +VM, and conditional variance VB|A = VB−C2

AB/VA, VA ≡ VM
is the variance of Alice’s data and CAB =

√
ηVM is the correlation between modulation

data and measurements on x̂B, for the zero-mean-distributed observables obtained as
CAB = 〈x̂M x̂B〉. The resulting expression for the mutual information then reads

IAB =
1
2

log2

[
1 +

ηVM
ηVS + 1− η + ε

]
(2)

and is essentially determined by the signal modulation variance VM, signal state variance
VS, channel transmittance η, and channel noise ε related to the channel output.

Evaluation of the Holevo bound on the other hand is more involved. It is based on the
assumption that Eve holds purification of the noise added in the channel (due to losses and
excess noise) and relies on the evaluation of von Neumann entropies of the state shared
between Alice and Bob [37]. This is performed in the equivalent entanglement-based
representation, when state preparation is purified using two-mode entangled state. In the
case of coherent-state protocol a symmetrical two-mode squeezed vacuum (TMSV) [38]
state with variance V = 1 + VM is used for purification, such that Alice is measuring
one of the modes using a heterodyne (balanced homodyne) detector [37]. For a general
state preparation in the squeezed-state protocol, assuming independent levels of signal
squeezing and modulation variance (contrary to the standard symmetrically modulated
protocol, where squeezing and modulation are essentially related as VM = 1/VS −VS [39]),
we use the generalized entanglement-based scheme using an asymmetrical entangled state
instead of TMSV and a homodyne detection on the local mode [17], as shown in Figure 1b.
The preparation in this case is equivalent to the prepare-and-measure scheme provided
the asymmetrical state is constructed of the oppositely squeezed states with variances in
x-quadratures being

V1 = VS + VM −
√

VM(VS + VM), V2 = 1/
[
VS + VM +

√
VM(VS + VM)

]
, (3)

while having the opposite variances (1/V1 and 1/V2 respectively) in the p-quadratures.
In the purification-based scenario, the Holevo bound is evaluated as χBE = S(AB)−

S(A|B), where S(·) denotes the von Neumann (quantum) entropy of a state, S(AB) is
the quantum entropy of a (generally noisy) state shared between the trusted parties and
S(A|B) = S(A|xB) is the von Neumann entropy of the state of the trusted parties, condi-
tioned by Bob’s measurement results in x-quadrature. We obtain the relevant von Neumann
entropies from bosonic entropic functions of symplectic eigenvalues of respective covari-
ance matrices of the states, shared between Alice and Bob (see [37] for details of security
analysis techniques in CV QKD).

In the case of individual attacks and reverse reconciliation scenario, the upper bound
on the information leakage is reduced to the classical (Shannon) information between Bob
and Eve, which, similarly to IAB (2) described above, reads IBE = (1/2) log2 (VB/VB|E).
The evaluation of VB|E is done in the assumption that Eve is able to purify the channel noise.
The optimal individual attack in this case is the entangling cloner attack [40], which is
a TMSV state of variance VN = 1+ ε

1−η set so to emulate the channel loss η and noise ε. One
of the modes of the cloner interacts with the signal with a linear coupling η, corresponding
to the channel loss and resulting in VB = ηV + (1 − η)VN (which gives exactly VB as
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described above and as expected by the trusted parties), while the other mode is measured
by Eve in order to reduce her uncertainty on the quantum noise added in the channel. The
mutual information between Bob and Eve then reads [40,41]

IBE =
1
2

log2

{
1
V
[1 + ε + η(V − 1)][η(V − 1) + V(ε + 1)]

}
, (4)

which gives the bounds on the secure key rate in the case of individual eavesdropping
attacks, similarly to (1).

3. CV QKD over Satellite Channels

The main challenge in the satellite-based communication, and particularly the quan-
tum one, is the extremely strong attenuation levels, which are much higher than the typical
loss in the terrestrial fiber and free-space links in which QKD was mostly tested.

The total level of signal loss in a satellite link can widely vary and depends on the
type of satellite and technical specifications of the channel realization. Indeed, in the
recent experiment with measurement of the quantum-limited signal from a geostationary
satellite using the homodyne detection, the total loss of 69 dB was observed [42] with an
aperture of 27 cm. The loss can be reduced to 55 dB once a bigger aperture of 1.5 m is used.
Alternatively, the channel loss from a low Earth orbit (LEO) satellite can be substantially
smaller and as low as 31 dB for an Alphasat-like satellite at a distance of 500 km. The
loss can be reduced to about 20 dB by using larger receiving apertures [42]. Therefore, it
is important to assess applicability of CV QKD in various scenarios, mainly resulting in
different optical link attenuation levels.

3.1. Quantum Channel and Protocol Parameters

The protocols are essentially influenced by the excess noise on the channel output, ε,
further fixed to 10−4 shot-noise units (SNU), which are the vacuum quadrature fluctuations.
This complies with the experiment in the 100-km optical fiber with the total attenuation of
−20 dB, where the noise on the channel input was estimated as 3% SNU [43] and with the
recent experiment in the 300 km long low-loss fiber with the total attenuation of −32 dB,
where the noise at the channel input was estimated in the worst case as 3.8% SNU [44]. Note
that the excess noise is mainly concerned with imperfect parameter estimation from the
homodyne data on the receiving side of the protocol (even if the channel noise is physically
absent, the pessimistic assumption on the level of noise, related to noise estimation error,
results in effectively nonzero level of channel noise in order to comply with the required
probability of failure of channel estimation procedures [29]), which substantially depends
on the stability of the set-up. It is essential that we fix the noise at the channel output
contrary to the standard approach in CV QKD, when noise was fixed as relates to the
channel input and then scaled by the channel attenuation, making the assessment of the
channel noise in long-distance channels too optimistic. Alternatively and taking into
account the fact that the excess noise atop of the calibrated electronic noise of the detector
appears most likely due to the imperfect estimation of a noiseless quantum channel, one
may assume passive eavesdropping such that no untrusted channel excess noise is present.
In the case of satellite-based links, where line of sight between the sender and the receiver
suggests the absence of equipment capable of active eavesdropping, this is a particularly
sensible assumption and it was applied recently for feasibility study of DV QKD over
satellite links [45]. We also take this assumption into account in CV QKD by assuming the
excess noise to be trusted (i.e., being out of control by an eavesdropper) and including it
in the state purification using the scheme similar to the entangling cloner with a strongly
unbalanced coupling to the signal prior to detection [37].

For the data ensemble size, we rely on the typical passage time of 300 s observed for
the Micius quantum satellite [7]. Assuming repetition rate of a CV QKD system to be of
order of GHz, which is challenging but feasible with the current technology [46], we may
expect N = 1011 data points acquired during a satellite passage, half of which will then
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contribute to the key. Lastly, postprocessing efficiency is taken β = 0.95, complying with
the currently available algorithms [47].

The maximum tolerable channel attenuation gives the idea of the protocols applicabil-
ity independently of the aperture setting and random atmospheric disturbances, i.e., based
only on the link optical budget. The results are summarized in Table 1 for given security
assumptions and protocol parameters (signal states and clock rates).

Table 1. Tolerable levels of channel attenuation (rounded) for various security assumptions and
optimized CV QKD protocol settings. Excess noise on the channel output is fixed to ε = 10−4 SNU
and optimal squeezing is VS ≥ 0.1 SNU. During a passive attack the excess noise is presumed to
be trusted.

Coherent States Squeezed States
100 MHz GHz 10 GHz 100 MHz GHz 10 GHz

Active collective attack 23 dB 24 dB 25 dB 29 dB 30 dB 31 dB
Passive collective attack 27 dB 32 dB 37 dB 33 dB 37 dB 42 dB
Active individual attack 29 dB 34 dB 39 dB 33 dB 37 dB 43 dB

Passive individual attack 29 dB 34 dB 39 dB 33 dB 38 dB 43 dB

Evidently, in the assumption of passive eavesdropping there is no substantial dif-
ference between collective and individual attacks. On the other hand, when the channel
excess noise is assumed to be untrusted, relaxing the assumptions on the possible attacks
from collective to individual ones can substantially extend the tolerable loss. Note that
the use of squeezed states typically increases the tolerable channel attenuation by 4–6 dB
depending on the attack assumption (the better improvement being observed upon more
strict collective attacks). Furthermore, with the high repetition rate the squeezed-state
protocol can tolerate from 30 to 44 dB of channel attenuation depending on the attack
assumption, making it potentially feasible in the geostationary scenario.

Performance of CV QKD over short-range (terrestrial) free-space links can be essen-
tially limited by quantum channel transmittance fluctuations [48,49], also referred to as
fading, which are mainly caused by the atmospheric turbulence effects of beam wander [50],
when a beam spot travels around the receiving aperture. The channel fading then results
in increase of the channel noise, detected on the receiver [48]. Even though this effect will
be partially compensated for in the long-distance realization of CV QKD, where beam spot
drastically expands during the propagation, which results in channel stabilization at the
cost of increasing the overall loss [51] as well as by active beam tracking and stabilization
systems, it must be taken into account in the realistic CV QKD security analysis. However,
as the residual transmittance fluctuations due to atmospheric effects are slow (of the order
of KHz [52]) compared to high achievable repetition rates of CV QKD systems (enabled by
GHz rates of homodyne detectors [46]), the fading can be further compensated for by prop-
erly grouping the data according to estimated relatively stable transmittance values [53],
which we also apply in our study.

3.2. Satellite-to-Ground Channel Model

In our study we consider that downlink satellite channels, as the turbulence effects,
being destructive for CV QKD [48], are less pronounced in this regime compared to the
uplink scenario, where the signal is strongly affected by the atmosphere already in the
beginning of the channel [54]. Optical Gaussian beam in the satellite-to-ground link is
influenced by analytically predictable systematic and statistical effects occurring during
the communication window. Aside from losses within the receiver optical system ηdet,
due to coupling and detection inefficiencies, systematic effects also include diffraction and
refraction induced losses. The main source of loss is beam-spot broadening caused by
diffraction. The broadening limits the maximal transmission efficiency η0 as finite receiving
aperture of size a truncates and measures only a part of the incoming collimated beam with
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spot-size W. The latter is largely determined as W = θdL(ζ) by divergence of the beam θd
and the channel length L(ζ). Line-of-sight distance, also referred to as slant range, between
the observer and the satellite depends on the exact position of the latter. In following we
assume a perfectly circular Low-Earth orbit within observers meridian plane, characterized
by the altitude above the ground H, ranging from 200 km to 2000 km. The slant range is
obtained as

L(ζ) =
√

H2 + 2HR⊕ + R2
⊕ cos2 ζ − R⊕ cos ζ, (5)

where R⊕ is Earth radius and ζ is zenith angle i.e., between the line pointing in opposite
direction to the gravity from the observer and the slant range, see also Figure 2. Addition-
ally, air density and optical refractive index change with the altitude causing the bending
of the beam and making the overall traveling distance longer than the straight geometrical
slant range. The refraction induced elongation also depends on the signal wavelength, geo-
graphical position and altitude of the receiver as well as atmospheric conditions (relative
humidity, temperature, wind, pressure). We assume the communication window is estab-
lished up to the zenith angle ζmax = 70◦, when the difference between actual and perceived
slant ranges is small [55]. While such limitation reduces the communication window and
the size of data block, it also avoids contributions from the longest propagation distance
overall and through the thickest air mass [56,57]. Duration of communication window, i.e.,
total time in view of the satellite t, determines the amount of accumulated data points N for
given source repetition rate. The time in view is calculated from geometrical considerations
and satellite orbital velocity, which for circular orbit in the observers meridian plane can be
simplified as [58,59]:

t ≈ 2
(R⊕ + H)3/2
√

G ·M⊕

(
ζmax − arcsin

[
R⊕

R⊕ + H
sin ζmax

])
, (6)

where G is the gravitational constant, and M⊕ is Earth mass.

R⊕

H L(ζ)

ζ

ζ=0

ζ=π/2

ζmax No tracking

Earth center

horizon

Alice

Bob

Figure 2. Geometrical representation of satellite-to-ground communication scheme. H is the circular
orbit altitude; R⊕ is Earth radius; ζ ∈ [−Pi/2, Pi/2] is the angle between the ray in the meridian
plane, pointing above the observer (Bob), and the direct line connecting Bob and satellite (Alice),
in practice limited to ±ζmax; and L(ζ) is the slant range.

The volume of air mass is related to the atmospheric extinction ratio ηext, which is
a measure of Rayleigh scattering, scattering due to aerosols and molecular absorption
experienced by the signal beam in terrestrial atmosphere [60]. The value of extinction ratio
ηext,ζ=0 depends on the the signal wavelength, air constituents, temperature and weather
conditions, and its change with increase of the path length through the atmosphere (in
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terms of zenith angle) can be approximated (for angles up to ζmax where refraction effects
are small) as [61,62]:

ηext(ζ) = η
sec(ζ)
ext,ζ=0. (7)

The ratio at zenith can be obtained based on MODTRAN atmospheric transmittance
and radiance model [63], which for rural or urban sea-level Mid-latitude location with clear
sky visibility yields ηext = 0.908.

Aside from aforementioned effects, refraction and diffraction are also caused by wind
shear and temperature fluctuations and consequently by spatial and temporal variations
of refractive index in the channel. Such perturbations result in scintillation, deviation of
beam-spot from the center of the receiving aperture and deformation of the beam-spot. For
satellite links, the beam-spot radius is always significantly larger than the aperture, i.e.,
W > a, which allows us to ignore the deformation of the Gaussian beam profile, hence
making beam wandering the dominant effect governing the fluctuation statistic of the
channel transmittance.

The maximal transmission efficiency is reached when incoming signal is perfectly
aligned with the receiving aperture (r = 0) and is defined by the ratio a/W of the aperture
and beam spot sizes as follows

η0 = 1− exp
[
−2
( a

W

)2
]

. (8)

Efficiency η ∈ [0, η0] decreases with the increase of deflection distance r, with approxi-
mate analytical solution [50] being

η = η0 exp
[
−
( r

R

)λ
]

, (9)

where λ and R are shape and scale parameters respectively:

λ = 8
( a

W

)2 exp
[
−4
( a

W
)2
]

I1

[
4
( a

W
)2
]

1− exp
[
−4
( a

W
)2
]

I0

[
4
( a

W
)2
]{ ln

 2η0

1− exp
[
4
( a

W
)2
]

I0

[
4
( a

W
)2
]
}−1

, (10)

R = a

{
ln

 2η0

1− exp
[
−4
( a

W
)2
]

I0

[
4
( a

W
)2
]
}−1/λ

, (11)

where In is n-th order Bessel function. The position of deflected beam center is assumed
to be normally fluctuating around the aperture center [64] and described by random
transverse vector r0:

P(r0) =
1

2πσ2
BW

exp

[
−

r2
0

2σ2
BW

]
, (12)

where beam-wandering variance is limited by tracking accuracy and beam stabilization
σBW = θpL(ζ), and r = |r0|2. The analytical form of the probability distribution of
atmospheric transmittance is the log-negative Weibull distribution [64]:

P(η) = R2

λησ2
BW

(
ln

η0

η

)2/λ−1
× exp

[
− R2

2σ2
BW

(
ln

η0

η

)2/λ
]

.

We simulate the values of η for each zenith angle ζ ∈ [−ζmax, ζmax] within the com-
munication window with respect to the clock rate of the CV QKD protocol and combine it
with systematic receiver loss ηdet and respective extinction ratio ηext (ζ) to obtain an overall
mean transmittance 〈ηtot〉 (as well as 〈√ηtot〉) of the satellite pass. Hence the transmit-
tance statistics during an overall communication window consists of contributions from
individual simulated free-space channels at every permitted zenith angle ζ. Both 〈ηtot〉
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and 〈√ηtot〉 govern the evolution of a covariance matrix of the state shared between Alice
and Bob over the fluctuating channel [65]. Note that we evaluate the mutual information
between the trusted parties, IAB, from the overall covariance matrix, averaged over the
whole transmittance distribution (similarly to evaluating the Holevo bound), which we
observe to be lower than the average mutual information, hence being the pessimistic
estimate. Following is the list of parameters used in the simulation: the receiver aperture
radius a = 0.5 (m) (respective plots shown in green color) 0.75 (m) (shown in blue), and
1 (m) (red), wavelength λ = 1550 (nm), detection efficiency ηdet = −3 dB [56], tracking
and pointing accuracy θp = 1.2 (µrad) [22], and beam divergence θd = 10 (µrad) [7]. The
resulting mean transmittance for a single pass at altitude H is shown in Figure 3.

500 1000 1500 2000

10

15

20

25

30

35

H (km)

〈η
to
t〉

(d
B
)

Figure 3. Mean signal loss in satellite-to-ground channel dependence on orbit altitude H with
receiver aperture radius a = 0.5, 0.75, 1 m (from top to bottom respectively). Single pass trans-
mittance distribution is assembled from simulated individual links at every zenith angle within
−ζmax < ζ < ζmax.

3.3. Security Evaluation

We first assess the security by looking at the impact of individual attacks in asymptotic
regime (see Figure 4 left). In this regime, security can be established for every LEO satellite
altitude and feasible squeezing VS ≥ 0.1 (SNU) provides a noticeable rate gain. Note
that under the individual attacks, the higher levels of squeezing always translate into
a higher secure key rate, which is not the case for collective attacks where the transmittance
fluctuations limit the applicable values of squeezing [66] and require active squeezing opti-
mization based on the estimated atmospheric transmittance distribution. The optimization
of the latter is a crucial step required for the establishing of secure key rate based on the
data generated from a single pass of the satellite.

The performance of the optimized CV QKD protocol under passive collective attacks
with trusted noise ε = 10−4 is depicted in Figure 4 (right). The impact of finite-size effects
reduces with an increase of the altitude H as the communication window gets longer and
consequently the overall block size N gets larger. Low altitude satellite downlinks exhibit
less mean attenuation but such advantage is partially offset by larger confidence intervals
of estimated channel parameters and shorter raw key. While optimization of estimation
block-size N − n can lengthen the key to some extent, increasing the repetition rate of the
system is necessary to greatly extend the raw key. Higher repetition rate is especially crucial
for the coherent-state protocol that can be implemented at the altitudes above 500 km only
with 10 GHz clock rates. Increasing the size of receiving aperture also leads to significant
improvement of the secure key rate.

Mean channel attenuation and fading noise, originating from transmittance fluctua-
tions, diminish the tolerance to the channel excess noise, as shown in Figure 5. Evidently,



Entropy 2021, 23, 55 10 of 14

both protocols are extremely sensitive to excess noise and no secure key can be generated
at any orbit altitude if the noise at the output of the squeezed-state protocol is ε ≥ 2 · 10−3

SNU for a = 0.5, or if the noise ε ≥ 5 · 10−3 for a = 0.75, with orders of magnitude
lower values needed for security of the coherent-state protocol (ε ≥ 6 · 10−5 at a = 0.5, or
ε ≥ 4 · 10−4 at a = 0.75). Note that with an increase of satellite orbit altitude, the rate at
which the protocol loses noise tolerance decreases. As the optical channel becomes longer
it also becomes more stable [48,51], i.e., both mean attenuation and fading (viewed as the
variance of transmittance fluctuations 〈ηtot〉 − 〈

√
ηtot〉2) are simultaneously reduced.

While the effect at LEO altitudes is more apparent for the coherent-state protocol,
the same dependency can be expected for the squeezed-state protocol at higher altitudes
(MEO or GEO). Furthermore, channel stabilization will be more pronounced with less
accurate beam-tracking θp which directly limits the beam-wandering and consequently
channel fading.
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0.100
Key rate (bits/pulse)
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Figure 4. (Left) Asymptotic lower bound on the key rate (in bits per channel use) of the optimized coherent-state (dashed)
and squeezed-state CV QKD protocols (solid) secure against active individual attacks for a single pass of a LEO satellite
with orbit altitude H and receiver aperture radius a = 0.5, 0.75 m (green and blue lines respectively). Channel excess
noise at the output ε = 10−4 SNU. (Right) The key rate (in bits per channel use) of optimized coherent-state (dashed) and
squeezed-state protocol (solid) under passive collective attacks for a single pass of a LEO satellite with orbit altitude H, and
receiver aperture radius a = 0.5, 0.75 m (green and blue lines respectively). Note that the coherent-state protocol can only
be securely established with larger aperture a = 0.75 m. The overall block size depends on the length of communication
window (given by the orbit altitude h) and the clock rate (from bottom to top) 100 MHz, 1 GHz and 10 GHz. Trusted channel
noise at the output is 10−4 SNU. Both squeezing and modulation variance are optimized (with optimal squeezing limited
by a feasible value as VS ≥ 0.1) in order to establish a secure key regardless of the altitude.

Clearly, in order to operate under collective attacks with untrusted channel noise,
the noise has to be limited to very low values. This can be achieved by proper control of
the set-up or precise parameter estimation; however, one can as well reduce the amount
of fading noise by dividing the overall single-pass data block into a subset of smaller
blocks [48]. Data clusterization with respect to channel attenuation allows to compensate
the effect of channel transmittance fluctuations [53]; however, such postprocessing can
be demanding for satellite-based QKD and is not needed for slow systematic changes of
transmittance during the satellite pass. In the current work we therefore adopt simpler
albeit similar method by splitting the satellite tracked pass into a set of segments and
generating the key for each one. This allows for the achievement of the following lower
bound on the overall secure key rate as a weighed sum of the key rates from individual
segments:

K = ∑
i

max
{

0,
ni
N
[βIAB − χBE − δ(ni)]

}
, (13)

where ni is the raw key length for a given segment i with number of data points Ni, so that
∑i Ni = N, Ni − ni of data points is used for segment channel estimation, and the weight is
determined by the relative size of the segment ni/N, with N being the overall block size for
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a given satellite pass. The segments are chosen in accordance with the zenith angle ζ, so that
for i = 1, 2, 3 we obtain three segments each containing measurement results at respectively
[−ζmax,−2/3 ζmax) ∪ (2/3 ζmax, ζmax], [−2/3 ζmax,−1/3 ζmax) ∪ (1/3 ζmax, 2/3 ζmax], and
[−1/3 ζmax, 1/3 ζmax]. The finite-size effects are stronger within each segment and trans-
mittance fluctuations are substantial, yet reduced. Three segments are already sufficient
to attain an enhanced positive secure key rate and extend the range of secure altitudes, as
shown in Figure 6. For systems with smaller apertures this implies an effective increase of
no tracking zone ζmax, as the segment characterized by the longer slant ranges L(ζ) might
not contribute to the overall key.

500 1000 1500 2000
H (km)10-6

10-5

10-4

0.001

ϵmax (SNU)

500 1000 1500 2000
H (km)10-6

10-5

10-4

0.001

ϵmax (SNU)

Figure 5. Maximal tolerable excess noise in the case of active collective attacks on squeezed- or coherent-state protocols (solid
and dashed lines respectively) with receiver aperture size a = 0.5 (left) and 0.75 (right). From top to bottom: asymptotic
regime, finite-size regime with repetition rate (from bottom to top) 100 MHz, 1 GHz, and 10 GHz. Squeezing VS ≥ 0.1 and
modulation variance VM are optimized.

Figure 6. Secure key rate without channel subdivision (solid lines) and with channel subdivision in 3 segments (dashed
lines) versus orbit altitude H (km), secure against collective attacks in the finite-size regime with number of data points
determined by (from darker to lighter shade) repetition rate 100 MHz, 1 GHz, 10 GHz for the squeezed-state protocol with
optimized squeezing VS≥ 0.1 in the presence of untrusted excess noise ε = 10−4 related to the channel output. Aperture
size a = 0.5 m (left) and a = 0.75 m (right).

4. Conclusions and Discussion

We studied applicability of CV QKD over satellite links considering coherent and
squeezed-state protocols, taking into account realistic satellite passage, atmospheric effects,
finite data ensemble size, system clock rate and data processing efficiency. We show that the
protocols are very sensitive to channel noise at the respective loss levels so that either set-up
stabilization resulting in drastic decrease of noise or relaxation of security assumptions
to individual or passive collective attacks is required for implementation over the low
Earth orbit satellites. Satellite pass segmentation provides another viable option to reduce
channel fading thus improving the secure key rate and allowing to establish the secure
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link with satellites at higher altitudes. We show that the use of squeezing can make the
protocols more applicable in the satellite links, allowing for higher attenuation and levels of
noise at the given security assumptions, and it has to be optimized in the collective attacks
scenario. On the other hand, in the case of trusted noise assumption and at high repetition
rates, squeezed-state CV QKD can tolerate attenuation levels up to 42 dB, which may open
the possibility of use over geostationary satellites. The obtained results are promising for
satellite-based QKD, potentially applicable in daylight conditions.
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