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Background: The pathogenesis of Alzheimer’s disease is associated with dysregulation

at different levels from transcriptome to cellular functioning. Such complexity necessitates

investigations of disease etiology to be carried out considering multiple aspects of the

disease and the use of independent strategies. The established works more emphasized

on the structural organization of gene regulatory network while neglecting the internal

regulation changes.

Methods: Applying a strategy different from popularly used co-expression network

analysis, this study investigated the transcriptional dysregulations during the transition

from normal to disease states.

Results: Ninety- seven genes were predicted as dysregulated genes, which were

also associated with clinical outcomes of Alzheimer’s disease. Both the co-expression

and differential co-expression analysis suggested these genes to be interconnected as

a core network and that their regulations were strengthened during the transition to

disease states. Functional studies suggested the dysregulated genes to be associated

with aging and synaptic function. Further, we checked the conservation of the

gene co-expression and found that human and mouse brain might have divergent

transcriptional co-regulation even when they had conserved gene expression profiles.

Conclusion: Overall, our study reveals a core network of transcriptional dysregulation

associated with the progression of Alzheimer’s disease by affecting the aging and

synaptic functions related genes; the gene regulation is not conserved in the human

and mouse brains.
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1. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder most prevalent in people over the age of
65 years (Lashuel et al., 2002; Goedert and Spillantini, 2006; Prince et al., 2013). As the population
ages, AD will impact more people and place an increasing economic burden on society (Cummings
et al., 2014; Alzheimer’s, 2015). There is still no effective treatment that prevents or slows the
disease progression. A significant challenge is the poor understanding of the etiology of this
disease (Krstic and Knuesel, 2013; Karch and Goate, 2015; Kumar et al., 2015). The progression
of AD is associated with the dysregulation of many genes at different regulatory levels from
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transcriptome to neuronal function (Minati et al., 2009; Huang
and Mucke, 2012). To study such a complex multifactorial
disease, integrated and large-scale data are necessary to catch
the diverse regulatory interactions (Zhang et al., 2013; Norton
et al., 2014). The availability of high-throughput transcriptomic
sequencing data and clinical annotation in the Accelerating
Medicines Partnership-Alzheimer’s Disease

(AMP-AD) program (provides an opportunity to study the
altered transcriptional regulation during the progression of AD
(Myers et al., 2007; Webster et al., 2009; Zou et al., 2012; Zhang
et al., 2013).

Co-expression network analysis is useful to infer causal
mechanisms for complex diseases (Stuart et al., 2003; Miller
et al., 2010; Oldham et al., 2012). It is based on the assumption
that co-expressed genes are usually regulated by the same
transcriptional regulators, pathways or protein complexes and
that the co-regulated genes can be revealed by analysis of the
topological structure of co-expression networks (Horvath et al.,
2006; Villa-Vialaneix et al., 2013; Zhang et al., 2015). The co-
regulated clusters in the network provide the chance to track the
affected pathways or biological processes in diseases (Langfelder
and Horvath, 2007). One of the most popular strategies is
to find the topological structural changes of the co-expression
network under different disease states where these changes
indicate regulatory dysregulation in the disease (Miller et al.,
2010; Narayanan et al., 2014). Another way is to associate the
subnetwork expression to disease progresses or clinical traits,
which can uncover the regulatory components involved in the
dysregulation of diseases (McKinney et al., 2015).

Application of co-expression network analysis to AD data
has revealed many AD-associated genes and pathways (Zhang
et al., 2013). However, the nature of such analyses may bias
toward the genes with higher connectivity in a co-expression
network. The complexity of AD progression leads us to extend
co-expression analysis to a more detailed investigation of co-
expressed genes, especially for the genes with relatively low
connectivity, during the disease progression. To understand the
etiology of AD, the changes of regulation are supposed to be
more essential than the regulations themselves. We studied the
transcriptional dysregulation by evaluating all the gene pair
combinations for their co-expression changes, which can be
referred as differential co-expression (DCE) analysis. The genes
with altered co-expression are indicated in the progression of
AD and their importance can be ranked by the numbers of
changed connections.

In this study, we collected the RNA-seq expression data
for 1,667 human brain samples from the AMP-AD program.
Differential co-expression analysis indicated 87,539 gene pairs to
have significant co-expression changes. Among them, 97 genes,
including 10 transcription factors, were found to be dysregulated
in AD progression. Both the co-expression and differential co-
expression analysis suggested these genes to take roles as an
interconnected core network. In the transition from normal to
disease states, the co-expression is strengthened in this network.
Functional studies supported this network to be involved in the
etiology of AD by directly or indirectly affecting aging, synaptic
function and metabolism related genes. We also evaluated the

evolutionary conservation of gene regulations by comparing
the co-expression profiles between human and mouse. Dislike
the gene expression, the regulation indicated by co-expression
is not conserved, including the core network, which may
indicate transcriptional regulation divergence between human
and mouse.

2. MATERIALS AND METHODS

2.1. Data Collection, Processing, and
Quality Control
The human expression data were collected from
Accelerating Medicines Partnership-

Alzheimer’s Disease (AMP-AD, https://
www.synapse.org/#!Synapse:syn2580853/wiki/66722)
program compiling with the data access control at
http://dx.doi.org/doi.10.7303/syn2580853. The RNA-seq
expression data from four projects were used, including (1)
ROSMAP; (2) MSBB (3) MayoPilot and (4) MayoBB. Based on
the clinical annotation, the samples were grouped as AD and
normal samples. In this step, some patients with vague disease
status, missing annotation or other disease annotations were
filtered out.

For the RNA-seq data from each project, the AD and
normal samples were separately processed for quality control.
We first performed normalization with the tools of edgeR
package (Robinson et al., 2010) for the RNA-seq data with
only raw counts. Then, the samples were checked for genomic
gene expression similarity. Samples with strong deviation in
hierarchical clustering and principal component analysis plots,
were treated as outliers and removed. The covariates, such as age,
sex, post-mortem interval (PMI), brain regions were evaluated
and adjusted by a linear model.

Next, the expression data, including both AD and normal
samples, from different projects were treated as different batches
and adjusted to remove the batch effects using ComBat

(Leek et al., 2012). The adjusted expression data were further
normalized with quantile normalization and evaluated by PCA
plots to make sure that the selected samples to have consistent
expression profiles and have no clear batch effects among the
data from different projects. Then, the resulting expression data
were divided into two expression profiles for AD and normal
samples, respectively.

The mouse and human brain microarray data were collected
from GEO database. To minimize the effects of the different
microarray platforms, we only selected the data performed
with Affymetrix’s platforms. Normalized expression data were
downloaded and used. For each dataset, we performed quality
control to make sure the expression profiles of samples had good
expression profile consistency with experimental descriptions
introduced in the original paper. The batch effects of the data
from different experiments were estimated and removed with
ComBat. And then the data were combined together. They
were further evaluated for expression profiles consistency and
the experiment or sample outliers were removed. Finally, the
probes of microarray were mapped to gene symbols. For the
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genes with multiple probes, we selected the ones with maximum
expression values. The gene from human and mouse were
mapped based on the gene homologous annotation from Mouse
Genome Informatics (MGI) (www.informatics.jax.org).

2.2. Differential Co-Expression Analysis
Using the expression values of different samples as elements of
expression vectors, the Spearman’s correlation of all gene pairs
was calculated for AD and normal samples, respectively. To
evaluate the robustness of calculated correlations, we performed
two simulation studies. In the first evaluation, we randomly
selected half of the samples and calculated new correlations.
We then checked the mean and variance of correlation values
under 100 rounds of simulation. The results helped us to
understand the stability of observed correlation values under the
different sample selection. In another evaluation, the annotation
of samples for each gene was shuffled so that the gene pairs
had the wrong sample mapping. The new correlations were
calculated under 100 rounds of simulations. This simulation
helps us to evaluate the confidence ranges for the observed
correlation values.

The correlation differences under disease and normal status
were evaluated using the R package DiffCorr (Fukushima,
2013). In this step, the correlation values were transformed
with Fisher’s transform and z-scores were calculated to indicate
the correlation differences. The p-values were calculated by
fitting to a Gaussian Distribution. After comparing the efficiency,
Benjamini and Yekutieli’s algorithm in R package (Benjamini and
Yekutieli, 2001) was implemented to control the false discovery
ratio. At a cutoff of adjusted p < 0.01, we select the significantly
differentially correlated genes.

2.3. Enrichment Analysis
The gene ontology (GO) annotation of gene lists was performed
with the GO enrichment analysis tool David (Sherman et al.,
2007) under the default setting. The significantly enriched terms
for biological process and cellular components were selected at
a cutoff of adjusted p < 0.05. When multiple gene lists were
available, the GO annotation results were visualized in a heatmap
to facilitate comparisons.

In this work, we also performed enrichment analysis using an
annotated gene list, e.g., text-mining annotated genes. For k input
genes, the number of genes with annotation is x. For n whole
genomic genes, the number of genes with annotation is p. We use
Fisher’s exact test to evaluate if the observed x genes result from
random occurrences.

> m=matrix(c(x,k-x,p-x,n-k),ncol=2,byrow=T)
> p=fisher.test(m,alternative="greater")$p.value

2.4. Differentially Expressed Genes in
Alzheimer’s Disease
We performed differential expression analysis to the RNA-seq
data collected in above steps from the AMP-AD program. For
data from the MSBB project, four brain regions were treated as
four independent datasets. Among 7 used datasets, some RNA-
seq data had raw counts, e.g., data from MSBB project and

we carried out differential expression analysis using edgeR.
Other data with normalized expression values were analyzed
by log2 transformed t-test. For all the datasets, the DEGs were
determined at a cutoff of p < 0.01. To increase the confidences,
the DEGs from different datasets were cross-validated with
each other and the ones with clear inconsistency, e.g., the
DEG list with weak overlap with other DEG lists were filtered
out. Then, the selected DEGs were combined together as the
DEGs of AD. The differential expression direction was also
checked and determined by using the direction supported by the
maximum datasets.

2.5. Alzheimer’s Disease Related Genes
The AD related genes were determined by selecting the ones
with reported association with AD in published works, such as
the genetics evidences and expression evidences. In this step, we
use the gene-disease annotation for AD from IPA (http://www.
ingenuity.com/products/ipa), Metacore (https://portal.genego.
com/) and DisGeNet (www.disgenet.org/). We filtered out the
low-confidence genes by manually removing the ones with only
evidence of expression or those with inconsistency evidences.

2.6. Gene Co-expression Network Analysis
Gene co-expression network analysis was to find the gene
clusters or modules with good co-expression similarity. As
one of well recognized implementation, WGCNA was applied
to RNA-seq expression data following the protocol provided
by the tool developers https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/WGCNA/ (Langfelder and
Horvath, 2008). The RNA-seq data for both AD and normal
samples were merged as the input of WGCNA. The power of 6
was determined by pickSoftThreshold function. Then, block-wise
network construction were performed by setting the maximum
block size to 2,000 and consensus module were detected with
a minimum module size of 30. In this step, static height cutoff
method was applied to retrieve highly connected modules. All
of the expressed genes were clustered into modules, which were
labeled with different colors, including gray. In each module, the
connectivity and module membership of each module gene were
calculated to assess the association and significance of genes in
the modules.

3. RESULTS

3.1. Transcriptional Dysregulation in
Alzheimer’s Diseases
To find the dysregulation associated with AD, we evaluated
the co-expression changes in the brain of AD patients, which
indicated the transcription regulation changes. The whole
process is detailed in Figure 1. In the first step (a), four sets
of independent human RNA-seq expression data were collected
from the AMP-AD program compiling with the data access
control policy. The selected samples from different projects
were processed and combined together to define the expression
profiles of both AD and control subjects [see step (b) and
Figure S1]. Based on the clinical annotation provided by the
data suppliers, 1045 AD samples and 622 control samples were
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FIGURE 1 | The pipeline to find the transcriptional dysregulation in AD. (A) The human RNA-seq expression data are collected from four projects of AMP-AD

program; the mouse brain expression data are collected from 20 microarray experiments in GEO database. (B) The expression data from different datasets are

processed, normalized and combined to describe the expression profiles of AD patients, control subjects and mouse. (C) The human brain samples are categorized

into AD patients and normal samples based on the clinical annotation. (D) All gene pairs are evaluated for gene-gene regulations by measuring co-expression

correlations for all the gene pairs. (E) The dysregulated genes are predicted by differential co-expression analysis. (F) The co-expression conservation of all gene pairs

are compared between human and mouse.

determined and selected [see step (c)]. As showed in Figure S2,
these samples have good homogeneity in their transcriptomic
expression profiles and there is no clear outliers or batch effects.
The mouse expression data were also collected from the GEO
database (http://www.ncbi.nlm.nih.gov/geo/), where 931 samples
from 20 microarray experiments were selected and processed to
construct the mouse brain expression profiles.

In the next step (d), the co-expression level, described by
Spearman’s correlations, of all gene pairs were calculated for
AD and control subjects, respectively. To check the robustness
of calculated correlations, we performed random sampling and
shuffling to original expression data.We found that the calculated
values were tolerant to the sample selection and were less
likely to result from random correlation (see Figure S3 and
Methods). These results suggested the correlation value to be
robust enough to study the co-expression changes. Applying the
differential correlation analysis method introduced in Fukushima
(2013), we found 87,539 out of 163 million gene pairs to have
significant co-expression changes in the AD patients at a cutoff
of adjusted p < 0.01 (see Table S1). Among them, there

were 9,168 genes with at least one DCE partner (see Table S2).
Considering the nature of DCE analysis and the strict cutoff,
all of the predicted gene pairs were co-expressed in either AD
patients or normal people or both at a cutoff of p < 0.01 that
calculated using transformed correlation values (see Methods
and Table S1), which confirmed that all the dysregulated gene
pairs were potentially associated with the transcription regulation
or co-regulation in the AD or normal samples. Similarly, the DCE
pairs were supposed to have altered regulation in the AD patients.
Therefore, we could call them dysregulated genes.

We checked the co-expression status of the 87,539
dysregulated gene pairs. 22,150 gene pairs (25.3%) were co-
expressed only in AD samples while 10,707 pairs (12.2%) were
co-expressed only in normal samples at a cutoff of p < 0.01.
Other gene pairs were co-expressed in both AD and normal
samples. Among them, 31,685 pairs (36.2%) have increased
co-expression correlation in AD while only 9,694 pairs (11.1%)
have decreased values. There were also gene pairs with reversed
co-expression trend. For example, 6,459 negatively correlated
gene pairs (7.4%) in normal subjects become positively correlated
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in AD patients. Vice versa, 6,844 gene pairs (7.8%) have the
opposite changes. By summarizing the overall changes, we
observed more gene pairs to have increased co-expression
correlation in AD (2.6 times that of the gene pairs with decreased
co-expression correlation), which suggested a strengthened
transcriptional regulation in the AD patients.

3.2. Dysregulated AD Genes
In published works, at least 777 expressed genes have been
reported to be associated with AD. We found that 479 of
them were predicted with at least one dysregulated partner (see
Table S3)(p = 2.5e − 9 by Fisher’s exact test). Among them,
the MAP1B gene was predicted with the maximum number
of partners (365 genes), of which 32 genes were also AD
associated genes. We found that the partners of MAP1B had
diverse functions and many of them were associated with AD
progression, such as intracellular signaling cascades (42 genes,
p = 3.7e − 4 and FDR = 0.2), regulation of apoptosis (18
genes, p = 3.4e − 3 and FDR = 0.2), neuron and dendrite
development (5 genes, p = 4.13e − 3 and FDR = 0.3) and RNA
metabolic process (19 genes, p = 4.71e − 3 and FDR = 0.3).
This result confirmed that MAP1B, as a microtubule associated
protein, had diverse involvement in neuron related biological
processes (Ishitani et al., 2009; Maurin et al., 2009; Moritz et al.,
2009; Villarroel-Campos and Gonzalez-Billault, 2014) and took
important roles in the AD progression (Ulloa et al., 1994).
Another example was the TREM2 gene, which was reported to get
involved in the neuroimmunology of AD (Bouchon et al., 2000).
We observed 4 partners, including SLA (DCE at p = 3.7e − 10
and FDR < 0.01), HCLS1 (p = 2.5e−10), C3AR1 (p = 8.7e−10)
and FCER1G (p = 1.3e − 9), all of which were associated
with inflammation related functions. Among the well-studied
AD drug targets (Silva et al., 2014), we found their dysregulation,
such as the amyloid precursor protein gene (APP, 136 partners),
glycogen synthase kinase 3 beta (GSK3B, 34 partners) and BACE1
(8 partners), suggesting their transcriptional involvement in the
progression of AD.

In Table 1, we showed 68 dysregulated AD genes, which were
selected based on the number of their partners. To understand
their biological involvement, we studied the enrichment of AD
related genes in their partners. We found the partners of 48
dysregulated AD genes enriched with AD genes at a cutoff
of p < 0.05, indicating their close relationship with AD
progression. We also checked the transcriptional association of
68 dysregulated AD genes. We found 56 genes to be differentially
expressed (p < 0.05) in the AD patients and the significance
for such enrichment was p = 1.1e − 27 by Fisher’s exact test.
Similarly, we found that the partners of 53 dysregulated AD genes
were enriched with the differentially expressed genes (DEGs),
confirming the transcriptional involvement of the dysregulated
AD genes. Another investigation was to the aging related genes
based on the annotation in our previous work (Meng et al., 2016).
We found 21 out of 68 dysregulated AD genes to be aging genes
and the significance for such enrichment was p = 6.9e − 5. The
partner genes of 39 dysregulated AD genes were also enriched
with the aging genes at a cutoff of p < 0.05, confirming the
association of the aging process with the progression of AD.

TABLE 1 | The dysregulated AD genes.

Gene partners DEG p(DEGs) AD p(AD) Aging p(aging)

MAP1B 364 Yes 9.2e-77 Yes 3.3e-05 Yes 5e-3

PSAP 337 No 0.03 Yes 0.6 No 0.01

PGAM1 300 Yes 1.4e-24 Yes 0.04 No 2e-3

ARID1B 275 No 4.8e-4 Yes 0.36 No 6.5e-11

SLC1A2 271 No 1.9e-40 Yes 6.1e-3 No 0.18

TGFBR2 243 Yes 1.1e-72 Yes 6.4e-06 No 1.9e-14

SREK1IP1 209 No 0.55 Yes 0.05 No 0.02

SYNJ1 200 Yes 6.3e-13 Yes 0.15 No 0.41

DOCK3 195 Yes 4.1e-11 Yes 0.01 No 0.22

STAT3 182 Yes 3.41e-49 Yes 1e-3 No 1.9e-11

SUCLA2 164 Yes 8.4e-13 Yes 0.49 Yes ee-3

SERPINI1 153 Yes 5.9e-32 Yes 0.01 Yes 6.3e-4

AMPH 141 No 8.7e-22 Yes 0.4 No 0.19

APP 136 Yes 1.2e-11 Yes 0.23 No 0.38

CLU 130 Yes 0.24 Yes 0.66 No 0.02

LRP1 126 Yes 2.9e-16 Yes 0.09 No 2.9e-05

GABRG2 126 No 6.9e-11 Yes 0.63 No 0.18

VAT1L 121 No 7.9e-13 Yes 0.34 No 0.02

PHF1 119 No 0.4 Yes 0.59 No 2e-2

TAGLN3 113 Yes 6.2e-32 Yes 2.4e-07 No 5e-06

FRMD6 109 No 1.5e-21 Yes 0.04 No 3.4e-4

PDSS1 106 No 0.68 Yes 0.67 Yes 2.9e-4

PPIA 106 Yes 4.2e-45 Yes 0.01 Yes 7.34e-09

INPP5D 96 Yes 1.6e-27 Yes 2.3e-3 No 3.6e-06

PRKCE 94 Yes 4.3e-4 Yes 0.05 Yes 0.35

APLP2 94 No 7.4e-07 Yes 0.05 No 0.16

YWHAB 94 Yes 1.4e-17 Yes 0.34 Yes 3.6e-3

GABRG3 87 Yes 4.3e-11 Yes 0.96 No 0.74

PPARA 83 Yes 5.8e-31 Yes 2.9e-3 No 9.2e-05

RAN 83 Yes 0.03 Yes 0.36 Yes 9.4e-3

VDAC1 83 Yes 3.9e-10 Yes 0.28 Yes 0.02

AFF1 82 Yes 2.7e-24 Yes 0.13 No 5.9e-06

PFDN2 81 Yes 4.5e-16 Yes 0.13 Yes 1.5e-09

EBP 80 No 3.6e-23 Yes 6.7e-3 No 6.5e-08

LEMD2 78 No 0.01 Yes 0.82 No 4.7e-3

PRKACB 76 No 1.6e-3 Yes 0.53 Yes 0.02

EID1 70 Yes 0.33 Yes 0.21 No 1.3e-3

GSTO1 66 Yes 3.5e-26 Yes 0.01 Yes 1.1e-08

CNTNAP2 66 Yes 1.5e-08 Yes 0.16 No 0.55

GABRA3 65 Yes 6.8e-08 Yes 0.59 No 0.32

ARHGAP20 64 Yes 1.3e-3 Yes 0.21 Yes 0.15

PAK1 62 Yes 4.2e-09 Yes 0.61 No 8.6e-3

THOP1 62 No 0.34 Yes 0.03 Yes 0.36

AKT1S1 61 Yes 0.35 Yes 0.75 No 0.19

PRNP 60 Yes 4.1e-05 Yes 0.25 No 0.02

RTN3 60 Yes 7.3e-14 Yes 0.14 Yes 4.3e-3

STX2 60 No 0.94 Yes 0.73 No 0.22

GAS7 59 Yes 0.01 Yes 1 No 0.02

CCDC134 58 No 0.91 Yes 0.71 No 0.7

GRM8 58 Yes 4.2e-12 Yes 0.34 No 0.06

GAPDH 55 No 0.04 Yes 0.28 No 0.06

(Continued)
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TABLE 1 | Continued

Gene partners DEG p(DEGs) AD p(AD) Aging p(aging)

CHL1 53 Yes 4.1e-4 Yes 0.43 Yes 0.05

CHRM4 52 No 1.5e-09 Yes 0.56 No 0.07

GABRB2 50 No 5.3e-09 Yes 0.06 No 0.47

NEDD4 50 Yes 0.43 Yes 1 No 0.07

VSNL1 48 Yes 5.8e-05 Yes 0.48 No 0.12

PSENEN 47 No 3.9e-05 Yes 0.01 No 3.0e-3

BECN1 46 Yes 0.97 Yes 0.47 Yes 0.28

CHMP5 45 Yes 0.19 Yes 0.48 Yes 5.9e-4

UBQLN1 44 No 0.91 Yes 0.57 Yes 0.01

HECW1 44 No 0.04 Yes 0.21 No 0.94

CSMD1 44 Yes 3.2e-09 Yes 0.8 No 0.15

CHRM2 44 Yes 1.4e-3 Yes 0.48 No 0.08

UCHL1 43 Yes 2.8e-11 Yes 9.7e-3 No 0.01

PHYHD1 43 Yes 2.9e-3 Yes 0.85 Yes 0.07

SCN1A 41 No 0.11 Yes 0.8 Yes 0.37

APBA1 41 No 0.06 Yes 0.25 No 0.12

UQCR10 41 Yes 1.02e-05 Yes 0.03 No 7.9e-3

We also studied the functional involvement of the
dysregulated AD genes. In Figure 2, we showed the functional
annotation for the 68 dysregulated AD genes based on Gene

Ontology annotation. Consistent with the selecting criteria,
we found that these genes were associated with many AD related
functions. Among them, “transmission of nerve impulse” was
predicted to be the most enriched term (12 genes, p = 2.3e − 7
and FDR < 0.05). In the published works, synaptic dysfunction
had been widely reported for its association with AD (Selkoe,
2002; Pozueta et al., 2013) and our analysis confirmed that it
was one of the most affected processes. Other AD related terms
include “neurological system process” (14 genes, p = 1.54e− 3),
“regulation of protein kinase activity” (7 genes, p = 3.5e− 3).

In summary, we found a subset of the AD related genes
that were transcriptionally dysregulated in AD; these genes were
involved in the progression of AD by affecting the AD related
pathways or biological processes, e.g., synaptic transmission.

3.3. A Core Network Involves the
Dysregulation of AD
Following the widely accepted hypothesis for hub genes in a
network, we assume that the genes with more dysregulated
partners will take more essential roles in the etiology of AD
(Zhang and Horvath, 2005). Another assumption is that the
dysregulated genes and their partners will participate in the
same pathways or biological processes. Therefore, we can infer
the function of dysregulated genes by analysis of their partners
(Meng and Vingron, 2014).

Based on these assumptions, we defined the genes with
both transcriptional dysregulation and involvement in the
progression of AD by the following criteria: (1) with more
than 50 partners; and (2) to be differentially expressed in AD

(p < 0.01, see Table S4), which ensures the selected genes to be
transcriptionally associated with AD, and their partners to be
enriched with AD genes; or (3) reported as AD associated genes
and their partners enriched with the differential expressed genes
at a cutoff of p < 0.01. In this way, 97 dysregulated genes were
selected (see Figures 1C,D and Table S2). Among them, 64 genes
were differentially expressed in AD and 39 genes were reported

as AD associated genes. These genes were dysregulated in

14,322 gene pairs with 3681 partners. Of the dysregulated genes,

TMEM178A was the most dysregulated gene with 669 partners.
We checked the co-expression status between dysregulated genes

and their partners and found 85.9% of the gene pairs to have

increased co-expression correlation, which was far more than

the observed percentage (66.2%) with non-filtered dysregulated
gene pairs (Figure 3A). In AD patients, we also observed 3461
gene pairs co-expressed only in AD, which was 3.6 times of the
normal-specific co-expressed pairs (p = 4.6e − 67 by Fisher’s
exact test), suggesting a strengthened transcriptional regulations
in AD patients.

Even though the dysregulated genes were not selected for
any co-expression correlation among each other, we observed
the 97 dysregulated genes displaying stronger co-expression
correlation values than randomly selected genes. Of 4,656 gene
pair combinations, 95.7% of them were co-expressed at a cutoff
of p < 0.01 and 86.9% have a correlation r > 0.3. The median
correlation value was 0.556 (p = 7.7e−86 by correlation test).We
also checked their co-expression changes and found 929 out of
4,656 gene pairs to be differentially co-expressed in the transition
from normal to AD.

Using the co-expression and differential co-expression
information, we could connect the dysregulated genes as a
network (see Figure 3B). In this network, 96 out of 97 nodes
had at least one connected co-expression partner at r > 0.3 and
90 nodes can also have at least one dysregulation partner at a
cutoff of adjusted p < 0.01. Combining the co-expression and
differential co-expression information, 96 out of 97 dysregulated
genes were connected with other dysregulated genes. The island
of this network was ARF5, which was differentially expressed in
AD but not reported with any association with AD. Therefore,
we filtered it in Figure 3B. We further checked the direction
of edges and found 870 out of 929 dysregulated edges to have
increased co-expression correlation in AD while 176 of these
regulations were AD-specific. In Figure 3B, we also showed
the differential expression information of 96 nodes and found
26 up-regulated and 37 down-regulated genes in AD. The
transcriptional regulations were observed between up- and
down-regulated genes, including 42.7% of co-expressed edges to
have negative correlation values.

In the network, we observed 10 transcription factors (TFs):
FLI1, NOTCH2, SALL2, STAT3, PPARA, BEX1, ARID1A,
ARID1B, AFF1, and PRNP.We checked if these 10 TFs regulated
the expression of other dysregulated genes. Due to limitation for
experimental validation, e.g., human brain sample collection and
manipulation, we evaluated their regulatory roles by comparing
their expression profiles with the dysregulated genes. Compared
with 2405 annotated TF genes in the Gene Ontology, we
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FIGURE 2 | Functional involvement of dysregulated AD genes. 68 dysregulated AD genes were annotated for their functional involvement based on the Gene

Ontology annotation; the colors of GO terms indicated the enrichment significance.

observed that these TF genes were always ranked as the most
co-expressed TF genes. In Figure 3C, we showed the example
for TMEM178A gene. We found that 9 TFs had strong co-
expression correlations, especially for PPARA and STAT3, which
were co-expressed with TMEM178A at r = −0.62 and r =

−0.603, ranked as the 10th and 16th of the most negatively co-
expressed TF genes. Similar results were observed with other
dysregulated genes (see Figure S4). Another investigation was to
predict the gene-specific regulators using the method introduced
in Meng and Vingron (2014). In this step, we predicted the
enriched regulators for each of 97 dysregulated genes using AD
and normal expression data as the input expressionmatrix. In the
Jaspar database, only STAT3 had clear TF binding profiles and
therefore, we could only predict the transcriptional regulation
for STAT3. We found that STAT3 was ranked as the 16th of
the most important regulators for 96 dysregulated genes in 474
annotated TFs. In normal and AD samples, STAT3 was predicted
to regulate 25 and 31 dysregulated genes, respectively. Overall,
these results suggest that the dysregulated TFs may be involved
in transcriptional regulation or dysregulation in AD.

3.4. Aging, Synaptic Transmission and
Metabolism Are Dysregulated
Applying a strategy of guilt by association, we
extended the functional study of 97 dysregulated genes to the
subnetworks comprising of themselves and their partners. In this
step, we used each of 97 dysregulated genes as hub and exacted
the partner genes to construct the dysregulation subnetwork,

which could be treated as the co-regulated unit for further
studies. Investigation of these subnetworks suggested them
to have overall consistent co-expression changes. Taking the
TMEM178A subnetwork as an example, we found 665 out of
669 nodes to have increased co-expression correlations with the
hub gene, including 164 gained co-expression in AD. Similar
results were observed with many other dysregulated genes
(see Table S2).

We investigated the association of subnetworks with AD
progression. The first attempt was to check the enrichment
of DEGs in AD. We found all the subnetworks (97/97) to be
enriched with DEGs at a cutoff of p < 0.01 (see Figure 4A).
Taking the TMEM178A subnetwork as an example, 413 out of
669 partner genes was differentially expressed in AD and the
significance for this enrichment was p = 6.5e − 127 by Fisher’s
exact test. By checking the other genes, we found 84 subnetworks
enriched with DEGs with a good statistical significance of less
than p = 1e − 10 by Fisher’s exact test. Such significant
enrichment suggested that all the subnetworks were associated
with the progression of AD at the transcriptional regulation level.

Considering the fact that age is the biggest risk factor for
AD, we checked the enrichment of aging related genes in
each subnetwork which were identified by finding 2,862 genes
with aging associated expression or DNA methylation in our
previous work (Meng et al., 2016). For the subnetworks with
differentially expressed genes as hubs, we found 53 out of 64
subnetworks significantly enriched with aging related genes (see
Figure 4A). Taking the TMEM178A subnetwork as an example,
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FIGURE 3 | The core network involving the dysregulation of AD. We connected the dysregulated genes as a network and found that (A) Majority of the dysregulated

genes have increased correlations (both direction) in the transmit from normal to AD; (B) 96 (out of 97) dysregulated genes can be interconnected as a regulatory

network based on co-expression and differential co-expression information. (C) TMEM178A expression is negatively correlated with dysregulated transcription factors,

among which PPARA is ranked as the most negatively correlated transcription factors.

we found 165 out of 669 genes to be aging related genes (p =

3.2e − 20 by Fisher’s exact test). Out of 2,862 aging genes, 624
genes were also dysregulated in AD. We further evaluated the
involvement of dysregulated aging genes in the progression of
AD by checking their differential expression direction in AD
and their expression trend in the aging process. As showed in
Figure 4B 541 dysregulated aging genes had the same expression
direction, e.g., the aging related genes with increased expression
levels in the aging process would be up-regulated in the AD
patients and vice versa. Overall, the analysis results suggested
that the aging genes were associated with the transcriptional
dysregulation of the AD progression.

We performed functional annotation using David (Sherman
et al., 2007) for each subnetwork. Figure 4C showed the enriched
biological processes (BPs). The most enriched category was
the synaptic function related terms. One example was the
“transmission of nerve impulse” term, which was enriched in
37 subnetworks and that was also the most enriched term. The
other related terms include “synaptic transmission” and “cell-
cell signaling,” which had been reported for their involvement
in the AD progression (Selkoe, 2002; Pozueta et al., 2013).
Another category was the metabolism related terms. Among
them, “generation of precursor metabolites and energy” was
significantly enriched in 39 subnetworks and “glycolysis” was
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FIGURE 4 | Aging, synaptic transmission and metabolism are dysregulated. (A) The enrichment of aging genes, AD differentially expressed genes and AD related

genes in 97 subnetworks; (B) the dysregulated genes usually have the same expression change direction in the aging process and the AD progression; (B) functional

enrichment analysis to dysregulated genes for (C) biological process and (D) cellular component.
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significantly enriched in 29 subnetworks. The links between
metabolism and AD were also supported by the published works
(Vanhanen et al., 2006; Suzanne and Tong, 2014). Even as
different functional categories, synaptic function andmetabolism
related terms were usually enriched by the same subnetworks.
We also observed other enriched terms and most of them
had been reported for association with AD, such as “cation
transport” (Berridge, 2014), “ATP metabolic process” (Liu et al.,
2013), “learning or memory” (Liu et al., 2013) and “neuron
differentiation.” Using David, we also checked the cellular
component (CC) enrichment (see Figure 4D).We found neuron,
especially synapse related CCs to be the most enriched cellular
location. Consistent with BP analysis results, the “synapse part”
term was enriched in 46 subnetworks, especially the subnetwork

with dysregulated DEGs as hubs confirming the analysis results
with BP terms.

As described above, the dysregulated genes were either DEGs
or literature reported AD genes. We found that the functional
involvement for the two groups of subnetworks was different.
The 39 subnetworks with hubs of AD genes were less associated
with any enriched biological process. For example, the term
“transmission of nerve impulse” was enriched in only 8 out
of 39 subnetworks while there were 29 out of 64 DEG-hub
subnetworks enriched with this term. Similarly, the other AD
associated terms were also less likely enriched with these 39
subnetworks. However, considering the fact that the dysregulated
AD genes themself were associated with the AD related terms
(as discussed in above section), including synaptic function and

FIGURE 5 | The dysregulated genes prefer to have more association with clinical traits, including (A) cognitive test score (cts), (B) braak stage (braaksc) and (C)

assessment of neuritic plaques (ceradsc). The black lines show the density plots of clinical association (correlation) for all protein coding genes; the blue points

indicate the 97 dysregulated genes.

Frontiers in Aging Neuroscience | www.frontiersin.org 10 May 2019 | Volume 11 | Article 101

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Meng and Mei Transcriptional Dysregulation Network of Alzheimer’s Disease

metabolism related biological processes, we could assume that
these 39 subnetworks with the hubs of dysregulated AD genes
were also associated with the enriched terms.

3.5. Association With Clinical Outcomes
In the ROSMAP project of AMP-AD program, most samples
have been annotated with clinical information. We studied the
association of gene expression with three disease related clinical
traits, e.g., cognitive test scores (cts), braak stage (braaksc) and
assessment of neuritic plaques (ceradsc). We did not find any
gene to have strong expression correlations (e.g., r > 0.6)
with studied traits. The maximum correlation was observed with
SLC6A9 at r = −0.388. For all the genes, only 12.3% of them
have a clinical association at |r| > 0.15. This result suggests that
the clinical outcomes of AD may be affected by combined effects
and even beyond the effects of gene expression.

In Figure 5, we showed the clinical association results for
97 dysregulated genes. We found that the dysregulated genes
were always ranked as the most clinical associated genes. Of
97 dysregulated genes, 66 genes had a clinical association of
|r| > 0.15 (p = 4.49e − 37 by Fisher’s exact test). Among them,
NCALD, a neuronal calcium binding protein, was associated with
the cognition score at r = 0.268.

Another investigation was to the combined effects of
dysregulated gene pairs. We studied the partial correlations
between the dysregulated genes and the clinical traits by
controlling the effects of their dysregulated partners. We found
that many dysregulated gene pairs had improved clinical
association (see Table 2 and Table S5). In these dysregulated
gene pairs, the clinical association of one gene was improved by
considering the gene expression of its partners, which indicates
the importance of dysregulation relationship.

3.6. Dysregulation Divergence in Mouse
Mice are widely used as a model animal in wet-lab studies
for AD. Investigation of the evolutionary conservation of
gene regulation can help with the evaluation of experimental
studies performed in mice. Therefore, we collected mouse
brain microarray expression data from GEO database. One
thousand five and hundred eighty three samples from 24
experiments were identified (see Table S6). We removed arrays
with poor quality or inconsistent expression profiles and
finally, 931 samples from 20 experiments were used. The
selected samples were combined together to describe the mouse
brain expression profiles. Using gene homologous annotation
from Mouse Genome Informatics (MGI) (www.informatics.
jax.org), 14,186 expressed genes were used for co-expression
evaluation with the human normal control samples. We first
studied the overall gene expression similarity between mouse
and human. As showed in Figure 6A, we found human and
mouse to have consistent expression profiles with the median
Spearman’s correlation among samples at r = 0.69, indicating
the conservation of gene expression profiles between human
and mouse.

Another investigation was to compare co-expression profiles
of gene pairs. The co-expression correlations of all gene
pairs were calculated for mouse and human normal samples,

TABLE 2 | The association of dysregulated genes with the cognitive test scores.

coexpression cor. cor. with ctsa partial cor.b

Gene1 Gene2 Ad Normal Gene1 Gene2 Gene1 Gene2

RPS19 APLP2 –0.446 –0.696 –0.036 0.226 0.205 0.299

SLC35F1 PPP2CA 0.718 0.528 0.039 0.208 –0.183 0.271

SLC35F1 RTN3 0.711 0.517 0.039 0.217 –0.180 0.273

RALGPS1 APLP2 –0.039 0.265 0.030 0.226 –0.188 0.289

SLC1A2 FAT1 0.233 0.511 –0.052 –0.185 0.153 –0.232

SLC15A2 SLC1A2 0.442 0.693 –0.208 –0.053 –0.298 0.214

SDC2 SLC1A2 0.359 0.611 –0.199 –0.053 –0.268 0.180

NOTCH2 SLC1A2 0.172 0.533 –0.210 –0.053 –0.267 0.177

SYNJ1 PRUNE2 0.333 0.581 0.160 0.062 0.218 –0.163

GPRC5B SLC1A2 –0.055 0.27 –0.276 –0.053 –0.316 0.169

SUCLA2 PRUNE2 0.311 0.557 0.153 0.062 0.210 –0.158

SUCLA2 ARFGEF2 0.746 0.861 0.153 0.067 0.201 –0.148

PRKACB CDS2 0.641 0.794 0.187 0.070 0.225 –0.145

PRKCE KCNA1 0.62 0.397 0.196 0.062 0.237 –0.148

APP RBMX2 –0.037 –0.353 0.169 –0.064 0.195 0.118

aThe correlation between gene expression and cognitive test score. bThe partial

correlation with cognitive test score.

respectively. Figure 6B showed the co-expression correlation
values. Human and mouse had different co-expression profiles
and the Spearman’s correlation to co-expression correlations was
only r = 0.139. Further, we performed differential co-expression
analysis and found 25.0% of gene pairs to have differential
co-expression at the cutoff of adjusted p < 0.01. We also
checked the co-expression directions and found 34.7% of 10
million co-expressed gene pairs to have inconsistent correlation
directions, indicating the divergence of co-expression patterns
between human and mouse. Similar results were also observed
with the human AD samples (see Figure S5). To understand the
co-expression conservation of AD related genes, we restricted the
same analysis to the 87,539 differential co-expressed gene pairs.
As shown in Figure 6C, improved conservation was observed
(r = 0.214, p = 6.46e − 266). We further restricted the
analysis to 97 dysregulated genes and found the co-expression
conservation were weakly improved (r = 0.31, p = 8.08e − 6)
(see Figure 6D).

Different platforms, e.g., RNA-seq and microarray, may
lead to different expression measurements (Giorgi et al., 2013;
Zhao et al., 2014). Therefore, we constructed the human brain
expression profiles by collecting the microarray data from GEO
database (see Table S7). To minimize the influences of different
platforms, we only collected data from AffyMetrix’s platform
when the mouse expression data were also generated using
AffyMatrix’s technology. Finally, 452 samples were selected to
describe the human brain expression profiles. As showed in
Figure 6E, we found that the expression profiles measured by
microarray and RNA-seq were not completely consistent (r =

0.54) (see Figure 6E). Next, we re-evaluated the co-expression
conservation using the co-expression profiles calculated from
human brain microarray data. The Spearman’s correlation to the
co-expression correlations was r = 0.152 (see Figure 6F), which
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FIGURE 6 | The dysregulation divergence between human and mouse. (A) shows the density plot of expression profile similarity (correlation) of human and mouse

homologous genes, which suggests the conserved gene expression patterns between human and mouse. However, (B) the regulations among all the genomic genes

are not conserved between human and mouse (r = 0.139). By restricting the studied regulations to the dysregulated pairs (C) and the edges in Figure 3 (D), the

conservation between human and mouse regulations was weakly improved. The observation was further investigated with human microarray data and found good

consistent with human RNA-seq (E) but still failed to suggest any gene-gene regulation conservation between human and mouse (F).

still indicated strong dysregulation divergence between human
and mouse.

In summary, human and mouse may have the divergent
co-expression patterns in brain, even though they have the
conserved gene expression profiles, which indicates the different
transcriptional regulation.

3.7. Comparison With Established Works
Based on the assumption that the connectivity in the
co-expression network indicates the gene importance,
connectivity has widely been used to identify the essential
components for a specific biological process. We investigated
the association between dysregulation and the connectivity
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in the co-expression network. We firstly checked the
connectivity preference of dysregulated genes by selecting
the top 100 dysregulated genes discovered in the above
analysis. As shown in Figure 7A), we failed to observe any
connectivity preference when compared with genomic genes
(p = 0.229). Another investigation was to check if the
genes with stronger connectivity would be more differentially
co-expressed. As shown in Figures 7B and Figure S6, the
maximum and median differential correlation did not show
strong association with the connectivity, including the most
dysregulated ones.

Next, we investigated if the dysregulated genes could be
identified by co-expression network analysis. We applied WGCNA
(Langfelder and Horvath, 2008), a popular co-expression
network analysis tool, to human brain RNA-seq expression
data and 43 modules were predicted. The 97 dysregulated
genes were mapped into 22 modules. We found that the
number of dysregulated genes in a module was correlated
with its module size (r = 0.76). For example, the BLUE
module had the largest module size of 7,776 genes and it
was also mapped with the maximum number of dysregulated
genes (44 genes) (see Table S8). Further, we ranked the

module members based on their connectivity in the modules.
None of 97 dysregulated gene was ranked as the most
connected hubs. All these results suggested that the dysregulated
genes were relatively novel to hub genes in co-expression
network analysis.

In independent work, the dysregulation of AD has been
investigated using microarray data (Narayanan et al., 2014),
where the dorsolateral prefrontal cortex region from 310 AD
patients and 157 normal subjects was measured by microarray.
Considering the fact that platforms may affect the analysis
results (Giorgi et al., 2013), we compared their analysis results
using 13,606 common expressed genes. The gene pairs from
microarray and RNA-seq platforms had overall consistent co-
expression profiles (r = 0.49, p = 1.2e − 199) (see Figure 7C).
Applying the differential correlation test, we found 18.5% of gene
pair combinations to be differentially co-expressed, which was
far more than the number of predicted dysregulations for AD
progression: that was, 0.05% of all gene pairs for RNA-seq dataset
and 0.6% for microarray datasets. This observation suggested
that the dysregulations predicted using microarray and RNA-seq
data were different. To illustrate it, we checked the consistency
of predicted dysregulation by DCE analysis for both RNA-seq

FIGURE 7 | Comparison analysis with the results from established work. (A) The connectivity distribution of top 100 of the most dysregulated genes (red circle points)

fails to indicate any association between connectivity and dysregulation; (B) the same result is observed with all the genomic genes (r = −0.012). (C) using human

RNA-seq and micorarray data, the calculated gene co-expression correlations are consistent; but (D) the predicted dysregulation are not consistent.
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and microarray data. Figure 7D showed the dysregulation z-
scores of all gene pairs, which described the significance of co-
expression changes. We found that the overall dysregulation was
weakly consistent between RNA-seq and microarray (Spearman’s
r = 0.106). At a cutoff of adjusted p < 0.01, 59,710, and
603,335 gene pairs were predicted to be dysregulated with RNA-
seq and microarray data, respectively. Among them, only 1,469
gene pairs were shared by two datasets. We also checked the
predicted partner number of dysregulated genes from RNA-seq
and microarray data and found them to be weakly consistent
(r = 0.218) (see Figure S7).

4. DISCUSSIONS

Using the RNA-seq data, we studied the association between
gene expression correlation and connectivity. We found that the
genes with higher connectivity showed stronger co-expression
correlations with other genes (see Figure S8A). Functional
annotation to top 200 of the most connected genes suggested
these genes more associated with house-keeping related roles,
such as protein location and protein transport see Figure S8B.
Considering the fact that AD is associated with loss of neuron
related functions, we further checked the connectivity of 2,155
brain tissue-specific genes (Benita et al., 2010). Even though the
brain-specific genes have stronger connectivity than the genomic
genes (p = 7.53e − 56), we found that only 14.8% of the
brain-specific genes were ranked in the top 1,000 of the most
connected genes. Similar results were observed with the AD
related genes. All these observations suggested that the genes
associated with AD progression were not necessary to have strong
connectivity in co-expression analysis and this led us to extend
the connectivity-based analysis to a less biased investigation.

We evaluated the co-expression differences between AD and
normal samples for all the gene pair combinations without
considering gene connectivity. The genes with differential co-
expressed profiles were supposed to be dysregulated in the
progression of AD. Using a similar assumption, the genes
with more dysregulation partners were supposed to take
more essential roles. Combining AD-related information, 97
dysregulated genes were identified and validated to take critical
roles in the AD progression. Consistent with our hypothesis,
the predicted genes failed to show strong connectivity in co-
expression network analysis. This was further supported by
mapping these genes into the WGCNA analyses results. These
results suggested that this work revealed the etiology of AD in
an independent and novel way.

We performed functional annotation on the 64 dysregulated
DEGs and found them to take diverse functions. The limited
gene number and the relative independence of dysregulated
genes hindered the efficiency of functional annotation. We
extended the functional studies of dysregulated genes to the
investigation to their dysregulated partners. We observed 33
of them to be associated with synaptic transmission related
functions while synaptic dysfunction was widely accepted as a key
characteristic of AD progression (Pozueta et al., 2013). Evaluation
using aging related genes indicated their wide and consistent

involvement, which might explain the effects of age on AD
progression. Overall, our analysis results suggested the predicted
dsyregulation closely associated with the AD progression by
affecting many well-reported mechanisms.

We defined the transcriptional “dysregulation” by selecting
gene pairs with changed co-expression between disease and
normal samples. The gene pairs could be down- or up-stream
members in regulatory pathways, i.e., either A regulates B
or B regulates A. They can also be co-regulated genes by
common upstream pathways. In the context of co-expression
or differential co-expression, it was not easy to elucidate the
exact information of their relationship. However, by checking
the functional annotation to the hub genes and their partners,
we always found consistent functional annotation. For example,
EIF4EBP2 was reported as a translation initiation repressor
and got involved in synaptic plasticity, learning and memory
formation (Bidinosti et al., 2010). Functional enrichment
analysis to its partners identified the GO terms related to
synaptic transmission, which confirmed the consistent functional
involvement between hub genes and their partners.

This study is to find the correlation difference betweenAD and
normal sample. Its confidence is highly dependent on the sample
size (Fisher, 1915). Therefore, most of co-expression analysis
studies recommend to include as many as possible samples and
conditions (e.g., see Lee et al., 2004; Cahan et al., 2014; Gillis
et al., 2015). This may lead to information loss, e.g., brain region-
specific dysregulation. However, this also leads to identification
of the consensus dysregulation that is more associated with
AD progression. In differential co-expression analysis results are
subtle and related to the batch or platform effects of the data
from independent projects. We applied several steps to improve
the confidence. The most critical one was to collect large-scale
RNA-seq data from the AMP-AD program, which minimized the
effects of different platforms and batches. Due to the large-scale
RNA-seq data, we were able to perform deep evaluation of the
quality of expression data by comparing the sample consistency.

Another novel finding is the divergent transcriptional
regulations between human and mouse. As the widely used
animal model, mouse is widely used in many neurological
studies. Our finding puts a potential warning to some wetlab
conclusions especially these from transcriptional related studies.
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Figure S1 | The summarized sample information based on the annotation in

AMP-AD projects, including (a) AD samples and (b) normal samples.

Figure S2 | Genomic gene expression profile homogeneity evaluation for the

samples from independent RNA-seq projects. The sample distribution in the

principal component analysis (PCA) plot indicates the expression similarity of the

selected samples for AD (a) and normal samples (b), respectively.

Figure S3 | Evaluation of the co-expression correlations by randomly sampling (a)

and shuffling (b). (a) Half of the sample are randomly selected to calculate the new

correlations. (b) All the genes are shuffled with random samples annotation so that

the gene pairs have the wrong sample mapping.

Figure S4 | The co-expression between four TF genes and dysregulated genes.

The solid lines indicate the co-expression correlation distribution between

dysregulated gene and 2045 TF genes; the dashed line indicates the

co-expression correlation between dysregulated genes and the genomic genes;

the legend shows the TF genes with maximum co-expression correlation with

dysregulated genes.

Figure S5 | Mouse may have divergent co-expression profile with human

AD samples.

Figure S6 | The association between dysregulation and connectivity in the

co-expression network. The y-axis shows the median z-score of the differential

co-expression.

Figure S7 | The partner number of dysregulated genes predicted using RNA-seq

and microarray data.

Figure S8 | The association between connectivity and co-expression correlation.

(a) the genes with higher connectivity are always the genes with higher

co-expression correlation. (b) Functional annotation to the top 200 genes with the

highest connectivity.

Table S1 | The 87,539 dysregulated gene pairs between AD and normal.

Table S2 | All the dysregulated genes with at least one partner. Other annotation

including differentially expressed in AD samples, aging related genes, AD genes,

connectivity in co-expression network.

Table S3 | The Alzheimer’s disease related genes collected by text mining to the

published works.

Table S4 | The differentially expressed genes in AD patients.

Table S5 | The association between dysregulated genes and clinical traits.

Table S6 | The used microarray data for mouse brain.

Table S7 | The used microarray data for human brain.

Table S8 | The dysregulated genes and the WGCNA analysis results.

Doc S1 | The full acknowledgement to the individual data contributors.
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