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Abstract: Widespread antibiotic resistance demands new strategies for fighting infections.
Porphyrin-based compounds were long ago introduced as photosensitizers for photodynamic
therapy, but light-independent antimicrobial activity of such compounds has not been systematically
explored. The results of this study demonstrate that synthetic cationic amphiphilic iron
N-alkylpyridylporphyrins exert strong bactericidal action at concentrations as low as 5 µM.
Iron porphyrin, FeTnHex-2-PyP, which is well tolerated by laboratory animals, efficiently killed
Gram-negative and Gram-positive microorganisms. Its bactericidal activity was oxygen-independent
and was controlled by the lipophilicity and accumulation of the compound in bacterial cells.
Such behavior is in contrast with the anionic gallium protoporphyrin IX, whose efficacy depends on
cellular heme uptake systems. Under aerobic conditions, however, the activity of FeTnHex-2-PyP was
limited by its destruction due to redox-cycling. Neither iron released from the Fe-porphyrin nor other
decomposition products were the cause of the bactericidal activity. FeTnHex-2-PyP was as efficient
against antibiotic-sensitive E. coli and S. aureus as against their antibiotic-resistant counterparts.
Our data demonstrate that development of amphiphilic, positively charged metalloporphyrins might
be a promising approach in the introduction of new weapons against antibiotic-resistant strains.
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1. Introduction

In a recent report, the WHO pointed to antimicrobial resistance as a global problem that poses
a threat for the management of diseases caused by viruses, bacteria, and fungi [1]. The number of
antibiotic-resistant bacterial strains is increasing all over the world, which potentially may lead to a
point when infections would become untreatable with currently available drugs. The routine answer to
this problem has been the introduction of new antibiotics that overcome bacterial resistance. In recent
years, however, a drop in the research and introduction of new antibiotics has been observed [2–4].
Patients with infections due to antimicrobial-resistant organisms cost the health care system much
more than patients infected with antimicrobial-susceptible pathogens [5]. Two species, Gram-positive
Staphylococcus aureus and Gram-negative Escherichia coli appeared to be among the most common cause
of antibiotic-resistant infections [6].

The light-independent, reviewed in [7], and photodynamic antimicrobial activities of
metalloporphyrins [8–10] have attracted interest as potential alternatives to existing antibiotics [11–13].
Non-iron metalloporphyrins have been reported to act as efficient light-independent microbicides
against Gram-positive, Gram-negative and mycobacteria, with gallium protoporphyrin IX (GaPPIX)
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being the most efficient [14,15]. Protoporphyrin IX-based metalloporphyrins are anionic and enter
the cell through the heme-uptake system of bacteria. Consequently, species that do not express heme
uptake systems are resistant [7,14]. The exact mechanism of metalloporphyrins’ light-independent
antibacterial action is not known. Supposedly, it is related to inhibition of some essential metabolic
pathways, depending on heme-containing enzymes/proteins [7]. On the other hand, the higher
sensitivity of catalase- and SOD-deficient mutants, and the fact that anaerobically grown cultures
were resistant to non-iron metalloporphyrins, i.e., such compounds are toxic only to actively respiring
bacteria [14], suggested that they cause cell damage by either compromising cell respiration or by
inducing oxidative stress, or both. Modifications of the peripheral substituents of naturally derived
metalloporphyrins dramatically affected their antibacterial activity [14], which stresses the importance
of similarity to heme for antibacterial action [7].

A potential advantage of metalloporphyrin-based antibacterials is their low toxicity to eukaryotic
cells [7,14]. Various porphyrin-based therapeutics, including manganese porphyrin-based SOD mimics,
have shown minimal toxicity to laboratory animals and are now in five phase II human clinical
trials [16–23]. In our preliminary studies, we found that cationic Mn porphyrins (MnPs) did not show
measurable toxicity to human cell cultures and to mice at concentrations tenfold higher than those
killing E. coli (unpublished data). While investigating the biological activities of metalloporphyrins,
it has been observed that cationic iron ortho N-alkylpyridyl porphyrins (FePs) are much more toxic to
E. coli than their manganese analogs [24,25]. Similar findings were observed by Kawakami’s group
against various cancer cells [26]. The difference in biological activity between cationic Fe and Mn
porphyrins are likely related to their differential axial coordination. In contrast to MnPs, which have
two weakly axially coordinated water molecules, FePs have one strongly coordinated hydroxo axial
ligand, and in the trans-position to it, a weakly bound water molecule [24]. The strong axial binding
affects FePs’ reactivity in a biological environment as well as pharmacological activities and may in turn
induce toxicity to bacteria [24]. The higher toxicity of FePs against E. coli and their good tolerability by
mammals [24,27] prompted us to further investigate the bactericidal activity of synthetic FePs.

2. Materials and Methods

2.1. Metalloporphyrins

The metalloporphyrins used in this study (Figure 1) include Fe(III) N-alkylpyridylporphyrins,
whose synthesis and characterization has been described in detail elsewhere [24]. These FePs
were specially designed by maintaining the tetrapyrrole core, while modifying the
periphery by attaching aliphatic chains of varying length. Consequently, compounds with
desired lipophilicity and three-dimensional structure were obtained. The length of the
aliphatic chains attached to the pyridyl nitrogen at the meso position varied from ethyl
FeTE-2-PyP, Fe(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin), to hexyl FeTnHex-2-PyP, Fe(III)
meso-tetrakis(N-hexylpyridinium-2-yl)porphyrin) to octyl FeTnOct-2-PyP, Fe(III) meso-tetrakis
(N-octylpyridinium-2-yl)porphyrin). All tested FePs are water-soluble. The charges are omitted
throughout the manuscript for clarity. Commercially available gallium protoporphyrin IX (GaPPIX)
and hemin were used without further purification. Although isolated as pentachloride salts in solid
state, in aqueous systems at physiological pH, cationic FePs coordinate axially with one hydroxo and
one water ligands [24], as indicated in Figure 1; for simplicity, axial coordination is omitted throughout
the text and in other figures.
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Figure 1. Structures of metalloporphyrins used in this study. In aqueous medium at pH 7.4, one axial
water of Fe(III) ortho N-alkylpyridylporphyrins (FeTE-2-PyP, FeTnHex-2-PyP and FeTnOct-2-PyP) is
deprotonated. Consequently, under such conditions cationic iron ortho N-alkylpyridyl porphyrins
(FePs) bear one hydroxo (OH−) ligand and one trans-axially bound water molecule (not shown here for
clarity) [24,27]. Hemin and GaPPIX structures are presented in the solid form as they were received.

2.2. Strains and Growth Conditions

The Gram-negative strains used to study the antibacterial activity of metalloporphyrins include:
antibiotic-sensitive Escherichia coli strain GC4468 (F− ∆lac U169 rpsL), QC1799 (same as GC4468 plus
∆ sodA3, ∆ sodB-kan) provided by Dr. D. Touati [28]; AB1157 [F− thr-1 leuB6 proA2 his-4 thi-1 argE2
lacY1 galK2 rpsL surE44 ara-14 xyl-15 mtl-1 tsx-33]; KK204 as AB1157 plus fur::kan [29]; MG1655 F−

wild-type; LC106, as MG1655 plus ∆ahpF::kan ∆(katG17::Tn10)1 ∆(katE12::Tn 10)1 [30] provided by
Dr. J. Imlay, and a clinical E. coli isolate resistant to carbapenems provided by Dr. M. John Albert (Faculty
of Medicine, Kuwait University). Gram-positive strains: antibiotic-sensitive Staphylococcus aureus strain
ATCC25923 [31], and antibiotic-resistant clinical isolate CC22-SCCmec IV (provided by Dr. E. Udo,
Faculty of Medicine, Kuwait University).

Cultures were grown overnight in Luria Bertani (LB) medium with antibiotics added where
necessary. For the preparation of LB plates, 15 g of agar was added to 1 L of liquid LB medium.
Working cultures were grown in M9CA medium (M9 salts, 0.2% casamino acids, 0.2% glucose, 3 mg
pantothenate, and 5 mg of thiamine per liter) [32]. Growth was monitored by measuring the change
of OD at 600 nm using a microplate reader [32]. Viability was assessed by dilution of cultures and
plating on LB agar plates for counting colonies. To avoid distortion of results due to variations in rate
of growth, whenever necessary, cells were washed and resuspended in PBS containing 0.2% glucose
(PBS-glucose).

To avoid light-induced cell damage by metal-free ligands with photosensitizing properties,
produced by demetallation of the FePs, cultures and samples were always protected from light.
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To test the contribution of oxygen and reactive species derived from it to FePs bactericidal
action, additional experiments were performed in an anaerobic Coy chamber, maintaining oxygen
content below the detection limit. All solutions were thoroughly degassed and equilibrated for 30 min
before use.

2.3. Uptake and Accumulation of FePs in E. coli

Cellular uptake of FePs was determined as previously described [33]. In brief, mid-log cultures
(OD600nm = 0.5–0.7) grown in M9CA medium were washed and resuspended in PBS-glucose to the
same density. FePs were then added to a final concentration of 5 µM and cultures were kept on a shaker
at 37 ◦C for one hour. After the completion of the incubation, cells were rapidly washed with ice-cold
PBS, and disrupted by French press. Spectra were recorded and the area under the peak at Soret band
was calculated. FeP concentration was determined using a standard curve. Protein concentration was
estimated by the method of Lowry [34].

2.4. Oxygen Consumption by Bacterial Suspensions

Oxygen consumption was measured as previously described [35] using Biological Oxygen Monitor
System (YSI 5300A, YSI Inc., Yellow Springs, OH, USA) equipped with a Clark electrode.

Mid-log E. coli suspensions in PBS-glucose were incubated 60 min in the dark with FeTnHex-2-PyP
at the indicated concentrations. At the end of the incubation period, 3.0 mL aliquots were transferred
to Clark electrode chamber and oxygen consumption was recorded.

2.5. Data Analysis

Experiments were repeated at least two times, each sample in triplicate. One-way analysis of
variance (ANOVA) was performed using SigmaPlot version 11.0, and p value < 0.05 was accepted as
statistically significant. Data are presented as mean ± SD.

3. Results

3.1. Effect of FePs on E. coli Proliferation and Viability

The aim of our initial experiments was to determine how differences in lipophilicity of FePs
affect E. coli proliferation. Figure 2 shows that none of the tested FePs prevented E. coli growth at a
concentration of 1.0 µM. At this concentration, FeTE-2-PyP induced ~4 h lag of proliferation, but did
not affect the growth rate. At 3.0 µM, the most hydrophilic FeP, FeTE-2-PyP, completely prevented
cell proliferation, while the amphiphilic hexyl derivative FeTnHex-2-PyP only decreased the rate of
growth. No cell proliferation was observed in the presence of 5 µM FeTE-2-PyP, FeTnHex-2-PyP
or FeTnOct-2-PyP.
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Figure 2. Concentration-dependence of the effect of FePs on E. coli proliferation. Overnight GC4468 LB
cultures were diluted 200-fold in M9CA medium. One hundred-microliter aliquots were transferred
to a 96-well plate and FePs were added to the specified final concentrations. (A) FeTE-2-PyP;
(B) FeTnHex-2-PyP; (C) FeTnOct-2-PyP. Proliferation was monitored by measuring the change of OD at
600 nm using a microplate reader. Results are presented as mean ± SD.
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To find out if the effect of the FePs was only bacteriostatic and bacteria remain viable, after
completion of the growth experiments (24 h), the content of the wells where no proliferation was
observed (5 µM FePs), was evenly spread on LB agar plates for counting colonies. Cell number in
wells at zero time was used for comparison. The number of viable cells decreased by about four log
units when cultures were treated with FeTE-2-PyP. No colonies were observed in wells treated with
FeTnHex-2-PyP or FeTnOct-2-PyP (Figure 3). These results show that the amphiphilic hexyl and octyl
derivatives exerts much stronger bactericidal action than the hydrophilic ethyl analog.
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Figure 3. Bactericidal action of FePs. All conditions were as in Figure 2. After 24 h of monitoring
growth, the content of wells with no increase in OD600nm was evenly spread on agar plates and after
24 h of incubation at 37 ◦C, colonies were counted. The plates were left in the incubator for an additional
24 h and colonies were recounted. Control shows cell number at the beginning of the experiment
(zero time). Results are presented as mean ± SD.

Since FeTnHex-2-PyP demonstrated the lowest toxicity in animal experiments [24], it was selected
for further investigations.

The results presented in Figure 3 were obtained after E. coli was exposed to FePs for 24 h. It is
not clear what would be the effect if contact with the compound was much shorter. To answer this
question, E. coli was grown to mid-log phase (OD600nm = 0.5–0.6), the cells were thoroughly washed,
resuspended in PBS-glucose to avoid cell proliferation during incubation, and treated with 5 µM
FeTnHex-2-PyP. Figure 4A shows that short treatment (~15 min) kills ~40% of the cells. Exposure for
two hours achieved ~95% viability loss, and exposure for four hours killed practically all bacterial cells.

Another variable that might affect FeTnHex-2-PyP bactericidal effect can be the compound to cell
number ratio. Experiments demonstrated that at 5 µM FeP, maximal bactericidal efficiency could be
achieved if cell number did not exceed ~7 × 108 cells/mL. Five-fold increase in the initial cell number
resulted in a ~30% decrease in FeTnHex-2-PyP bactericidal activity (Figure 4B).
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Figure 4. Effect of duration of E. coli exposure to FeTnHex-2-PyP and cell number on cell viability.
(A) E. coli suspensions in PBS-glucose (~7 × 108 cells/mL) were incubated with 5 µM FeTnHex-2-PyP at
37 ◦C and 200 rpm. At the indicated times, aliquots were properly diluted and plated for counting
colonies. (B) All conditions were as in Panel A except that cell number varied, but time of incubation
was fixed to two hours. Results are presented as mean ± SD.

3.2. Comparison of FeTnHex-2-PyP with GaPPIX and Hemin

Previous studies have revealed that hemin [7] and non-iron porphyrins such as Ga-protoporphyrin
IX [14] were efficient against certain bacterial species. A comparison under the selected experimental
conditions shows (Figure 5) that neither Ga-protoporphyrin IX nor hemin suppressed E. coli proliferation,
even when applied at a concentration four-fold higher than that of FeTnHex-2-PyP. This finding is
not surprising, because both compounds are negatively charged and our previous studies have
demonstrated that only cationic amphiphilic porphyrins easily cross membranes and accumulate to
high concentrations in microbial cells [8,36].
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Figure 5. Comparison of the bacteriostatic activity of different types of porphyrins. All conditions were
as in Figure 1. Cell density (OD600nm) after 24 h of incubation is shown. Bars represent mean ± SD of
three separate experiments, each sample run in triplicate.
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3.3. Cellular Uptake of Fe-Porphyrins

The data obtained so far suggest that the bactericidal action of FeTnHex-2-PyP depends on the
cellular uptake of the compound, leading to suppression of vital biological functions. Incubation of
E. coli in the presence of FePs of varying lipophilicity demonstrated that the two amphiphilic FePs,
which displayed strong bactericidal activity, accumulated to much higher levels in bacterial cells than
the hydrophilic, less active FeTE-2-PyP analog (Figure 6). Based on similar experiments performed with
Mn-porphyrin [33] and Zn-porphyrin analogues [8,10], it was established that cationic amphiphilic
metalloporphyrins penetrate the cell without the need for a carrier.
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Figure 6. Cellular uptake of FePs. (A) E. coli was treated with FePs alone or in combination with
ascorbate. E coli suspensions in PBS-glucose were incubated for one hour with 5 µM FePs on a
thermostatic shaker at 37 ◦C and 200 rpm. Where indicated, ascorbate was added to 1.0 mM. At the
completion of the incubation period, cells were thoroughly washed, resuspended in deionized H2O and
disrupted by French pressing. Homogenates were cleared from debris by centrifugation and cell-free
extracts were used for spectrophotometric assessment of FeP content. The results show mean ± SD.
(B) Correlation between the lipophilicity (Rf data taken from [24]) and cellular uptake of cationic FePs.

3.4. Effect of FeTnHex-2-PyP on Oxygen Consumption

FeTnHex-2-PyP is a redox-active compound and potent SOD mimic [24,25]. Thus, a possible
reason for its toxicity may be interference with processes that require transfer of electrons. Among them
are various metabolic redox reactions, and cellular respiration. To test if respiration is affected by FePs,
oxygen consumption by E. coli treated with FeTnHex-2-PyP was measured. A concentration-dependent
suppression of cellular respiration by the FeP was observed (Figure 7A). Irrespective of the fact
that incubation with FeP was reduced to 60 min, loss of viability is inevitable, and suppression of
respiration could simply reflect a decreased number of viable cells. To account for the number of viable
respiring cells, aliquots taken from the Clark electrode chamber at the time of respiration assay were
diluted and plated for counting colonies. When O2 consumption was normalized by the number of
viable cells in the chamber, it appeared that the FeP increased O2 consumption (Figure 7B). The effect
was concentration-dependent. One micromole of FeTnHex-2-PyP increased O2 consumption ~2 fold
compared to the non-treated control, 5 µM FeTnHex-2-PyP produced about 5-fold increase, and 10 µM
FeTnHex-2-PyP caused a ~10-fold increase in O2 consumption compared to the untreated controls.
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Figure 7. Effect of FeTnHex-2-PyP on O2 consumption by E. coli. E. coli suspensions in PBS-glucose were
incubated 60 min with FeTnHex-2-PyP at the indicated concentrations. At the end of the incubation
period, 3.0 mL aliquots were transferred to a thermostatic chamber fitted with a Clark electrode,
and oxygen consumption was recorded. After that, cells were suitably diluted and plated on agar LB
plates for counting colonies. Results are presented as nmol O2 consumed per mL cell suspension (A) or
as nmol O2 consumed per 106 viable cells (B). Mean ± SD of two separate experiments, each sample
run in duplicate is presented.

An explanation for the increase in O2 consumption can be found in the reduction of the Fe(III)P by
endogenous reductants, among them thiols and ascorbate [37]. Reduced Fe(II)P is rapidly reoxidized,
donating an electron to oxygen and generating superoxide anion radicals, whose dismutation results
in H2O2 production [24]. Therefore, the antibacterial activity of FeP can be attributed to redox-cycling,
generating cytotoxic reactive species. This implies that FeP’s toxicity should be manifested only
aerobically. When the bactericidal activity of 5 µM FeTnHex-2-PyP was assessed under anaerobic
conditions, however, 99.54 ± 0.20% of the cells were killed within 2 h of incubation.

3.5. Superoxide Radical, Hydrogen Peroxide, and FeP Decomposition

If H2O2 was the main cause for FeP’s bactericidal effect, then addition of ascorbate would accelerate
FeP redox-cycling and, consequently, FeP toxicity, as was reported before for the Mn-porphyrin
analogs [38]. Addition of ascorbate, however, had the opposite effect. One mM ascorbate added to
the cell culture simultaneously with FeTnHex-2-PyP, completely abolished its bactericidal activity.
At the same time, ascorbate blocked the uptake of FeTnHex-2-PyP by the cells (Figure 6, far right bar).
It appears therefore that redox-cycling and H2O2 production lead to extracellular FeP destruction [24]
and consequent dismissal of FeP antibacterial activity. The role of H2O2 in the mechanism of action of the
FeP was further tested on a catalase/peroxidase-deficient mutant (LC106). The mutant strain appeared
to be as sensitive to FeTnHex-2-PyP toxicity as its parent. Thus, aerobically, 5 µM FeTnHex-2-PyP
killed 88.87 ± 3.01% of the parental (MG1655), and 86.98 ± 4.01% of the catalase/peroxidase-deficient
(LC106) cells. Similar results were obtained when the two strains were incubated with FeTnHex-2-PyP
anaerobically; parental 90.33 ± 3.24% killed, LC106 89.48 ± 4.52% killed. Neither aerobically nor
anaerobically were the differences between the sensitivity of parental and catalase/peroxidase-deficient
strains statistically significant. This result was supported by the lack of effect of externally added
catalase (1000 units/mL) to E. coli suspensions treated with FeTnHex-2-PyP.

No proof for the contribution of superoxide to the toxic action of FeTnHex-2-PyP was found either.
When FeP toxicity to parental and SOD-deficient mutant was compared aerobically, no statistically
significant difference was found; parental (GC4468) 89.10 ± 3.02% killed, sodA sodB (QC1799)
91.72 ± 2.26% killed.
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Reduction of FePs and their reoxidation leads to porphyrin degradation and release of Fe3+ [24],
which in the reductive cellular environment is immediately reduced to Fe2+ [39]. Liberation of iron has
been proposed as a cause of heme toxicity [40] and might be among the reasons for FeP’s bactericidal
action. Incubation of bacterial cultures with the iron chelator deferoxamine (2 mM), however, did not
protect against FeTnHex-2-PyP bactericidal action (97.73 ± 1.26% of the cells were killed in the absence
of deferoxamine and 98.36 ± 0.6105% were killed in cultures with deferoxamine).

In many bacterial species, including E. coli, iron uptake is controlled by the ferric uptake regulon, fur.
It represses the expression of heme uptake systems when there is an abundance of iron, thus preventing
iron overload. A fur-deficient mutant (KK204), however, was as sensitive to FeTnHex-2-PyP as its
parent was (96.91 ± 0.85% vs. 97.73 ± 1.52% killed). This result again shows that FeTnHex-2-PyP
toxicity does not depend on bacterial heme uptake system.

3.6. Bactericidal Action of FeTnHex-2-PyP against S. aureus

So far all experiments were carried out using a Gram-negative microorganism, E. coli.
A Gram-positive species, S. aureus, was reported to be highly susceptible to heme toxicity [40].
By analogy, it could be expected that S. aureus would be more sensitive to FeP toxicity than is
E. coli. Indeed, in contrast to E. coli, more than 93% of S. aureus cells were killed at FeTnHex-2-PyP
concentrations as low as 1 µM (Figure 8).
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Figure 8. Sensitivity of S. aureus to FeTnHex-2-PyP toxicity. S. aureus (ATCC25923 strain) suspensions
in PBS-glucose were incubated two hours with FeTnHex-2-PyP at 37 ◦C and 200 rpm. At the end of
the incubation period, aliquots were properly diluted and plated for counting colonies. Results are
presented as mean ± SD.

3.7. Resistance to Antibiotics and FeP Bactericidal Effect

Resistance to antibiotics had no effect on the antibacterial activity of the FeP. An antibiotic-resistant
clinical S. aureus isolate CC22-SCCmec IV was as sensitive to killing by 5 µM FeTnHex-2-PyP as
the antibiotic-sensitive ATCC25923 strain (99.38 ± 0.57% vs. 99.84 ± 0.75% killed). Similar results
were obtained when a carbapenems-resistant E. coli clinical isolate was tested (antibiotic-sensitive,
95.85 ± 1.06% vs. carbapenems-resistant, 97.30 ± 0.94% killed).

4. Discussion

The results obtained in this study show that ortho cationic Fe(III) N-alkylpyridylporphyrins display
strong bacteriostatic and bactericidal activities. Bactericidal action depended on FePs lipophilicity,
which in turn defines the cellular uptake of the compound. Accumulation of FeP in bacterial cells
seems to be crucial for bactericidal action.
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FeTnHex-2-PyP increased oxygen consumption by E. coli suspensions in a concentration-dependent
manner. Such an increase can be attributed to redox-cycling of the FeP between reduced +2 (FeIIP)
and oxidized +3 (FeIIIP) states, while donating an electron to oxygen, converting it to superoxide and,
consequently, to hydrogen peroxide; both superoxide and peroxide are bound to the Fe center [24,41]
(Scheme 1). Among cellular reductants that can reduce metalloporphyrins, ascorbate and thiols [42–44]
are found at millimolar concentrations in most cells. The reactions are analogous to redox-cycling of
heme iron [45].
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Scheme 1. Proposed intracellular (A) and extracellular (B) conversions of FeTnHex-2-PyP. In cells,
FePs can undergo two major pathways. We hypothesized that the 1st pathway results in the bactericidal
effect of FeP. FePs have strong preference for axial bonding, particularly nitrogen-containing ligands
such as amino groups of proteins, and the bases of DNA and RNA. Such binding may interfere with
cellular metabolism and induce bactericidal effect. The 2nd pathway describes the degradation of FePs
in the presence of cellular reductants (such as ascorbate, glutathione, cysteine etc.). When ascorbate
(Asc−) acts as an one-electron reductant, its oxidation results in formation of ascorbyl radical (Asc•),
while FeIIIP is reduced to FeIIP. In a next step, FeIIP binds oxygen and gives rise to FeIIIP(O2

•−) due to
intramolecular electron transfer. This species gets reduced with one electron in the presence of proton,
H+, to iron hydroperoxo species, FeIIIP-O-O-H, which in turn undergoes O–O homolysis, leading to
the solvent caged intermediate [H3O+, O=FeIVP, •OH]. This step is followed by one electron oxidation
of O=FeIVP by hydroxyl radical, •OH, to yield the species in which Fe oxidizes its own ligand, Fe(IV)
porphyrin π cation radical, [O=FeIVP•+] [46]. Subsequently, this species falls apart into free Fe3+ and
oxidized/degraded ligand. The degradation of O=FeIVP•+ would compete with the substrate oxidation
by this species in cellular environment [24,25,45]. The pathway is consistent with our data, as no
intracellular FeP could be detected in the uptake experiments when FeP was incubated together with
ascorbate (Figure 6).

No proof that O2
•− and H2O2 contributed to FeTnHex-2-PyP toxicity was found. The antibacterial

activity of FeTnHex-2-PyP was not prevented by catalase or anaerobiosis and neither sodA sod B nor
catalase/peroxidase-deficient mutants showed higher sensitivity to the FeP than their corresponding
parents. These results, along with literature evidence, imply that these reactive species remain
bound to the FeP, causing its rapid decomposition into free iron and degradation products [24,25,47].
Neither free Fe nor reactive species or porphyrin degradation products appeared to be a cause of FePs’
bactericidal activity.

FeTnHex-2-PyP was more toxic to a Gram-positive species, S. aureus, than to the Gram-negative
E. coli. This implies that structure and permeability of the cell envelope, which determine the cell
penetration and accumulation of the FePs, modulate the toxicity of the metalloporphyrin. Resistance
to antibiotics did not affect sensitivity to FeTnHex-2-PyP in either of the tested microbial species.

Similar to heme, mechanisms of FePs bacterial toxicity seem to be complex and require detailed
investigations. It has been hypothesized [25] that the toxicity of FePs might be due to their high affinity
for axial ligation [48]. High cellular protein concentration makes peptides the most likely candidates
for binding FeP. By analogy with heme, one can expect that amino acid residues acting as ligands in
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naturally occurring hemoproteins (His, Tyr, Met, Lys, and Cys) [49,50] would also have high affinity
towards synthetic Fe-porphyrins. Ligation of FeP to amino acid side chains can eventually disrupt
essential protein functions, which could cause cell death. Binding of FePs to proteins could interfere
with enzymatic, cell signaling, and other peptide functions, and could lead to the disruption of the
plasma membrane barrier and the suppression of metabolic pathways, etc.

5. Conclusions

In conclusion, at relatively low concentrations (1–5 µM), an amphiphilic FeP exhibited potent
antibacterial activity, which depended on the uptake and accumulation of the compound into bacterial
cells. Similarly to heme, the tested FeP was more toxic to the Gram-positive S. aureus than to the
Gram-negative E. coli. Aerobically, the antibacterial activity of the FeP has been limited by the
porphyrin destruction, a consequence of FeP redox cycling. Therefore, the antibacterial activity of the
FeP depends on the intactness of the porphyrin structure and does not result from decomposition
products. The lower toxicity of FeTnHex-2-PyP to laboratory animals and its strong bactericidal
activity give hope that similar compounds with higher stability might in the future be developed as
microbicides against drug-resistant pathogens.
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