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Abstract
Common compartmental modeling for COVID-19 is based on a priori knowledge and numerous assumptions. Additionally,
they do not systematically incorporate asymptomatic cases. Our study aimed at providing a framework for data-driven
approaches, by leveraging the strengths of the grey-box system theory or grey-box identification, known for its robustness in
problem solving under partial, incomplete, or uncertain data. Empirical data on confirmed cases and deaths, extracted from
an open source repository were used to develop the SEAIRD compartment model. Adjustments were made to fit current
knowledge on the COVID-19 behavior. The model was implemented and solved using an Ordinary Differential Equation
solver and an optimization tool. A cross-validation technique was applied, and the coefficient of determination R2 was
computed in order to evaluate the goodness-of-fit of the model. Key epidemiological parameters were finally estimated and
we provided the rationale for the construction of SEAIRD model. When applied to Brazil’s cases, SEAIRD produced an
excellent agreement to the data, with an R2 ≥ 90%. The probability of COVID-19 transmission was generally high (≥ 95%).
On the basis of a 20-day modeling data, the incidence rate of COVID-19 was as low as 3 infected cases per 100,000 exposed
persons in Brazil and France. Within the same time frame, the fatality rate of COVID-19 was the highest in France (16.4%)
followed by Brazil (6.9%), and the lowest in Russia (≤ 1%). SEAIRD represents an asset for modeling infectious diseases
in their dynamical stable phase, especially for new viruses when pathophysiology knowledge is very limited.
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1 Introduction

In December 2019, an outbreak of an emerging disease
(COVID-19) due to a novel coronavirus, the SARS-CoV-2,
began in Wuhan, China and quickly spread in a substantial
number of countries [1, 2]. The COVID-19 pandemic, as
a major global health threat, was declared by the WHO
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on 11 March 2020 [2]. The disease is rapidly spreading
in the whole globe, affecting millions of people and
pushing governments to take drastic measures to contain
the outbreak. For example, mitigation measures to slow
transmission through infection prevention and control, and
social distancing have been introduced with different timing
and pace in countries worldwide. The efficiency of these
measures in slowing the transmission of COVID-19 in the
general population and, more specifically, in the vulnerable
populations of elder adults and individuals with chronic
conditions (i.e., hypertension, diabetes, cardiovascular
disease, chronic respiratory disease, compromised immune
status, cancer and obesity), has been proved useful although
the pandemic is still growing. It is noteworthy that once
ill of COVID-19, no treatment with decisive efficiency
exists, albeit early supportive therapies can improve
outcomes. Thus, preventive strategies and other public
health endeavors are to be sustained. One asset to adequately
support these interventions may be to get the most clear and
realistic picture of the dynamics of the COVID-19 disease,
including by taking into account the impact of different
mitigation or suppression measures at work in countries.
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Unlike highly data-hungry statistical approaches, which
may not be completely suitable in such a situation of
data scarcity, common mathematical modeling used in
epidemiology for infectious diseases relies on the SIR
(Susceptible, Infected, and Recovered or Removed)-type
models [3], though modeling approaches such as the
ARIMA model [4] coupled with polynomial functions [5],
deep learning [6] or even deep learning in combination
with compartment model [7] have been applied to predict
COVID-19 cases. There are many current examples of the
application of the compartment modeling in the COVID-19
epidemic [8–11]. However, compartment models suffer of a
number of issues, including the many a priori assumptions,
and the need of a thorough knowledge of the circulating
virus, which was difficult at the moment of conducting
this study, due to the novelty SARS-CoV-2. In order to
compensate the dearth of data and uncertainties around
SARS-CoV-2 mechanisms of action and that of its related
disease, the COVID-19, we postulate that the grey-box
system identification theory (GBSIT) [12, 13], developed in
the 1980s could make an asset to tackle these challenges.

Indeed, this theory is one of the most robust ones in sit-
uations of prediction and decision-making in the presence
of partial, incomplete, or uncertain information [13]. Because
of its strong ability to solve uncertain problems, and in
order to provide good predictions under limited knowl-
edge and scarce data [14], GBSIT appears to be a relevant
way to describe the dynamics of emerging disease such as
COVID-19. Interestingly, the COVID-19 dynamical model
can be seen as a switching system with non-linear modes
[12], where the switches are triggered by control measures
set by authorities. As such, the switching model coupled
with grey-box approach provides flexibility in characteriz-
ing the dynamics of the epidemic across its different phases.
Indeed, the grey-box modeling allows to derive the switched
system active mode, and must be applied in this case in
the epidemic stable dynamic phase (i.e. early stages, before
control measures and/or between two measures taken to halt
the propagation of a virus) [12, 13]. It can also be used
in the changing phases of the epidemic (when the mode
switches) to estimate trends, and investigate for instance the
effectiveness of actions taken to tackle the outbreak. One
major advantage of such data-driven approach is its ability
to operate under limited a priori knowledge of the studied
phenomenon.

Furthermore, because of their reliance on the calculation
of the basic reproduction rate R0 (i.e., the average number
of secondary cases arising from a typical primary case in an
entirely susceptible population), compartment models often
translate into considerable discrepancy between findings
[15]. R0 is arguably the most important quantity in disease
modeling, and there exists a rich mathematical theory
supporting how R0 can be computed for a range of SIR-type
models with varying degrees of complexity [16]. However,
R0 should not be viewed as the ultimate target of modeling

so as to be able to estimate any other important parameters
(e.g., the rate of infection, recovered people, and deaths in
a susceptible population), which often support quick public
health responses.

Another concern with compartment models is the diffi-
culty of considering asymptomatic cases. Previous estimates
of the proportion of asymptomatic people from COVID-19
provided values between 5% and 80% of people being tested
positive for COVID-19 but without any symptoms [17, 18].
However, it is crucial to better characterize the magnitude
of the contribution of asymptomatic people to the spread of
SARS-CoV-2 in order to be able to develop better strategies
to halt this epidemic, not taking into account the possibility
of reinfection of some recently infected people [19–22].

The current study builds upon the work by Hsu and
Hsieh, [23] who have developed a modeling framework
to integrate asymptomatic cases in outbreak dynamics. Our
aim is to provide an extension of the SEIR (Susceptible-
Exposed-Infected-Removed) compartment model that includes
asymptomatic cases in order to better fit both the COVID-
19 behavior, as well as the mitigation measures adopted by
countries. Unlike usual approach in compartment modeling,
another specific feature of the current study is the use of
empirical data collected on only the cases and deaths due
to COVID-19, – which respectively reflect the transmission
and virulence of the virus – to estimate all the required
parameters for the analysis of the COVID-19 dynamics.
Finally, the analytical method applied in this study, based on
GBSIT, may be sound in supporting policy decisions even
if the understanding of the activity of this new virus is only
partial, incomplete, or uncertain.

2Methods

Our modeling approach comprises five components: (i)
choice and processing of COVID-19 data; (ii) selection
of the most appropriate compartmental modeling for
COVID-19; (iii) building the required adaptation to fit
current knowledge on the SARS-CoV-2 circulation and
transmission; (iv) providing estimation of the targeted
parameters using an identification method together with
an optimization function; (v) predicting the dynamics of
active cases, recovered cases, infective cases, asymptomatic
infective cases and the deaths.

2.1 Setting up and parameterization

We present a model that considers human transmission
of SARS-CoV-2 strain, more unknown than strains of the
past with the following assumptions (provided t is the
time stamp): (i) Infective persons can be classified in two
categories; one of which is with symptoms, denoted by I (t),
and the other is without any clinical presence of symptoms
called asymptomatic or subclinical infective cases, denoted
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by A(t). (ii) When a change in the behavior of people occurs
due to a public response to the outbreak [24], the contact
rate (reflecting the level of risky behaviors) decreases with
the increase in the cumulative numbers of removed persons;
(iii) Homogeneous mixing population is assumed. Even if
our modeling approach is clearly free from key biological
assumptions – (a) the birth rate and death rate are equal and
given by η, (b) all individuals are capable of reproducing
and are equally subject to mortality, and (c) all individuals
are born susceptible to infection –, we keep this in mind in
the building and discussion of the modeling strategy.

We propose SEAIRD model, a compartment model that
explicitly incorporates asymptomatic cases in the analysis
of the epidemic evolution. Our SEAIRD model consists of
the following time-dependent variables: S(t): susceptible
individuals; E(t): exposed (incubating) population; A(t):
asymptomatic infective people; I (t): symptomatic infective
individuals; R(t): removed persons (i.e. completely and/or
temporary recovered from COVID-19); D(t): Dead people.
A flow chart of the model is given in Fig. 1. Let us define
the parameters as follows:

– α is the fraction of exposed population E progressing to
class I , or proportion of symptomatic infections, with
0 < α < 1.

– β is the probability of COVID-19 transmission (i.e, the
infection rate).

– δ is the ratio of the infective force in infectious
asymptomatic people by the infective force in infectious
(symptomatic) people

– γ1 is the recovery probability of infectious people.
– γ2 is the recovery probability of asymptomatic people.
– μ is the progression rate from the exposed class

to infective class (i.e. infected symptomatic and
asymptomatic people).

– θ is the fatality rate.
– η is the birth and death rate (assumed to be equal here).
– N is the population size of each country.

The considered model is a non-linear dynamical model
defined as:

dS

dt
= − βS(t)(I (t) + δA(t))

S(t) + E(t) + I (t) + A(t) + R(t)
−ηS(t) + ηN

dE

dt
= βS(t)(I (t) + δA(t))

S(t) + E(t) + I (t) + A(t) + R(t)
− (μ + η)E(t)

dI

dt
= αμE(t) − (γ1 + θ + η)I (t)

dA

dt
= (1 − α)μE(t) − (γ2 + η)A(t)

dR

dt
= γ1I (t) + γ2A(t) − ηR(t)

dD

dt
= θI (t)

For the sake of simplicity, we introduced the so-called
state-space vector [12]:

X�(t) = (
S(t), E(t), I (t), A(t), R(t), D(t)

)

which gathers the variables at interest.

2.2 Implementation and optimization

SEAIRD model involves several parameters to be estimated.
We relied on a data-driven approach by leveraging the daily
released data to perform the estimation of the parameters.
Data on daily infected cases (and probably deaths data)
might be subject to noise (i.e. recording errors). Hence, we
introduced the cumulative infective cases I defined as:

I (t) =
∫ t

0
I (τ )dτ .

Note that here the integration, which acts as low-pass filter,
on variable I (t) could reduce the noise. Similarly, D(t)

might be less prone to noise, since D(t) represents the
cumulative dead cases on time interval [0, t]. Variables

Fig. 1 Schematic representation
of the proposed model
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I (t) and D(t) are discretized with a sampling period of one
day to reduce the computation cost, yielding:

I (t) =
t∑

p=0

I (p).

Let ϕ� = (
α, β, δ, γ1, γ2, μ, θ

)
be the SEAIRD

model vector of parameters. Based on empirical data, we
can estimate ϕ, using the grey-box identification method
[12], an approach widely used for modeling physical

systems [25]. Let y(t) =
(

I (t)

D(t)

)
be the vector including

the real cumulative number of infective cases I (t), and
the cumulative number of dead cases D(t) at day t . Let

ŷ(t) =
(

Î (t)

D̂(t)

)

be the predicted counterpart of y(t) by our

model at the same day. Since these predictions are obtained
with parameters ϕ, we write ŷ(t, ϕ). To find the optimal
parameters vector which fits our model to the collected
data y(t) over a time window

[
T0, T1

]
, we considered the

following optimization problem over ϕ:

min
ϕ

T1∑

t=T0

(wT
t (y(t) − ŷ(t, ϕ)))2

where wt ∈ R
2, is the weight vector that can be used to

balance infected and death cases.
The estimated parameters vector ϕ was finally applied

to forecast the course of the COVID-19 disease. The
model was implemented and solved using Matlab 2020a,
with the Ordinary Differential Equation (ODE45) solver
and optimization toolbox. This package implements four
different algorithms (Interior Point, Sequential Quadratic
Programming, Active Set, and Trust Region Reflective)
which serve to estimate SEAIRD model parameters. Two
initial conditions were set for this minimization problem:
the initial parameters vector ϕ0 and the initial state vector
X(0). Empirically, we found that ϕ0 did not influence the
estimation of ϕ contrary to X(0). Here, X(0) was chosen to
maximize the coefficient of determination, 0 ≤ R2 ≤ 1.

3Model analysis

We applied the proposed method (with cross-validation
technique [12]) to estimate the COVID-19 dynamics in
Brazil. We carried out sensitivity analysis to examine
the influence of a likely underestimation of reported
number of infected people. Finally, comparative analysis
was conducted by estimating similar parameters in other
selected countries.

3.1 Model estimation and validation

The epidemiologic data were taken from an open source
repository operated by the European Centre for Disease
prevention and Control (ECDC). The database provides
daily number of new cases and deaths for different
countries. In order to preclude perturbations to the modeling
approach due to changes in behaviors, as a consequence of
policy measures taken by countries, we only considered data
on the dynamical stable phase of the epidemic, i.e. a period
within the setting of control measures (see Fig. 2).

The model accuracy was assessed using only data of
Brazil, by calculating the coefficient of determination R2

as the goodness-of-fit criterion of the model. As mentioned
earlier, we applied the proposed modeling technique to
COVID-19 data gathered for Brazil over 42 days from
4 April to 16 May 2020 (see Fig. 2). This period was
chosen because of the relative stability in the control
measures taken by the Brazilian government in the response
to the COVID-19 outbreak (see Fig. 2). Thus, the model
parameters were estimated in a stable zone as required.
Finally, we used 50% of the collected data for model
estimation (4 to 25 April 2020) and 50% (data from 25 April
to 16 May 2020) for the model validation purpose.

The overall modeling procedure is summarized in Algo-
rithm 1.

3.2 Sensitivity analysis

A range of sensitivity analysis was conducted to illustrate
the robustness of the model with regards to possible
weaknesses linked to data collection on “confirmed” cases.
In fact, currently reported confirmed cases may be quite
far from the actual number of infected cases by COVID-
19 [26], which might not consider the asymptomatic ones.
Therefore, we re-estimated the model parameters and
compared its predictive ability by assuming that the actual
infected cases might be higher than the reported confirmed
cases by: (i) 5%; (ii) 10%; and lastly (iii) 20%.

3.3 Estimation for different countries

The modeling approach developed on the basis of Brazilian
data was finally replicated on data gathered for France,
India, Russia, South Africa and USA to highlight the
common points and differences. Using the World Wide
governments response to COVID-19 outbreak time chart
[27], the appropriate time window (i.e. the time scale)
for the estimation in each country was chosen, so that
perturbations to the modeling (due to sudden changes in
the control measures decided in each country) can be ruled
out. As such, the relevant windows were 26 March 2020
to 16 April 2020, 4 April 2020 to 25 April 2020, 15 April
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2020 to 5 May 2020, 4 April 2020 to 25 April 2020, and 4
April 2020 to 25 April 2020 for France, India, Russia, South
Africa, and USA, respectively.

4 Results

4.1 Predictive performance of themodel

When applied on the data of Brazil, SEAIRD model produced
a coefficient of determination R2 of 93% and 92% for the
estimation and validation sets, respectively. This suggests a
good agreement and adequacy of the model to the data.

The infection is mainly supported by two major compart-
ments: the infectious and asymptomatic classes. The prob-
ability β of COVID-19 transmission in Brazil was 99.5%.
In this instance, asymptomatic cases may spread the SARS-
CoV-2, 50 times more than symptomatic people. The fatality
rate (θ ) in Brazil was about 7% (see Table 1). As shown in
Table 1, symptomatic people recovered at a probability of

99% while the recovery probability of asymptomatic people
was 0.09% (Table 1).

The sensitivity analysis suggested high deviations to
the raw estimates when reported cases of COVID-19 were
assumed to be underestimated by 5%, 10%, or 20% (see
Table 1). The pattern of the deviation is not clear. In
some cases, an underestimation of the number of reported
confirmed cases of COVID-19 of 5% can produce greater
deviations than an error of 10% or 20% (e.g., the incidence
of infected cases, μ). The effect was the greatest on γ2,
which can reach up to 7581% difference when compared
to the raw estimates (see Table 1). γ1 and θ were the least
affected by potential errors on the confirmed cases. Finally,
about the effect of errors on reporting the number of infected
cases, δ is contained in a range of about 20% below or
above.

When compared on the basis of about a 20-day modeling
data, the highest differences between countries were found
on the δ, θ , γ2 parameters (see Table 2). Nonetheless,
even if the incidence rate of COVID-19 was generally low
across countries, as exemplified by the parameter μ, some
differences were apparent. With about 5 cases per 1 million
of exposed persons, South Africa exhibited the lowest
incidence rate followed by Brazil and France (3 cases per
100,000 exposed persons), Russia (4.5 cases per 100,000
exposed persons), the US (6 cases per 100,000 exposed
persons) and India (7 cases per 100,000 exposed persons).
The infective force of asymptomatic cases (as compared to
the infective force of symptomatic cases) was the lowest
in Russia (5.1) and India (5.3), and the highest in Brazil
(42.3), with median values found in South Africa (16.6),
France (13.9) and the US (8.5). As shown in Table 2, France
exhibited the highest fatality rate from Covid-19 (16.4%)
followed by Brazil (6.9%). The fatality rate was the lowest
in Russia (≤ 1%) (Table 2).

5 Discussion

We proposed a data-driven approach to estimate key param-
eters for the COVID-19 epidemic in Brazil and a number of
other selected countries. Estimated epidemiological param-
eters from the model such as the mortality rate or incidence
of COVID-19 are consistent with what has been published
in the intensive literature on this disease during the last few
weeks [28]. Furthermore, symptomatic people have a high
probability to “recover” or to temporary lose the COVID-19
symptoms as reinfection and persistence are newly claimed
[20, 21]. For asymptomatic individuals, no clear conclu-
sion can be drawn about their recovery potential [19, 22].
Whether, they may continue to support the transmission
of the virus with a high load still remain to be explored.
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Fig. 2 Plots of (1) Government Response Stringency Index in Brazil. Time chart on a scale of 0 to 100 (source: [27]), (2) cumulative infected for
1000 inhabitants and (3) cumulative deaths for 1000 inhabitants of COVID-19 versus predictions from the model for Brazil

Table 1 Parameter estimation from the SEAIRD model

Period of 4 April 2020 to 16 May 2020

Table 2 Estimates from the model in selected countries

Period indicates the training data dates
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Attention should be paid when attempting a direct compari-
son of estimated parameters between countries. Indeed, the
counting practices of COVID-19 cases and testing strate-
gies (e.g., type and number of tests, testing policies), may
greatly vary from one country to the other one. Nonetheless,
the fatality rates found herein are in line with findings from
meta-analytic approach on the topic. The most recent update
from the Centre of Evidence-based Medicine (CEBM) of
Oxford, as of June, 9, 2020, points out France as the top
country in the number of deaths due to COVID-19 at a rate
of 18.94% (95%CI: 18.75% - 19.14%), which is close to
the 16.44% from the SEAIRD model estimation. Equiva-
lent findings for Brazil, India, Russia, South Africa, and the
US are 5.25% (95%CI: 5.20% - 5.30%) and 5.25% (95%CI:
5.20% - 5.30%), respectively [28].

Our analytical strategy was based firstly on the choice
of a SIR-type model, which was then adapted to better mir-
ror the behavior of the COVID-19 disease. As a result, we
built up the SEAIRD (Susceptible / Exposed /Asymptomatic
/ Infected / Recovered / Dead) compartments, an extension
of the SEIR (Susceptible/Exposed/Infected/Removed) com-
partment. This adaptation allowed us taking into account:
i) the clinically reported latency between the moment of a
possible contact with SARS-CoV-2 and the development of
COVID-19 symptoms (i.e. the transition from the exposed
status to that of an infected symptomatic person), and ii) the
importance of asymptomatic (infective) people in the prop-
agation of this virus. Secondly, the mathematical approach
used herein was based on the GBSIT [13]. The structure of a
grey-box model is built on a combination of knowledge (as
white-box models) and empirically collected data (as black-
box models). In this context of both liability of knowledge
and novelty of the pathogenic agent, grey-box modeling has
the potential to take the maximum of advantage of existing
data even if they may be partial or incomplete. Thus, with
minimal pathophysiological knowledge about the SARS-
CoV-2, it was possible to identify important compartments
that are then used to determine the transmission pattern and
virulence of the COVID-19. Only two variables, empiri-
cally collected from April 04, 2020 to May 16, 2020, were
needed to derive important parameters that may support
public health decision making.

A similar modeling approach, taking into account the
compartment of asymptomatic patients, has been recently
released by Liu and colleagues [7]. The proposal by Liu
et al. was unknown to us at submission. Nevertheless, as a
recall, the modeling approach we propose makes it possible
to better portray the changing dynamics of the epidemic
according to collective control measures decided by local
authorities. The inner principle is that of hybrid systems,
which are able to admit different dynamics, depending on
the actions they undergo. Secondly, our approach is also
based on a limited available data (i.e. confirmed cases and

deaths) from open access databases in combination with
the partial available knowledge at the time of building our
SEAIRD model. Finally, as did Liu and coauthors [7], our
modeling is not only an endeavor to address the case of
asymptomatic people in the spread of COVID-19, but it also
has anticipated the possibility of reinfection by the SARS-
CoV-2 or some of its various lineages; a projection that
was not common in published modeling strategies. Now,
the reinfection claim is no longer a hypothesis but a result
substantiated by several studies [19–22, 29, 30].

While the “adaptive” SEAIRD model of Liu et al. was
powered to provide accurate predictions within one to two
weeks in advance [7], the predictive ability and scope of
the SEAIRD model herein may be longer depending on the
duration of the dynamical stable phases of the epidemic. For
instance, our SEAIRD model can give accurate prediction
for over 2 months in the case of the US (see Supplementary
materials). On the other hand, the performance of our
SEAIRD model, which is robust for the stable phases,
might give poor outputs when used in changing phases
of an epidemic dynamics. This standpoint is exemplified
when ones attempts to carry out a comparison of results
provided by the “adaptive” SEAIRD [7] to those of our
SEAIRD model in the period of March, 1, 2020 to March,
29, 2020. As shown in Fig. 3, this period falls exactly within
a changing dynamics phase of the epidemic in the US, i.e. a
time interval separating two control measures decisions. As
such, direct comparison with the output of the “adaptive”
SEAIRD model by Liu et al. may be hard, even impossible
to perform, due to differences in modeling approach and
implementation. Thus, these two different SEAIRD models
can be viewed as complementary; one is suitable for the
changing phases and the other is for stable phases of an
emerging epidemic.

As a hot spot the COVID-19 pandemic at period of
conducting the current study, data from Brazil were first
put forward for illustrative purpose. Not only is Brazil
an emblem of the growth of this pandemic phenomenon
[31, 32], but also because of relative permissiveness and/or
flexibility of measures in place, the country appears as
a genuine case to learn more about how asymptomatic
people are spreading the virus and feeding the pool of ill
people. The exact proportion of asymptomatic people is
actually unknown due to symptom-based screening that is
currently favored. Some studies suggested that between 5%
and 80% of those who get a positive test for COVID-19
may be asymptomatic [17, 18]. By definition, an infected
person with the disease symptoms may express illness in
a way that should not only generate infectious aerosols
but also reduce his/her contact with others if sufficiently
ill to be in bed. It becomes obvious that the continue
transmission of the disease is to be mainly supported by
subclinical cases, and especially the asymptomatic people.
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Fig. 3 Government Response
Stringency Index in the US.
Periods of changing dynamics
phase (“adaptive” SEAIRD
model: March, 1, 2020 to March,
29, 2020) vs. stable dynamics
phase (The present SEAIRD
model: April, 4, 2020 to April,
25, 2020 for modeling followed
by accurate predictions up to 2
months later). Time chart on a
scale of 0 to 100 (source: [27])

One consequence of such a situation is that the impact
of some public health endeavors, including mitigation or
case-patient isolation would be severely diminished [33].
As in the case of Brazil, these measures are jeopardised
by the higher infective force of asymptomatic patients as
compared to the symptomatic ones. To gain in efficiency
and effectiveness, control measures against COVID-19
should be more stringent, and may stem on the capability
of countries in tracing, identifying and caring asymptomatic
and/or mild symptoms cases. This is all the most important
since recent findings suggested that, contrary to common
beliefs, the viral load of SARS-CoV-2 is similar, if not
superior, in asymptomatic and mild symptoms patients
as compared to their symptomatic counterparts [34, 35].
Additionally, earlier findings underscored that up to 55% of
SARS-Cov-2 transmission may be caused by unidentified
infected persons [18, 36]. This figure is in line with our
results, which show that the infective force of asymptomatic
people is about 50 times that of symptomatic people,
especially in Brazil.

There are some limitations to our proposed modeling
approach. First, it may be less relevant at the very earlier
stages/beginning of an epidemic when collected data may
be too noisy or too poor to be consistent with the inherent
behavior of an epidemic. Furthermore, early data collected
in an emerging epidemic such as that of the COVID-19 may
not be as good as those collected later due to continuous
improvement in field works, as well as in the refinement
of diagnostic tools, and so on. Especially, in the case of
COVID-19, it should be acknowledged that criteria used to
determine the infection status have substantially evolved.
From the use of nucleic acid testing, guidance then changed
to put emphasis on clinical signs or chest CT scan, and
now on serological assays. As a consequence, what is
called “confirmed cases” of COVID-19 may somewhat vary
according to the type of test(s) used to define them at a
specific period of the epidemic. Future studies comparing

these different definitions are warranted to secure the
comparison of data collected on different time scales. In
the meantime, the application of a weighing factor (i.e.
forgetting factor) should be pertinent to handle the issue of
recent data being more accurate and valid than the earliest
ones. Furthermore, as any data-driven approach, the derived
parameters from our model depend mainly on the quality of
the data used. As such, the fact that our analytical strategy
considered only data provided by the European Centre for
Disease Control and Prevention (ECDC) might put the
outcome of our model under the threat of potential errors
in this data repository. A final limitation is associated to
the fact that our modeling has assumed a homogeneous
population. Such an assumption does not allow taking into
account the importance of age groups in the transmission
and outcome of this epidemic as compared to findings
from recently published study with a different modeling
approach on COVID-19 data [5]. A future work is then
required, in which new variables (e.g., age pyramid, age-
related contamination pattern of the COVID-19) would be
considered in the modeling strategy.

Despite these limitations, our model highly fits data
and may describe well the behavior of any epidemic
phenomenon in its dynamical stable phase. Because our
SEAIRD model combines simplicity and minimization of
the number of input data, which increases its usability
and capacity for generalization, we then believe that the
proposed approach hold some promises. It can be used
not only in the current COVID-19 epidemic, but also
generally to future epidemics and notably in the presence
of novel viral pathogens for which there may exist neither a
treatment nor advanced pathophysiology knowledge. Future
development should mandatorily include in the SEAIRD
model, the dynamics in different age groups.
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