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Although advances in cytotoxic treatments have been obtained in several neoplasias, in metastatic melanoma there was no
drug able to significantly change the natural history of the disease in the last 30 years. In the last decade, translational research
identified important mechanisms in malignant transformation, invasion, and progression. Signaling pathways can be abnormally
activated by oncogenes. The identification of oncogenic mutated kinases implicated in this process provides an opportunity for
new target therapies. The melanoma dependence on BRAF-mutated kinase allowed the development of inhibitors that produced
major responses in clinical trials. This is the beginning of a novel class of drugs in metastatic melanoma; the identification of
the transduction signaling networking and other “druggable” kinases is in active research. In this paper, we discuss the ongoing
research on cellular signaling inhibition, resistance mechanisms, and strategies to overcome treatment failure.

1. Introduction

Malignant skin melanoma is one of the most chemoresistant
and aggressive human neoplasias. In the last 30 years, no cy-
totoxic agent was able to importantly change the natural
history of disease [1]. Several strategies to overcome resist-
ance to cytotoxic agents have been tested, including combi-
nations of drugs [2], cytokines, and vaccination [1]. With
these therapeutic approaches, only a small fraction of the me-
tastatic patients experienced tumour shrinkage, but such
effects did not translate into significant clinical benefits in
terms of progression-free survival or overall survival [1, 3].
Until recently, no predictive marker of response could be
established.

This scenario started to change in the last decade. With
advances in translational research, it was possible to identify
pathways and somatic mutations implicated in the biolo-
gy of the melanoma. The identification and blockade of ab-
normal signaling through the mitogen-activated protein
kinase (MAPK) pathway is the most promising therapeutic
strategy to date. Around 60% of all melanomas express so-
matic mutations in the BRAF protein, and 90% of these

express the oncogenic activating V600E mutation [4]. Vemu-
rafenib, an inhibitor of the V600E BRAF kinase activity, has
produced major responses [5] and showed an overall survival
advantage as single agent against dacarbazine in a recent
phase III trial [6].

Despite the advances, responses are transitory and we
have not yet been able to neither cure nor stabilize the
disease for long periods. Better understanding of tumoral
biology and its adaptations to the therapeutic intervention
continues to be a challenge. Parallel signaling pathways and
the network between them are some of the possible reasons
for treatment resistance and could provide new targets to
drug development. We reviewed the research advances in
signaling pathway inhibition and new strategies to metastatic
melanoma treatment.

2. MAPK Pathway—RAS/RAF/MEK/ERK

The MAPK pathway is frequently mutated in melanoma. It
is involved in cell mutation, differentiation, and survival. In
response to the extracellular signaling a RAS family protein
recruits a RAF family protein to the cell membrane. Active
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RAS signals activate ERK and downstream effectors as shown
in Figure 1. Specifically NRAS and BRAF mutations are high-
ly associated with melanoma [4]. Preclinical results evidenc-
ing cytotoxic effects of the pathway blockage increased the
clinical research interest in this direction [4, 7].

2.1. RAS. Oncogenic mutation in the sequence of the NRAS
protein has been observed in around 15% of the melanomas
[4] leading to protein activation and transduction of survival
and proliferation signals [8, 9]. Preclinical research validated
the RAS protein as a possible target for clinical drug
development [7, 10].

Farnesyl transferase inhibitors are drugs developed to
avoid membrane localization of RAS, preventing its activa-
tion [11]. These drugs have been evaluated across several
neoplasias with disappointing results [12, 13]. In melanoma,
there was only one phase II study where no response was
observed among the 14 patients [14]. The study did not
stratify patients by their NRAS mutation status, which could
explain the absence of response in this cohort of patients.
There is some evidence of synergic mechanisms of farnesyl
transferase inhibitors with cisplatin [15], but this approach
was not clinically tested.

2.2. RAF. Almost 60% of melanomas show a BRAF mutation
[4, 16]. Among these patients, the most common is the
replacement of the glutamic acid by the valine aminoacid in
the position 600, the so-called V600E BRAF mutation [4]. It
accounts for 90% of the mutations of the BRAF gene [4].

V600E BRAF is a frequent mutation in melanoma and is
also commonly found in benign nevi [17]. BRAF mutations
do not seem sufficient to promote malignant transformation,
but may play a role in early stages of carcinogenesis [16,
18–20]. A second oncogenic hit could be necessary: the
interaction of BRAF with PTEN [21], p16 [20], p53 [18],
AKT [22], and UV radiation [23] has already been described.

The first therapeutic approach to block this protein
was the use of multikinase inhibitor sorafenib, which tar-
gets BRAF, CRAF, PDGFRβ, and VEGFR [24]. Sorafenib
was used as monotherapy and combined with cytotoxic
chemotherapy—dacarbazine [25], temozolomide [26], and
carboplatin plus paclitaxel [27]—with negative results. That
contrasts with positive results in renal cell carcinoma [28]
and suggests that melanoma could be specifically more
dependent of the BRAF pathway. Some authors argue that
sorafenib is not an effective BRAF inhibitor in the doses used
in the clinical trials [29].

Vemurafenib, also known as PLX4032, RG7204, or
RO5185436, is potent and specific inhibitor of the V600E
BRAF activity, recently approved for the treatment of
advanced melanoma. In a phase I/II study, after the escalation
dose phase, 32 melanoma patients harboring the V600E
BRAF mutation were included in the twice daily 960 mg
dose regimen to evaluate response rate. An impressive RR of
81% was observed, including 24 partial responses and two
complete responses. Vemurafenib was active even in patients
with multiple lines of treatment, high LDH levels, or visceral
metastasis. The estimated progression-free survival was more
than seven months, and at the time of the publication, the

overall survival had not been reached [5]. Vemurafenib was
tested in a phase III randomized trial against dacarbazine.
Interim analysis for overall survival showed a survival
advantage for vemurafenib with a relative risk reduction of
death of 63% (95% confidence interval [CI], 0.26 to 0.55; P <
0.001). At 6 months, overall survival was 84% (95% CI, 78 to
89) versus 64% (95% CI, 56 to 73), the estimated median
progression-free survival was 5.3 months versus 1.6 months,
and response rate was 48% versus 5% in the vemurafenib
versus the dacarbazine group [6]. Specific BRAF inhibition
had the contradictory side effect of promoting proliferative
skin lesions, arising from wild-type BRAF keratinocytes [30].

A second compound that targets the BRAF mutated
protein is GSK2118436. It is an even more potent inhibitor of
mutated BRAF kinase activity, with a less relevant cutaneous
toxicity profile. One of the particularities of this compound is
its ability to effectively pass the blood brain barrier. In a sub-
group of patients enrolled in the phase I study, a reduction
of the brain metastasis size was observed [31]. GSK 2118436
is under evaluation in a phase II study for the treatment of
patients with brain metastasis [32]. In addition a phase III
study is comparing GSK 2118436 to dacarbazine [33].

2.3. MEK. The MEK kinase is just downstream BRAF in the
signaling pathway. Inhibition of this kinase is postulated as
an interesting target in BRAF mutant melanoma [34], but
not in NRAS [35]. In vitro studies identified higher sensi-
bility of MEK inhibition in cells harboring the BRAF mu-
tation [34]. Results from a phase I clinical trial showed dis-
ease response and stabilization in subgroups of melanoma
patients [36] and the related translational research success-
fully identified the reduction of ERK phosphorylation [37,
38].

MEK inhibitors are under evaluation for the treatment
of metastatic melanoma and have shown moderate activity
in phase I studies [38]. The MEK inhibitor AZD6244 is being
tested alone or in combination with chemotherapy in several
phase II studies [39]. Importantly, not all the studies require
the BRAF mutation as inclusion criteria. The molecule is also
being tested in phase II studies both in combination with
BRAF inhibitors [40] and after failure to BRAF inhibition
[41].

2.4. ERK. Direct ERK inhibition is under investigation in
basic research. An inhibitor of the kinase activity was
synthesized and tested in mouse models of rheumatoid
arthritis [42, 43]. Authors argue that this class of drug could
be used in cancer treatment [43]. However, to date, there are
no published data on ERK inhibition in this setting.

3. PI3K Pathway—PI3K/AKT/PTEN/mTOR

The PI3K pathway is activated by the biding of a ligand to a
receptor tyrosine kinase (RTK) [44]. It interacts with multi-
ple cellular mechanisms of survival, proliferation, mobility,
differentiation, and growth [45]. Alterations in the signaling
pathway can play a role in malignant transformation and in-
vasion [45, 46]. Recently, it was demonstrated that the
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Figure 1: Schematic view of the MAPK and PI3K pathways. Drugs targeting the multiple kinases in the signaling cascades are represented
in blue.

interaction of AKT with the mutated BRAF protein collab-
orates with melanoma development [47]. Several molecules
targeting the signal transduction through this pathway are
currently under development (Figure 1).

3.1. PI3K. Many anticancer therapies rely on apoptosis, and
it has been postulated that the inhibition of PI3K activity
could alter the process. LY294002 was developed as an
inhibitor of PI3K activity. In melanoma cell lines, it effec-
tively induced apoptosis both by itself and in combination
with other drugs [48]. In mice models, the topical use of
LY294002 in combination with a RAS inhibitor inhibited the
melanoma graft invasive behavior and reduced angiogenesis
[49]. The combination was also effective in cell lines [50].

The observation of the strong coexpression of the p110
fraction of the PI3K with the activation of mTOR motivated
the strategy of double blocking those kinases [51]. Several
combinations were tested in preclinical studies [51, 52].

PI3K and mTOR kinases belong to the phosphatidyli-
nositol-3-kinase-related kinase (PIKK) family and share con-
siderable homology in their active site. Inhibitors developed
to block PI3K activity, like LY294002 and wortmannin, are,
therefore, active against both kinases. It is likely that some of
the effects of these compounds could be due not only to PI3K
inhibition but to double blockage of the pathway. Research
is being carried out in order for the small differences in the
active sites to be understood and for specific inhibitors to
be produced [53]. Clinical early-stage studies with double
blocking drugs are recruiting.

3.2. AKT. Copy gains of the AKT3 gene are found in about
60% of melanomas and are correlated with melanoma pro-
gression [54]. The activation of the AKT pathway can sup-
press apoptosis [55].

Perifosine is the first compound inhibiting AKT to reach
phase 2 studies in melanoma. It was administered to 18 mela-

noma patients and resulted in 7 disease stabilizations and 11
progressions after two 28-day cycles of treatment. Authors
concluded that this drug should not be tested as a single
agent [56]. Other compounds like MK-2206 [57, 58], RX-
0201, PBI-05204, and GSK2141795 [59] are in early clinical
development for several types of cancer [60–63].

It has been observed, in preclinical models, a cytotoxic
synergistic effect of the combination of MK-2206 with
other target therapies and conventional chemotherapy [58].
This approach could be particularly promising in malignant
melanomas harboring the BRAF mutation, taking into
account the role played by the interaction of those kinases
in the malignant transformation.

3.3. PTEN. The phosphatase and tensin homolog (PTEN)
is a tumor suppressor gene [64, 65]. Its protein product
inhibits melanoma growth and increases its susceptibility to
apoptosis [66]. The deletion or silencing of PTEN increases
the level of AKT3 phosphorylation in melanocytes and early
stage melanoma cells [67, 68]. Cells lacking PTEN are more
resistant to chemotherapeutic agents and show increased Bcl-
2 activity, being more resistant to apoptosis [69].

In melanoma xenograft models in nude mice, the intro-
duction of PTEN using a plasmid or chromosomal transfer
inhibited tumor development [66]. It was also observed in
breast cancer cell lines resistant to EGFR inhibition and
lacking of PTEN activity that the introduction of the wild-
type gene reverted the resistant phenotype [70]. Approaches
restoring PTEN activity are still being under research at the
basic laboratory setting.

3.4. mTOR. The mammalian target of rapamycin (mTOR)
lays downstream AKT and can regulate its activity by feed-
back mechanisms. mTOR forms at least 2 active complexes
of proteins: mTOR1 and mTOR2, the first of which suppress
and the second activates AKT signalling [71].
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Figure 2: Representation of the resistance mechanisms to the vemurafenib. (a) Vemurafenib causes cell death by inhibiting V600E BRAF
kinase activity and signaling transduction through the MAPK pathway. (b) New mutations in the NRAS causes heterodimerization of
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mTOR signalling seems to be active in melanoma cell
lines [72]. In breast cancer, inhibition of mTOR can reverse
the trastuzumab resistance phenotype [73]. As a single-agent
treatment, inhibition mTOR shows low activity and no clin-
ical benefit against metastatic melanoma [74]. mTOR block-
ing is being tested in preclinical research in combination
with heat shock protein vaccines [75] and MAPK inhibitors
[71, 76].

Several derivatives of rapamycin targeting the mTOR1
complex are available and in clinical research. A number of
phase I and -II studies testing the combination of everolimus
and temsirolimus with conventional cytotoxic therapies are
currently being carried out [77].

4. C-Kit Receptor

C-Kit belongs to the family of growth factors receptors. It is
an RTK related to the process of melanocyte cell migration in
embryogenesis [78]. It also plays a role in hematopoietic and
germ cell homeostasis [79, 80]. Pathogenic activation of kit
is observed in a number of solid tumors, such as seminoma
[81], GIST [82], and thymic carcinoma [83].

A subset of melanomas (2 to 5%) also presents an
amplification or mutation in c-Kit. It is more frequent in

non-sun-exposed areas, such as in the mucous and acral
melanomas subtypes, although it can be found in chronically
sun-damaged skin areas [84, 85]. Most Kit mutations in
melanomas are in the juxtamembrane region [86], which
predicts responsiveness to imatinib mesylate, an inhibitor of
tyrosine kinase activity [87].

Several case reports evidenced objective response of c-
kit mutated melanoma to the use of imatinib [88–91]. This
observation was also confirmed in cell-line studies [92].
When tested in phase II studies, discordant and disap-
pointing negative results were obtained in three different
trials [93–95]. The possible explanation to this finding is
the relatively low dependence of the survival stimuli of c-
Kit signaling or the need for a more specific and potent
c-kit blocker. Different c-kit blockers are now in clinical
development, and results from these trials may help answer
these questions [96].

5. Resistance Mechanisms to BRAF Inhibition

Inhibition of the mutated BRAF protein is the target therapy
in more advanced clinical development. Even if most of
patients responded to initial therapy, all of them would
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eventually relapse. The mechanisms related to resistance to
BRAF inhibition are under intensive research. Reactivation
of the MAPK pathway seems to be involved in the majority
of the cases but signaling transduction by parallel pathway
was also identified [97–99] (Figure 2).

The RAS protein is upstream from RAF. Activation of the
MAPK pathway occurs as a result of the dimerization of RAF
proteins (ARAF, BRAF, and CRAF) by the RAS stimuli. BRAF
wild-type cells are resistant to BRAF inhibition because the
biding of the drug to one dimmer causes the activation
of the other [100–102]. In BRAF-mutated cells, the high
activity of this kinase possibly causes a negative feedback
in the RAS kinase [101], so the RAF dimerization in this
population of cells is low, and the treatment is effective. In
primary melanoma, mutations in RAS and RAF are mutually
exclusive [4], but after vemurafenib treatment failure, it was
identified a new mutation in the NRAS kinase, causing the
reactivation of the MAPK pathway and disease progression
[99] (Figure 2(b)). Experiments in cell lines overexpressing
CRAF also showed resistance to vemurafenib effects [97].

Resistance can also rise from the activation of ERK
independent of RAF signaling. The MAPK agonist gene
MAPK8 codes for the protein COT. Overexpression of COT
was detected in a subset of patients after failure to BRAF
inhibition. This kinase can phosphorylate MEK and ERK
in a RAF-independent way and mediate resistance to vemu-
rafenib [97] (Figure 2(c)). Another resistance mechanism by
the reactivation of the MAPK pathway is the acquisition
or de novo activating mutation in the MEK protein [98]
(Figure 2(d)).

PDGFRβ overexpression was observed in a subset of cell
lines resistant to vemurafenib. These cells were resistant to
the antiproliferative effects of BRAF V600E inhibition despite
sustained low ERK phosphorylation levels (Figure 2(e)). This
observation was validated in a subgroup of patients [99].

New mutations in the BRAF protein confer resistance to
its inhibition in cell lines [103], but to date it could not be
identified in patients’ biopsies.

6. Overcoming Resistance

As reactivation of the MAPK pathway seems to be involved in
most of acquired resistance cases from BRAF inhibition [97–
99], downstream blocking seems like a promising strategy.
There are now several studies testing MEK inhibition in
metastatic upfront and after anti-BRAF treatment failure.
Concomitant or sequential inhibition of RAF and MEK may
also be useful for such patients. Another strategy could be
the development of double inhibition of BRAF and CRAF.
Resistance arising from activation of COT or PDGFRβ could
be targeted by the combination of inhibitors of these proteins
with maintenance RAF inhibitors.

Due to the variety of the resistance mechanisms, there is
not a single strategy that will fit all patients. In the context of
personalized therapy, tumor profiling is of major importance
in different moments of the disease course. Only by the
sequential analysis of the tumor molecular profile, can one
identify the best target at the best moment for each specific
patient.

Progress in melanoma treatment provides researchers
with a unique opportunity to development novel therapeutic
strategies. Laboratory resistance cell models coupled with
the accessibility of melanoma skin tumours to sequential
biopsies provides a research strategy that will lead to a better
understanding of drug resistance mechanisms and improve
clinical care.

7. Conclusion

Understanding the biology of the melanoma has been crucial
for the development of new therapies. The observation of the
dependence of the MAPK pathway for tumor survival boost-
ed the research of methods for interfering with tumor cell sig-
nalization. Several compounds blocking multiple levels of the
signaling pathways are being actively researched. The V600E
BRAF inhibitor, vemurafenib, is now an approved agent for
the treatment of advanced melanoma.

However, these advances are only available to around
60% of the patients, that is, those who have the BRAF mu-
tation, and even in these patients the responses are transitory.
For those not presenting this mutation, finding another
target is urgent. Approaches like immunotherapy and vac-
cination are under development with promising results,
but, again, only a small fraction of the patients respond
to treatment (∼10%) [104], and there are no available
predictive markers of response.

Sequential biopsy and molecular profiling are important
tools in cancer care and research. It allows us to understand
the disease progression and its resistance mechanisms and to
choose the most appropriate treatment strategy. Personalized
molecular therapy is already a reality in malignant skin mela-
noma. The combination of kinase inhibition with con-
ventional cytotoxic chemotherapy, with immunotherapy or
multiple kinase inhibitions guided by the tumor molec-
ular profile will provide new strategies for personalized
melanoma treatment.
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