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Background and Aims: To understand the role of microRNAs in muscle atrophy caused
by androgen-depletion, we performed microarray analysis of microRNA expression in the
skeletal muscles of Sham, orchiectomized (ORX), and androgen-treated ORX mice.

Methods: To clarify role and mechanisms of let-7e-5p in the muscle, the effect of let-7e-
5p overexpression or knockdown on the expression of myosin heavy chain, glucose
uptake, and mitochondrial function was investigated in C2C12 myotube cells. Moreover,
we examined serum let-7e-5p levels among male subjects with type 2 diabetes.

Results: We found that the expression of the miRNA, lethal (let)-7e-5p was significantly
lower in ORX mice than that in Sham mice (p = 0.027); however, let-7e-5p expression in
androgen-treated ORX mice was higher (p = 0.047). Suppression of let-7e-5p significantly
upregulated the expression of myosin heavy chain, glucose uptake, and mitochondrial
function. Real-time PCR revealed a possible regulation involving let-7e-5p and Igf2bp2
mRNA and protein in C2C12 cells. The serum let-7e-5p levels were significantly lower,
which might be in compensation, in subjects with decreased muscle mass compared to
subjects without decreased muscle mass. Let-7e-5p downregulates the expression of
Igf2bp2 in myotube cells and inhibits the growth of the myosin heavy chain.

Conclusions: Based on our study, serum level of let-7e-5p may be used as a potential
diagnostic marker for muscle atrophy.

Keywords: micro RNA, let-7e-5p, muscle atrophy, Igf2bp2, sarcopenia
INTRODUCTION

Sarcopenia, an aging-related condition characterized by the loss of muscle mass, strength, and
function, is an important global health concern (1). Sarcopenia-associated muscular atrophy not
only impairs motor function, but also increases the likelihood of falls and fractures, affects daily
activities (2, 3), and increases the risk of mortality (4). The pathogenesis of skeletal muscle atrophy
includes reduced regenerative capacity of muscle satellite cells, reduced protein synthesis, and
accelerated degradation of myotube cells (5). Although the exact mechanism is unknown, reduced
androgen production has been implicated in the pathogenesis of skeletal muscle atrophy. Roy et al.
reported an association between serum androgen concentration and skeletal muscle mass and
n.org December 2021 | Volume 12 | Article 7913631

https://www.frontiersin.org/articles/10.3389/fendo.2021.791363/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.791363/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:michiaki@koto.kpu-m.ac.jp
https://doi.org/10.3389/fendo.2021.791363
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.791363
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.791363&domain=pdf&date_stamp=2021-12-24


Okamura et al. Let-7e-5p and Muscle Atrophy
strength (6). In addition, Basualto-Alarcón et al. showed that
androgen signals induce muscle hypertrophy through the mTOR
and androgen receptor pathways (7). However, androgen
replacement therapy has been reported to have several adverse
effects (8). Therefore, there is an urgent need to develop new
therapeutic options to prevent androgen deficiency-induced
skeletal muscle atrophy.

Micro RNAs (miRNAs) are short single-stranded non-coding
RNAs approximately 19–23 nucleotides in length that regulate
gene expression in the post-transcriptional control phase of
target messenger RNAs (mRNAs). MiRNA-mediated
transcriptional repression is known to play an important role
in biological processes such as cell proliferation and
differentiation (9), apoptosis (10), metabolism (11), and
development (12). MiRNAs bind to their target mRNAs with
incomplete homology, thereby destabilizing the target mRNA,
and inhibiting protein synthesis (13).

Recent studies have shown that a single miRNA can regulate
the expression of multiple genes associated with a single
pathology. Abnormal expression of miRNAs in the skeletal and
cardiac muscles is associated with muscle damage (14). We
previously reported that activation of the Akt-mTOR pathway,
caused by miR-23b-3p overexpression-mediated PTEN
repression, counteracts skeletal muscle atrophy and has
beneficial effects on the skeletal muscles, including increased
expression of myosin heavy chain, myoD, and myogenin, and
increased glucose uptake and ATP activity (15). In contrast, in
this study, using microarray analyses of miRNA in skeletal
muscles, we found that the miRNA, lethal (let)-7e-5p, was
overexpressed in androgen-treated orchidectomized (ORX)
mice, compared to ORX mice. Let-7 family has been reported
to be related with muscle atrophy. Muscle biopsy studies found
that the expression of let-7b and let-7e was increased in the
skeletal muscle in older men with less lean mass compared to
young men (16). In another study, in healthy men with 21-days
bed rest let-7 in muscle was increased (17). On the other hand,
the expression of let-7 was decreased in skeletal muscle at 10-
days of bed rest in healthy man (18), and the expression of the
let-7 family within atrophied skeletal muscle has been reported
in various ways and no clear conclusions have been reached. In
this study, we investigated the association between skeletal
muscle atrophy and let-7e-5p using murine C2C12 myotube
cells. In addition, we examined the relationship between let-7e-
5p levels in human serum and muscle atrophy.
MATERIALS AND METHODS

Animals and Experimental Design
All experimental procedures were approved by the Committee
for Animal Research, Kyoto Prefectural University of Medicine
(M2020-40). Six-week-old C57BL/6 J male mice were purchased
from Shimizu Laboratory Supplies (Kyoto, Japan) and housed in
specific pathogen-free controlled environment. The mice were
fed a standard diet (SD; 344.9 kcal/100 g, fat kcal 4.6%; CLEA
Japan, Tokyo) for 4 weeks starting at 8 weeks of age.
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Mice were either orchiectomized (ORX group) or sham-
operated (Sham group) at 7 weeks of age. Under isoflurane
inhalation anesthesia, the skin of the testicle area is cut by 1 cm,
the testicle is removed, and compression hemostasis is applied
until obvious bleeding stops. In the sham group, the skin at the
testicle area is cut by 1 cm, and the testicle is not removed, and
only the skin is sutured. For the androgen-treatment group
(ORX+A), 8-week-old ORX mice were treated with
testosterone, administered once every 2 days for 4 weeks via
subcutaneous injection of androgen enanthate (3.6 mg/g body
weight; ISEI, Yamagata, Japan) diluted in sesame oil (19).

When the mice reached 12 weeks of age, mice were sacrificed
by the administration of a combination of anesthetics including
0.3 mg/kg medetomidine, 4.0 mg/kg midazolam, and 5.0 mg/kg
butorphanol (20). The soleus muscle was obtained, frozen
immediately, and stored at -80°C until use. QIAzol Lysis reagent
(Qiagen, Hilden, Germany) was used for miRNA extraction.

MiRNA Microarray Analysis
The soleus muscles were obtained from the mice in the ORX,
ORX+A, and Sham groups, and subjected to GeneChip miRNA
4.0 Array (cat. #902412, Applied Biosystems, Foster City, CA,
USA). The relative abundance of the miRNAs within the groups
was evaluated using the weighted average distance (WAD)
method using R (21) and paired t-tests. The WAD method
ranked the genes based on high expression, high weightage, or
fold-change. WAD was found to be an effective method of
transcriptome analysis. The data were preprocessed with
Robust Multichip Average normalization, and the global
miRNA expression was visualized as a volcano plot.

Mouse Skeletal Muscle Cell Culture
C2C12 cells (a mouse myoblast cell line; KAC Co. Ltd., Kyoto,
Japan), were plated in 24-well plates and grown in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 20% fetal
bovine serum (day 2). The medium was changed every other day.
When the cells reached 80% confluence, they were differentiated
in DMEM supplemented with 2% horse serum (differentiation
medium) (day 0). At 24 h after the medium change, the cells were
transfected with 30 nM let-7e-5p mimic/inhibitor or a scrambled
sequence (mirVana ®), which were purchased from Thermo
Fisher Scientific, using X-treme Gene siRNA transfection kit
(Roche, Mannheim, Germany) according to the manufacturer’s
recommendations (day 1). At 96 h (day 5) post-transfection, the
myotube cells were evaluated through various experiments.

Gene Expression in C2C12 Cells
Gene expression in the C2C12 cells was analyzed on day 5.
Medium was removed and the cells were washed with cold
phosphate buffered saline (PBS) twice. Cells were detached
from the dish using cell scrapers, homogenized in ice-cold
QIAzol Lysis reagent, and total RNA was isolated following the
manufacturer’s instructions. Total RNA (0.5 mg) was reverse
transcribed into cDNA using a High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems) with oligodT and
random hexamer primers according to the manufacturer’s
recommendations. The reverse transcription reaction was
December 2021 | Volume 12 | Article 791363
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performed for 120 min at 37°C and the reaction was inactivated
for 5 min at 85°C. We chose the let-7e-5p target mRNA, Igf2bp2,
for further studies. We used real-time reverse transcription-
polymerase chain reaction (RT-PCR) to quantify the mRNA
expression of Igf2bp2, Trim63, Fbxo32, and Hdac4, which are
involved in muscle atrophy (22). RT-PCR was performed using
TaqMan Fast Advanced Master Mix (Applied Biosystems)
according to the manufacturer’s instructions. The PCR
conditions were as follows: 1 cycle of 2 min at 50°C and 20 s
at 95°C, followed by 40 cycles of 1 s at 95°C, and 20 s at 60°C.

The relative expression of each target gene was normalized to
the threshold cycle (CT) value of Gapdh quantified using the
comparative threshold cycle 2−DDCT method as described
previously (23). Signals from the Sham mice were assigned a
relative value of 1.0. Six mice were examined in each group, and
RT-PCR was performed in triplicate for each sample. Total
miRNA was extracted from the soleus muscle using the
miRNeasy mini kit (Qiagen, Hilden, Germany).

For the miRNA RT-PCR experiments, cDNA was synthesized
from 200 ng of total miRNA using a Taqman miRNA Reverse
Transcription kit (Applied Biosystems). U6 was used as an
endogenous control. RT-PCR was performed using TaqMan
Fast Advanced Master Mix (Applied Biosystems) according to
the manufacturer’s instructions. The PCR conditions used were
as follows: 1 cycle of 2 min at 50°C and 20 s at 95°C, followed by
40 cycles of 1 s at 95°C, and 20 s at 60°C. We extracted and
quantified let-7e-5p and U6 small nucleolar RNA using the 2
−DDCT method. Signals from the Sham mice were assigned a
relative value of 1.0.

Luciferase Reporter Assay
The putative let-7e-5p targets were predicted using TargetScan
Human 6.2 (http://www.targetscan.org/). The putative
recognition sites of let-7e-5p in the IGF2BP2 3’-untranslated
region (3’-UTR) and its sequences are shown in Supplementary
Figure 2. The reporter plasmids containing the wild-type (WT)
3′UTR (pmirGLO3-IGF2BP2-WT-3′UTR) and mutant (MUT)
3′UTR (pmirGLO3-IGF2BP2-MUT-3′UTR) were synthesised
(Genecopoeia). C2C12 myotube cells in 96-well plates were
transfected with 30 nM scrambled sequence (NC), a
combination of let-7e-5p mimicking substrate (Applied
Biosystems) and IGF2BP2 reporter vector or pEZX-MT01
control vector, which were purchased from Merk, using an X-
treme GENE siRNA transfection kit according to the
manufacturer’s instructions. All transfection experiments were
performed in triplicate. Luciferase activity was assayed at 48 h
after transfection, using a dual-luciferase reporter assay
system (Genecopoeia).

Protein Extracts and Western Blot
Incubated With Antibodies
Whole C2C12 myotube cell extracts were prepared in a radio
immunoprecipitation assay buffer (RIPA, ATTO, Tokyo; 50
mmol/L Tris (pH 8.0), 150 mmol/L NaCl, 0.5% deoxycholate,
0.1% SDS and 1.0% NP-40) containing a protease inhibitor
cocktail (BioVision, Milpitas, CA, USA). Protein assays were
performed using a BCA protein assay kit (Pierce/Thermo
Frontiers in Endocrinology | www.frontiersin.org 3
Scient ific , Rockford, IL , USA) according with the
manufacturer’s instructions. Total protein (20mg) was
electrophoresed in 12% SDS-PAGE gels, and western blotting
was carried out using standard protocols and proteins detected
by ImageQuant LAS 500 (GE Healthcare, Piscataway, NJ, USA).

C2C12 myotube cells were subjected to protein extractions.
First, 40–60 mg of protein extraction were incubated with the
following primary antibodies; Igf2bp2 (1:1000), MY32 or gapdh
(1:1500) diluted with EzBlock Chemi (ATTO, Osaka, Japan)
overnight at 4°C, followed by incubation with goat anti-mouse
IgG secondary antibodies conjugated to horseradish peroxidase
diluted with EzBlock Chemi for 30 minutes at room temperature.
All the antibodies listed in this section were obtained from Santa
Cruz Biotechnology (Santa Cruz, Dallas, TX, USA).

Immunocytochemistry
C2C12 cells were cultured in 8-well chamber slides and
immunocytochemistry was performed on day 5. The cells were
fixed in 4% paraformaldehyde and incubated with MY32, a
primary monoclonal antibody against myosin heavy chain
(Sigma-Aldrich, St. Louis, MO, USA), or F12B, anti-myogenin,
(Sigma-Aldrich), diluted in PBS/1% BSA/0.3% TritonTM
X-100 (Sigma-Aldrich) overnight at 4°C, and then with Texas-
red-conjugated anti-mouse secondary antibody (Jackson
ImmunoResearch) diluted in PBS/1% BSA/0.3% TritonTM X-100
overnight at 4°C for 1 h. The nuclei were stained with DAPI (Sigma-
Aldrich). Images were captured with a BZ-X710 fluorescence
microscope, and the fluorescence intensity of the cells and the
nuclei count per image with a 20-fold magnification were analyzed
using ImageJ (NIH). In addition, the fusion index was defined and
determined according to a previous study (24).

Apoptosis Detection by Flow
Cytometry Analysis
C2C12 cells were cultured in 24-well chamber slides and flow
cytometry analyses were performed on day 5 with Annexin V-
FITC Apoptosis Detection Kit (Nacalai tesque, Kyoto, Japan)
according to the manufacturer’s recommendations. FACS Canto
II and FlowJo version 10 software were used for obtained data
and analyzation.

ATP Activity
C2C12 cells were cultured in 24-well plates, and cellular ATP was
extracted on day 5 using an Intracellular ATP assay kit (Toyo-B-
Net, Tokyo, Japan) according to the manufacturer’s instructions.
The medium was removed, cells were washed twice with cold PBS,
and then treated with ATP extraction buffer (400 mL/well) at room
temperature for 5 min. The lysate was then dispensed into 96-well
plates (on ice) in triplicate and luminescent reagent (100 mL/well)
was added. ATP activity was quantitated as a measure of the
luminescence using an Orion L microplate luminometer (Berthold
Detection Systems, Pforzheim, Germany).

2-Deoxyglucose Uptake by C2C12 Cells
The uptake of [3H]2-deoxyglucose (PerkinElmer, Boston, MA)
by C2C12 cells cultured in 24-well plates was measured. Cells
were washed twice with serum-free DMEM, incubated in serum-
December 2021 | Volume 12 | Article 791363
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free DMEM for 2 h at 37°C, and washed twice with PBS. Then,
Krebs-Ringer-phosphate buffer (10 mM phosphate [pH 7.5], 113
mM NaCl, 5 mM KCl, 1.3 mM CaCl2, 1.2 mM MgSO4, and 1.2
mM KH2PO4 containing 0.3% BSA) was added in the presence
or absence of 10 mU/mL bovine insulin for 30 min at 37°C. The
uptake of 10 µM [3H]2-deoxyglucose was then measured over a
5-min period. Reactions were terminated by rapidly washing the
cells twice with ice-cold Krebs ringer bicarbonate buffer.

Cells were then extracted using 0.2% SDS, and aliquots of the
cell extract were counted by liquid scintillation and used to
determine the protein concentration. Nonspecific uptake was
measured in the presence of 10 µM of cytochalasin-B, and the
values were subtracted from those corresponding to
specific binding.

Measurement of Cellular Oxygen
Consumption Rate (OCR) in C2C12 Cells
OCR of C2C12 cells was determined using a Seahorse
Extracellular Flux Analyzer XFp (Agilent Technologies, Santa
Clara, CA). C2C12 cells (0.5 × 104 cells/well) were plated and
cultured in normal medium in a Seahorse plate, and the
experiment was conducted 5 days after changing the cells to
differentiation medium. On the day of the measurement, the
medium was replaced with XF assay medium supplemented with
10 mM glucose, 2 mM glutamine, and 1 mM pyruvate, and the
cell culture plate was placed in a CO2-free incubator for 1 h.
OCR was determined using a Seahorse Analyzer in combination
with a Cell Mito Stress Test assay kit according to the
manufacturer’s instructions. For the Cell Mito Stress Test, 2
mM oligomycin, 2 mM carbonyl cyanide 4-(trifluoromethoxy)
phenylhydrazone (FCCP), and 1 mM rotenone /antimycin A
were subsequently added to the assay medium to monitor
different aspects of mitochondrial respiration. Two plates with
the same conditions were prepared, one for the experiment and
the other for cell counting after stripping the cells with trypsin
EDTA, and OCR was normalized to the total number of cells.

Study Population
The present study population was derived from the
KAMOGAWA-DM cohort study, which is an ongoing
prospective cohort study that began in 2014 (25). Approval for
the study was obtained from the research ethics committees of
the Kyoto Prefectural University of Medicine and Kameoka
Municipal Hospital (E-466), and written informed consent was
obtained from all the patients. For the present study, we collected
information pertaining to male patients aged ≥ 65 years with type
2 diabetes, all of whom were Japanese, physically active, and
KAMOGAWA-DM participants recruited from the outpatient
clinic of the Kyoto Prefectural University of Medicine or
Kameoka Municipal Hospital between August 2015 and
September 2017. Patients with diabetic nephropathy stage 3 or
higher (26) and those with inflammatory disease, malignancy, or
endocrine disease were excluded from the study. Patients with
class NYHA II–IV cardiac insufficiency (27) or severe chronic
obstructive pulmonary disease were also excluded (27) as these
conditions may influence the patient’s physical activity.
Frontiers in Endocrinology | www.frontiersin.org 4
Next, we examined the decrease in muscle mass by
determining each patient’s skeletal muscle index (SMI) based
on the algorithms proposed by the Asian Working Group for
Sarcopenia (28). The body composition of each patient was
evaluated using a multifrequency impedance body composition
analyzer (InBody 720, InBody Japan, Tokyo) (29), which is well
correlated with the dual-energy X-ray absorptiometry (30). We
obtained each patient’s body weight (BW, kg), body fat mass
(kg), skeletal muscle mass (kg), and appendicular muscle
mass (kg) and then calculated the skeletal muscle mass index
(SMI) (kg/m2) by dividing the appendicular muscle mass (kg) by
the square of the patient’s height (m) (30). The body mass index
was defined as weight in kilograms divided by height in meters
squared. The cut-off value for SMI was set to < 7.0 kg/m2. In this
study, we selected a total of 32 male patients to form two groups
of 16 patients with or without decreased muscle mass, matched
for age. Approval for the study was obtained from the research
ethics committees of the Kyoto Prefectural University of
Medicine and Kameoka Municipal Hospital, and written
informed consent was obtained from all the patients.

Serum miRNA Extraction
RNA was extracted from serum samples using miRNeasy Serum/
Plasma Kit (Qiagen) according to the manufacturer’s
instructions. Briefly, 250 mL of serum was thawed on ice and
centrifuged at 12,000 g at 4°C for 10 min to remove cellular
debris. Thereafter, 200 mL of the supernatant was lysed in 1000
mL of QIAzol Lysis Reagent. After incubation for 5 min, 25 fmol
of synthetic cel-miR-39 (Syn-cel-miR-39-3p miScript miRNA
Mimic, Qiagen) was added to each sample as an external spiked-
in control.

Total RNA, including small RNA, was extracted and eluted in
30 mL of RNase-free water using a QIAcube device (Qiagen).
Serum levels of let-7e-5p and cel-miR-39 were examined by real-
time PCR. A fixed volume of 2 mL of total RNA was reverse
transcribed using Taqman miRNA Reverse Transcription kit
(cat. #4366597, Applied Biosystems) in a total volume of 15 mL
under the following cycling conditions: 16°C for 30 min, 42°C for
30 min, 85°C for 5 min, and then maintained at 4°C.

Real-time PCR was performed (in duplicate) using MiRNA
Assay Kit and TaqMan Universal Master Mix II (no UNG; cat.
#4440040, Applied Biosystems) on the StepOne Plus system
(Applied Biosystems) under the following cycling conditions:
95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C
for 1 min. The cycle threshold (Ct) values were calculated using
StepOne Software v2.3 (Applied Biosystems). The miRNAs
expression levels were normalized to those of cel-miR-39
determined using the 2−DDCt method.

Statistical Analysis
Data were analyzed using JMP ver. 13.0 software (SAS, Cary, NC).
Student’s t-test was used to compare the different groups. P = 0.05
was considered significant. Moreover, when necessary, Kruskal-
Wallis tests followed by Bonferroni correction of the Mann-
Whitney U test were used for multiple comparisons. In
addition, the area under the curve (AUC) of serum let-7e-5p
December 2021 | Volume 12 | Article 791363
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levels, for the presence of sarcopenia, was calculated by the receiver
operating characteristic curve.
RESULTS

MiRNA Array Analyses of Murine Soleus
Muscle
We examined the changes in miRNA expression in the soleus
muscle of ORX mice by performing microarray analysis
comparing the Sham and ORX mice administered with
androgen (ORX+A). The differentially expressed genes in the
Sham and ORX mice, and ORX and ORX+A mice were
determined using the WAD algorithm, and the full ranking is
shown in Supplementary Tables 1 and 2. Top 20 miRNAs were
ranked from top to bottom, as shown in Figures 1A, B.
Additionally, volcano plots and heatmap of microarrays data
displaying the pattern of gene expression values for ORX mice
versus sham or ORX+A mice were shown in Supplementary
Figures 1A, B and 3. In microarray analyses, the fold change of
let-7e 5p expression in ORX mice was 0.73 ± 0.16 compared to
that in sham mice, and 0.60 ± 0.12 (p =0.047). In real-time PCR,
the expression of let-7e-5p was significantly reduced in the ORX
mice, compared to that in Sham mice (p = 0.027), whereas
replacement of testosterone restored the expression of let-7e-5p
(p = 0.135) (Supplementary Table 3). In addition, the expression
of let-7e-5p evaluated by RT-PCR in soleus muscle of ORX mice
was significantly decreased, compared to that of sham or ORX+A
mice (p =0.001), whereas that of ORX+A mice was restored to
the same levels as that of sham mice (p =0.167)
(Supplementary Figure 1C).

Igf2bp2 Is a Potential Target of Let-7e-5p
Putative let-7e-5p targets were predicted using TargetScan
Human 6.2 (http://www.targetscan.org/). The putative let-7e-
5p recognition sites in the 3’-untranslated region (3’-UTR) of
insulin-like growth factor-2 mRNA-binding proteins 2 (Igf2bp2)
and their sequences are shown in Supplementary Figure 2. We
confirmed that the expression of let-7e-5p in C2C12 cells was
significantly increased following transfection of the mimicking
substrate, and decreased following transfection of an inhibitor
(p = 0.001) (Figure 2A). Expression of Igf2bp2 in C2C12 cells
was significantly decreased following transfection with the let-7e-
5p mimicking substrate (p = 0.001) (Supplementary Figure 1D).
Conversely, the expression of Igf2bp2 in C2C12 cells was
significantly increased by the let-7e-5p inhibitor (p = 0.001)
(Supplementary Figure 1D). Moreover, in Western blot
analyses, the Igf2bp2 protein levels were investigated. The
Igf2bp2 protein levels of C2C12 cells transfected with the let-
7e-5p inhibitor was higher than those with the let-7e-5p
mimicking substrate (Figure 2C). In addition, the luciferase
reporter assays using a 3’UTR of Igf2bp2 construct with let-7e-
5p or a miR-Control construct expressing C2C12 myotube cells
revealed a consistent reduction of luciferase activity in the let-7e-
5p transfectants, suggesting that let-7e-5p represses Igf2bp2
directly (Figure 2D). The expression of genes related to muscle
Frontiers in Endocrinology | www.frontiersin.org 5
atrophy such as Trim63, Fbxo32, and Hdac4, was significantly
increased in C2C12 cells transfected with the let-7e-5p
B

A

FIGURE 1 | Top 20 miRNAs in the soleus muscle ranked using the weighted
average difference method. Influence of miRNAs in Sham, ORX, and ORX+A
mice was assessed using the weighted average differences method, and the
assessed influence of the genera are ranked from top to bottom. Top 20
miRNAs are shown. Differences between these miRNAs were evaluated using
paired t‐tests (n = 3). Left, histogram showing the mean fragments per
kilobase of exon per million reads mapped (FPKM) of miRNAs (mean +
standard deviation); right, 95% confidence interval (CI) of the differences in
mean proportion and P‐ value by paired t‐test are shown. (A) Sham vs. ORX
mice. (B) ORX vs. ORX+A mice. Sham: red, ORX: blue, ORX+A: green.
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FIGURE 2 | Let-7e-5p inhibits myotube formation in C2C12 cells via repression of Igf2bp2. (A) Let-7e-5p expression in C2C12 cells was assessed after transfection
with a let-7e-5p mimic/inhibitor (30 nM) (n = 6). (B) Relative expression of mRNAs of indicated genes in C2C12 cells normalized to Gapdh expression (n = 6).
(C) Western blotting to detect the levels of Igf2bp2 and MHC and Gapdh in C2C12 myotube cells transfected with a let-7e-5p mimic/inhibitor (n=6). (D) Target
validation study by luciferase assay (n=6). (E) Immunocytochemistry in C2C12 cells (n = 6). Red: Myosin heavy chain. Blue: DAPI. Scale bar, 50 µm. (F) Fluorescence
intensity of myosin heavy chain (arbitrary units, a.u.) was compared (n = 6). (G) Fusion indices of C2C12 cells are shown (n = 6). (H) Width of myosin heavy chain are
shown (n=6). (I) Representative flow cytometry plots of C2C12 cells Annexin V- PI- live cells, Annexin V+ PI- apoptosis cells, and Annexin V+ PI+ dead cells. (J) The
ratio of live cells is shown (n=6). (K) The ratio of apoptosis cells is shown (n=6). (L) The ratio of dead cells is shown (n=6). Data represent the means ± standard
deviation (SD). *p = 0.05, **p = 0.01, ***p = 0.001 by one-way ANOVA. Kruskal-Wallis tests followed by Bonferroni correction of the Mann-Whitney U test were used
for multiple comparisons. Ctrl: negative control, MHC: myosin heavy chain.
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mimicking substrate compared to that in cells transfected with
the inhibitor (Figure 2B).

Suppression of Let-7e-5p Upregulated the
Expression of Myosin Heavy Chain in
C2C12 Cells and Decreased the Apoptosis
In Western blot analyses, the MHC protein levels of C2C12 cells
transfected with the let-7e-5p inhibitor was higher than those
with the let-7e-5p mimicking substrate (Figure 2C). Next, we
immunostained the cells with monoclonal antibodies against
myosin heavy chain. Immunostaining revealed induction of
growth in myotube cells transfected with the let-7e-5p
inhibitor, while cells transfected with the let-7e-5p mimicking
substrate atrophied (Figure 2E). In addition, the fluorescence
Frontiers in Endocrinology | www.frontiersin.org 7
intensity of myosin heavy chain in the C2C12 cells transfected
with the let-7e-5p inhibitor was significantly higher than that in
the cells transfected with the negative control (p = 0.006),
whereas the level in cells transfected with the let-7e-5p
mimicking substrate was significantly lower than that in the
negative control (p = 0.032) (Figure 2F). The fusion index of the
let-7e-5p mimicking substrate was significantly less than that of
the negative control (p = 0.041) or the inhibitor (p = 0.001)
(Figure 2G). Additionally, myotube width of the C2C12 cells
transfected with the let-7e-5p inhibitor was significantly higher
than that with the negative control (p = 0.001) (Figure 2H).
Moreover, the viability was investigated with Annexin V by
flowcytometry. Then, the ratio of apoptosis and dead cells was
increased by transfection with the let-7e-5p mimicking substrate,
B CA

E FD

HG

FIGURE 3 | Let-7e-5p decreases glucose uptake and downregulates mitochondrial function in C2C12 cells. (A) Glucose uptake by C2C12 cells was monitored after
transfection with let-7e-5p mimic/inhibitor. Glucose uptake was downregulated by let-7e-5p mimicking substrate and upregulated by let-7e-5p inhibitor, compared to
negative control (n = 6). (B) ATP assay following transfection with let-7e-5p mimic/inhibitor. ATP production was downregulated by let-7e-5p mimicking substrate and
upregulated by let-7e-5p inhibitor, compared to negative control (n = 6). (C) Raw data of oxygen consumption rate (OCR), (D) basal respiration, (E) ATP-linked respiration
(oligomycin-sensitive OCR), (F) proton leak, (G) maximal mitochondrial respiration (FCCP-stimulated OCR), and (H) spare respiratory capacity. OCRs were normalized to
the total number of cells. Data represent the means ± SD; *p = 0.05, **p = 0.01, ***p = 0.001 by one-way ANOVA.
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compared to negative control, whereas transfection with the let-
7e-5p inhibitor significantly decreased the apoptosis and dead
cells (p = 0.001) (Figures 2I–L). In addition, the fluorescence
intensity of myogenin in the C2C12 cells transfected with the let-
7e-5p inhibitor was significantly higher than that in the cells
transfected with the negative control (p = 0.001), whereas the
level in cells transfected with the let-7e-5p mimicking substrate
was significantly lower than that in the negative control (p =
0.034) (Supplementary Figures 4A, B).

Let-7e-5p Downregulated Glucose Uptake
in C2C12 Cells
Glucose uptake in C2C12 cells transfected with let-7e-5p
inhibitor was significantly increased (p = 0.002), whereas that
in cells transfected with let-7e-5p mimicking substrate was
significantly decreased (p = 0.026) compared to the negative
control (Figure 3A).

Let-7e-5p Downregulated ATP Activity in
C2C12 Cells
ATP activity in C2C12 cells transfected with let-7e-5p mimicking
substrate was significantly downregulated, compared to that of
the negative control (p = 0.001), whereas the ATP activity in cells
transfected with let-7e-5p inhibitor was upregulated (p = 0.039)
(Figure 3B). Next, we investigated the mitochondrial OCR of
C2C12 cells using an extracellular flux analyzer. C2C12 cells
transfected with let-7e-5p mimicking substrate showed
decreased basal respiration. In addition, C2C12 cells
transfected with let-7e-5p mimicking substrate had
significantly decreased ATP production, proton leak, maximal
respiration, and spare respiratory capacity, compared to negative
control and cells transfected with let-7e-5p inhibitor. On the
contrary, their mitochondrial function was upregulated by the
inhibition of let-7e-5p (Figures 3C–H).

Expression of Let-7e-5p in Serum of
Patients With Muscle Atrophy Was
Significantly Lower Than That in Patients
Without Muscle Atrophy
Since let-7e-5p was suggested to have an effect on skeletal muscle
in animal and cell experiments, we investigated serum let-7e-5p
levels to test whether it is a biomarker for sarcopenia in our
human studies. The characteristics of the 32 male patients with
diabetes (with and without muscle atrophy) are summarized in
Table 1. We investigated the differences in the expression of let-
7e-5p in the serum between the two groups. Serum let-7e-5p
expression in patients with muscle atrophy was significantly
lower than that in patients without muscle atrophy (p = 0.028)
Frontiers in Endocrinology | www.frontiersin.org 8
(Figure 4A). Serum let-7e-5p level of 1.302 was identified as the
cut-off for the presence of sarcopenia in the patients with diabetes
(Figure 4B). Serum let-7e-5p level was found to be negatively
associated with the presence of muscle atrophy in both univariate
logistic regression analysis (OR of 1-unit increment: 0.70, 95%
confidence interval (CI): 0.50–0.99, p = 0.011) and multivariate
logistic regression analysis after adjusting for covariates (OR of
1-unit increment: 0.68, 95% CI: 048–0.99, p = 0.009) (Table 2).
DISCUSSION

Androgen deficiency is known to be associated not only with
muscle atrophy (31), but also with insulin resistance, type 2
diabetes, metabolic syndrome, and visceral fat accumulation (32,
33). In the present study, the expression of the miRNA, let-7e-5p,
was found to be decreased in the soleus muscle of ORX mice
compared to that in Sham mice, whereas replacement of
testosterone restored the expression of let-7e-5p. Furthermore,
let-7e-5p was found to promote muscle atrophy by inhibiting the
function of Igf2bp2, thereby reducing glucose uptake by myotube
cells, and thus impairing mitochondrial function. In addition,
serum let-7e-5p levels were significantly lower in patients with
muscle atrophy than in those without. In this study, we also
identified that the cut-off value of serum let-7e-5p level in patients
with diabetes, for the presence of muscle atrophy, was 1.302.

The lethal-7 (let-7) gene was first discovered as an important
developmental regulator in Caenorhabditis elegans. Let-7e-5p
inhibits proliferation and metastasis of glioma stem cells (34) and
colorectal cancer (35), and its functions are being intensively
investigated in the field of oncology. Several target genes of let-
7e-5p have been identified. In this study, we focused on Igf2bp2
and found that let-7e-5p regulates Igf2bp2. Igf2bps 1, 2, and 3
belong to a highly conserved family of RNA-binding proteins
that influence the fate of transcripts (36–38). In contrast to
Igf2bp1 and Igf2bp3, which are expressed during development,
Igf2bp2 is widely expressed in many adult tissues, including the
gut, muscles, and brain. In these organs, small quantitative
differences in Igf2bp2 expression subtly affects processes such
as food uptake, metabolism, feeding behavior, or more complex
behavioral features that affects physical activity and, ultimately,
the lifetime risk of developing obesity and diabetes (39). In their
study of the relationship between IGFBP2 and skeletal muscle,
Caron et al. (40) demonstrated that overexpression of high
mobility group A2, an upstream target of Igf2bp2, enhanced
myogenesis and myosin heavy chain expression in embryonic
stem cells. Furthermore, since the muscle atrophy-related genes
investigated in this study, such as A, B, and C, do not share a
TABLE 1 | Characteristics of the study patients with and without muscle atrophy.

With Muscle atrophy n=16 Without Muscle atrophy n=16 p-value

Age, yrs 69.8 (6.9) 69.4 (6.3) 0.817
SMI, kg/m2 5.7 (0.8) 7.8 (1.0) < 0.001
Let-7e-5p 2.0 (1.8) 7.1 (10.1) 0.028
December 2021 | Volume 12 | Article
Data are mean (SD). SMI: skeletal muscle mass index.
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common binding site with let-7e-5p, we hypothesized that the
gene expression of IGF2BP2 indirectly alters the expression of
these muscle atrophy-related genes. Moreover, Igf2bp2 promotes
translation of IGF2 through internal ribosomal entry and
downstream PI3K/Akt signaling (41), which inhibits FOXO1
and MURF1, and suppresses muscle atrophy (42). A previous
study has shown that Igf2bp2 functions as a key regulator of
satellite cell activation and skeletal muscle development (43).
Adjusting the expression of let-7e-5p altered the expression of
myogenin, one of the differentiation markers of myotubular cells
(44), suggesting that let-7e-5p may also be involved in muscle
differentiation through the regulation of IGF2BP2 expression. In
addition, the other previous study reported that postnatal
Igf2bp2 inactivation in mouse skeletal muscles reduces muscle
mass accompanied by a reduction in overall protein synthesis
due to reduced autocrine production of IGF2 and impaired
activation of Akt1, Gsk3a, and eIF2Bϵ (45). In this study,
suppression of let-7e-5p in C2C12 cells significantly increased
the expression of Igf2bp2, which resulted in muscle hypertrophy.
Furthermore, Igf2bp2 promotes the transport of mRNAs into the
vicinity of mitochondria, and subsequent translation and
Frontiers in Endocrinology | www.frontiersin.org 9
mediation of cellular functions (46). In contrast, the
suppression of Igf2bp2 reduces the OCR (47). In fact, in our
study, mitochondrial function was enhanced by the suppression
of let-7e-5p in C2C12 cells.

Serum let-7e-5p levels were significantly lower in diabetic
patients with sarcopenia compared to that in patients without
sarcopenia. This suggests that serum let-7e-5p level can be used
as a diagnostic marker for sarcopenia. We hypothesize that
serum let-7e-5p levels in patients were lower to reduce atrophy
of skeletal muscles caused by deficiency in androgen. However, it
is difficult to derive a causal relationship from this cross-sectional
analysis. Therefore, we intend to perform longitudinal analyses
to understand this relationship further in future studies.

Our study has the following limitation. The effects of let-7e-
5p on skeletal muscles was only demonstrated through cellular
experiments in this study. In the future, we intend to examine the
influence of impaired glucose tolerance on skeletal muscles in
animal experiments using conditional knockout mice. In
addition, the possibility of mRNA-miRNA interaction needed
to be evaluated not only by dual-luciferase assay but also by
ribonucleoprotein immunoprecipitation.
BA

FIGURE 4 | Decreased levels of serum circulating let-7e-5p in patients with muscle atrophy compared to patients without muscle atrophy. (A) Relative expression of
serum circulating let-7e-5p normalized to miR-39 in the patients with and without muscle atrophy is shown. Serum let-7e-5p expression in patients without muscle
atrophy (7.1 ± 10.1) was significantly higher than that in patients with muscle atrophy (2.0 ± 1.8) (p = 0.028). Data represent the means ± SD. (B) Optimal cut-off
point for serum circulating let-7e-5p level, for the presence of sarcopenia, is 1.302 (AUC 0.767, 95% CI, 0.600–0.934, sensitivity = 0.933, specificity = 0.500,
p = 0.001). *p = 0.05 by Pearson’s chi-square test.
TABLE 2 | Logistic regression analyses for muscle atrophy.

Univariate Multivariate

OR (95%CI) p-value OR (95%CI) p-value

Age, yrs 1.01 (0.91-1.11) 0.881 1.04 (0.92-1.17) 0.507
Let-7e-5p 0.70 (0.50-0.99) 0.011 0.68 (0.48-0.99) 0.009
December 2021 | Volume 12 | Article
Multivariate analysis was adjusted for age.
CI, confidential interval; OR, odds ratio.
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In conclusion, this study revealed that the overexpression of
Igf2bp2 in C2C12 cells using a let-7e-5p inhibitor improves
sarcopenia mainly via suppression of genes associated with
muscle atrophy and enhanced mitochondrial function.
Therefore, inhibition of let-7e-5p in skeletal muscles represents
a potential therapeutic target for sarcopenia. Additionally, serum
let-7e-5p level may be used as a marker for sarcopenia.
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