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Synapses are functionally distinct neuronal compartments
that are critical for brain function, with synaptic dysfunc-
tion being an early pathological feature in aging and dis-
ease. Given the large number of proteins needed for
synaptic function, the proliferation of defective proteins
and the subsequent loss of protein homeostasis may be a
leading cause of synaptic dysfunction. Autophagic mech-
anisms are cellular digestion processes that recycle cellu-
lar components and contribute fo protein homeostasis.
Autophagy is important within the nervous system, but its
function in specific compartments such as the synapse has
been unclear. Evidence from research on both autophagy
and synaptic function suggests that there are links be-
tween the two and that synaptic homeostasis during aging
requires autophagy to regulate protein homeostasis. Ex-
citing new work on autophagy-modulating proteins that
are enriched at the synapse has begun to link autophagy
to synapses and synaptic dysfunction in disease. A better
understanding of these links will help us harness the po-
tential therapeutic benefits of autophagy in combating
age-related disorders of the nervous system.

Introduction

Neurons in the brain form synaptic connections to generate
neuronal circuits whose emergent properties include phenom-
ena such as sensory perception, behavior, memory, and emo-
tion. Information is encoded as electrical impulses in neurons
and can be relayed from the presynaptic compartment of one
neuron to a postsynaptic compartment of another neuron by the
release of neurotransmitters. Neurons are postmitotic, with new
neurons being formed very infrequently; therefore, most neu-
rons and a majority of their synapses have to be maintained for
the lifetime of an organism (Bishop et al., 2010). Synapses are
also dynamic, as their properties can be changed by experiences
such as stress or learning, a phenomenon known as synaptic
plasticity (Glanzman, 2010; Christoffel et al., 2011). Therefore,
if synapses become dysfunctional, the circuits they form are

fundamentally altered and brain function is severely affected.
This leads to the important question of how synaptic dysfunc-
tion arises within the presynaptic compartment.

Svnapses are particularly susceptible to
accumulating damaged proteins

The presynapse may contain a mean of ~300,000 proteins
within a volume of 0.37 = 0.04 um?® (Wilhelm et al., 2014).
After a neuron fires, an action potential arrives at the pre-
synapse, causing the release of neurotransmitters that trigger
neuronal activity in the postsynaptic neuron. The release of neu-
rotransmitters involves the fusion of synaptic vesicles with the
plasma membrane, followed by the retrieval of fused vesicle
membranes by endocytosis. These processes require the coor-
dinated efforts of a large group of proteins (Siidhof, 2004). The
synaptic vesicle cycle is initiated very rapidly and can occur
repeatedly, with a frequency exceeding 100 Hz in some neurons
(de Kock and Sakmann, 2008). These conditions place consid-
erable stress on presynaptic proteins, leading these proteins to
accumulate damage and becoming functionally impaired. Fur-
ther complications arise from the unique morphological aspects
of neurons and synapses. Within postmitotic neurons, defective
proteins cannot be diluted away by repeated cell cycle divisions.
Furthermore, synapses are often located very far from the soma
of a neuron, the main location of protein synthesis. For exam-
ple, human neurons have synapses separated from the soma
by axons of more than a meter in length (Standring, 2008).
Considering these distances, the slow cytoplasmic transport of
protein (~10 mm/d) means that new protein replacements will
not arrive quickly (Roy, 2014). Collectively, these unfavorable
circumstances increase the possibility of a buildup of defective
proteins that could then lead to synaptic dysfunction, as when
synaptic proteins are knocked out or mutated (Verstreken et al.,
2002; Kasprowicz et al., 2008; Uytterhoeven et al., 2011).

Mechanisms for removing

damaged proteins

Neurons have evolved several strategies for removing damaged
proteins and maintaining the integrity of the proteome, a process
termed protein homeostasis (Kaushik and Cuervo, 2015; Lab-
badia and Morimoto, 2015). These strategies include molecular
chaperone activity and protein degradative pathways consisting
of the ubiquitin-proteasome system and lysosomal degradation
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via autophagy, a process in which parts of the cytoplasm are
engulfed by membrane and sent for degradation. As noted, neu-
rons have unique morphologies in which specific compartments
such as synapses are distant and functionally distinct from the
soma, with their own unique complement of proteins (Wilhelm
et al., 2014). Therefore, protein quality control mechanisms
may be spatially regulated to meet the specific requirements of
protein homeostasis at the synapse. In this review, we focus on
autophagy, but we refer the reader to several excellent reviews
on the ubiquitin-proteasome system and chaperones (Bingol
and Sheng, 2011; Alvarez-Castelao and Schuman, 2015; Lab-
badia and Morimoto, 2015).

Types of autophagy
Pioneering work in the 1960s by Nobel laureate Christian de
Duve and others led to the detection of double-membrane vesi-
cles that seemed to be engulfing proteins and organelles (Yang
and Klionsky, 2010). These observations led de Duve to coin
the term autophagy, or “self-eating.” Nobel prize—winning ge-
netic studies on autophagy in yeast by Ohsumi and colleagues
ushered in a molecular era in which many of the constituent
parts of the autophagic machinery have been elucidated and
shown to be conserved from yeast to mammals (Ohsumi, 2014).
Distinct forms of autophagy occur in the cell: macroautophagy,
microautophagy, and chaperone-mediated autophagy (CMA,;
Mijaljica et al., 2011; Mizushima and Komatsu, 2011; Kaushik
and Cuervo, 2012). These types of autophagy have been stud-
ied mostly in the context of nonneuronal cells or neuronal cell
bodies, yet there is emerging evidence that functionally distinct
compartments such as synapses may have specialized forms
of autophagy. Macroautophagy is a bulk degradative process
whereby cytoplasmic entities such as proteins, sugars, lipids,
RNA, and occasionally entire organelles are engulfed within a
double-membrane vesicle termed the autophagosome. The au-
tophagosome will then fuse with the lysosome, where the en-
gulfed products can be degraded by hydrolases. The resulting
end products are amino acids and lipids, which can be exported
from the lysosome and used by the cell in various capacities.
Therefore, macroautophagy is a catabolic pathway that assists in
protein homeostasis by removing dysfunctional cellular compo-
nents and contributing toward the creation of new components.
Microautophagy is a specialized form of autophagy in
which cytoplasmic proteins are degraded by direct transport
into lysosomes through invaginations of the lysosomal mem-
brane. Microautophagy may also take place via the delivery of
proteins into late endosomes, a process that is dependent on the
chaperone Hsc70 (Sahu et al., 2011; Uytterhoeven et al., 2015).
The Hsc70 chaperone is also involved in CMA, a selective deg-
radative process. During CMA, Hsc70 recognizes proteins with
a specific amino acid motif and associates with the lysosomal
membrane protein LAMP2A, resulting in client protein translo-
cation into the lysosome (Kaushik and Cuervo, 2012). Increas-
ing evidence suggests that there is cellular cross-talk between
all three types of autophagy. In this review, we focus on mac-
roautophagy and its potential roles at the presynapse (referred
to as synaptic autophagy). We refer the reader to other reviews
discussing microautophagy and CMA in greater detail (Mijal-
jica et al., 2011; Kaushik and Cuervo, 2012).

The process of autophagy
The progression of autophagy occurs through clearly defined
steps regulated by distinct sets of autophagy-related gene (Atg)
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Figure 1. Overview of autophagy and potential synaptic modifications.
Autophagy is triggered by metabolic signals elicited by nutrient starva-
tion or electrical activity of the neuron. Starvation states signal through
mTOR or AMPK to activate the ATG1 complex, the most upstream kinase
complex in autophagy. The ATG1 complex and subsequently the phospha-
tidylinositide 3-kinase complex act on the isolation membrane. Important
ATG protein complexes required for autophagy are highlighted. These
include the ubiquitinike conjugation systems: the ATG12-ATG16L-ATG5
and the ATG3-ATG7 complexes that conjugate lipidated ATG8 proteins
to the growing phagophore. ATG9 and ATG18/WIP2 complex also as-
sociate with the phagophore. Recent studies have demonstrated that the
synapse-enriched proteins Endophilin, Synaptojanin, and Bassoon interact
with Atg proteins (see text for details). The phagophore will mature into an
autophagosome, a completely closed-off vesicle structure that has engulfed
cytoplasmic elements and organelles. Finally, the autophagosome will fuse
with the lysosome to form the autolysosome.

proteins (Fig. 1). A brief overview is provided herein to intro-
duce autophagy proteins involved in the studies discussed here.
A more detailed description of the general mechanisms of auto-
phagy is covered by several comprehensive reviews (Mizushima
and Komatsu, 2011; Bento et al., 2016; Maday, 2016).
Autophagy can be broadly divided into three phases: (1)
initiation of autophagy, leading to the formation of an expanding,
double-membrane preautophagosomal structure; (2) formation
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Figure 2. A hypothetical model for autophagy at the presynaptic terminal; schematic of how autophagy may potentially proceed at the presynaptic
terminal. At the presynaptic terminal, defective synaptic proteins can be recycled by autophagy. Synaptic vesicles are retrieved after neurotransmitter
exocytosis by clathrin-mediated endocytosis and can be restored to the vesicle pool or recycled. The exact mechanisms by which synaptic vesicles could
end up in autophagosomes remain elusive. The membrane source for the isolation membrane could be the ER, the plasma membrane, mitochondria, or
potentially even the synaptic vesicles. Fully formed autophagosomes could have two fates: either to be retrogradely transported to the cell soma and fuse
with lysosomes or to locally fuse with the lysosome. Lysosomal fusion will result in a breakdown of material that has been autophagosed, and the resultant

amino acids and lipids can be released back in to the cytoplasm.

of the autophagosome, a completely closed-off vesicle struc-
ture that has engulfed cytoplasmic elements and organelles; and
(3) fusion of the autophagosome with the lysosome.

The origin of the membrane that contributes to the forma-
tion of the preautophagosome has been a matter of intense study
and debate. Studies have shown that diverse organelles includ-
ing the ER, Golgi, and plasma membrane can be the source of
autophagic membranes (Bento et al., 2016). Ultimately, it may
simply be a case of the most accessible or abundant source of
membrane near where autophagy is taking place. At synapses,
the main source of autophagic membrane is not known, al-
though the ER has been suggested for autophagosomes formed
at distal axons (Maday and Holzbaur, 2014). The large synaptic
vesicle pool may also be good candidate, but this has not been
investigated (Fig. 2).

The ULKI/Atgl complex, comprising the kinase
ULK1/2, Atgl3, and FIP200, is the first autophagy complex
formed upon the induction of autophagy (Fig. 1). The ULK1/
Atgl complex recruits a phosphatidylinositide 3-kinase class
IIT kinase complex comprised of Beclin-1, Vps15, Vps34, and
Atgl4L to the growing isolation membrane or phagophore. This
complex leads to an enrichment of PtdIns3P within the grow-
ing membrane and the recruitment of proteins such as Atgl8/
WIP2, which then brings the Atgl2-Atg5-Atgl6L complex

to the membranes. The Atgl2-5-16L complex functions as a
ubiquitin ligase-like enzyme that conjugates proteins of the
Atg8/L.C3 family to the lipid phosphatidylethanolamine. Atg8
is initially processed by Atg4 and Atg7 and finally by an E2-
like enzyme, ATG3, which coordinates with the Atgl2-5-16L
complex to conjugate Atg8 to phosphatidylethanolamine on
the growing autophagosomal membrane. Once Atg8/LC3 is
lipidated and incorporated into the phagophore membrane, the
growing membrane engulfs cytoplasmic elements as it enlarges
and closes in on itself. Although autophagic engulfment is gen-
erally a nonselective process, certain adaptor proteins such as
p62 and optineurin can direct specific cargoes to the preauto-
phagosome (Johnson et al., 2012). The autophagosome will
fuse with the lysosome, where its contents can be degraded and
the constituent building blocks, for example amino acids and
lipids, can be released back into the cytoplasm. It is important
to realize that many other proteins are involved in the process
of autophagy, and the interactions between Atg proteins are in-
evitably more complex than what is presented as a simplified,
canonical pathway in Fig. 1.

In the 1960s, nerve crush studies on the rat sciatic nerve estab-
lished the presence of autophagic vesicles within the nervous
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Assays for the study of autophagy

Transmission electron microscopy offers the best resolution to view vari-
ous stages of autophagy. Transmission electron microscopy studies have
been able to visualize within neurons growing phagophores to fully
formed double-membrane autophagosomes with cargo inside (Nixon et
al., 2005; Petralia et al., 2013). Work from our laboratory has used cor-
relative light and electron microscopy to colocalize fluorescently tagged
Atg proteins with autophagic vesicles at synapses (Soukup et al., 2016;
Vanhauwaert et al., 2017).

Lipidated Atg8/LC3 is commonly used as a marker of autophago-
some formation and autophagy in general. An Atg8 with a fluorescent
tag (for example, RFP-Atg8) changes from a diffuse distribution to be
localized in punctae that mark autophagosomes. A tandem-tagged Atg8
(mCherry-GFP-Atg) is also commonly used (Kimura et al., 2007). In this
case, the autophagosome has both GFP and mCherry fluorescence, but
upon fusion with the lysosome, the GFP fluorescence is quenched with-
in the acidified environment of the autolysosome, whereas the mCherry
fluorescence remains. Therefore, the change in red signal over yellow can
be used to monitor the rate of autophagy or autophagic flux. The nonpro-
cessed Atg8 (Atg8-1) and the lipidated form (Atg8-Il) can also be tracked
by immunoblotting, because Atg8-Il migrates faster in polyacrylamide
gels than Atg8-l, and therefore, two distinct bands are detected. When
autophagy is upregulated, higher levels of Atg8-Il can be detected. Other
proteins can also be used to track different stages of autophagy. Atg5
and WIPI2 localize to early growing autophagosomes (Dooley et al.,
2014), whereas STX17 is detected on mature, closed autophagosomes
(Takdts et al., 2013). Finally, during autophagy, lysosomal markers such
as LAMP1 also have increased punctate staining that marks autolyso-
somes (Juhdsz et al., 2008; Soukup et al., 2016). Given the variations
in autophagy from cell to cell, it is critical that multiple markers be used.

It is important to assess whether the measured levels of autophagy
(autophagic flux) are different because of a change in autophagosome
biogenesis or in autophagosome degradation rates. Therefore, Atg8 levels
are often assessed in the presence of lysosomal inhibitors such as bafilo-
mycin A1 or chloroquine. If decreased autophagosome biogenesis causes
fewer Atg8 punctae, then a block in degradation by inhibitors would have
no effect; if it is caused by increased degradation, then the number of punc-
tae will increase. A comprehensive survey of methodologies available fo
monitor autophagy is regularly published (Klionsky et al., 2016) that helps
set community-wide standards for studying autophagy.

system (Holtzman and Novikoff, 1965). Despite the early start,
our knowledge of autophagy within the nervous system has
lagged, especially with regard to tissues such as the liver, where
autophagy has been extensively studied (Boland and Nixon,
2006). Neuronal structure is unique, with a distinct cell soma
and dendrites and axons with presynaptic regions; accordingly,
neuronal autophagy is highly compartmentalized (Maday and
Holzbaur, 2016). Within the soma, there is a population of au-
tophagic vesicles derived from the axon and synapse that are
distinct from the autophagic vesicles generated in the cell body
(Maday and Holzbaur, 2016). In axons, autophagosomes form
continuously at distal tips and contain cargoes derived from
synapses (Maday et al., 2012; Maday and Holzbaur, 2014,
2016; Wang et al., 2015). Autophagosomes or autolysosomes
are transported to the soma in a dynein-dependent manner (Hol-
lenbeck, 1993; Cheng et al., 2015; Fig. 2). Here we explore how
autophagy may be triggered within the nervous system, what
physiological functions it performs, and finally, the role of auto-
phagy in the context of aging and neurodegenerative conditions.
Among these, the role of autophagy during the physiological or
“normal” functioning of the brain remains the most enigmatic.

Autophagy during neuronal development

The severe degenerative phenotypes and neonatal lethality ob-
served in Azg-knockout mice points to the importance of auto-
phagy (Kuma et al., 2004; Komatsu et al., 2005; Saitoh et al.,
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2008; Sou et al., 2008; Malhotra et al., 2015). The loss of Atg7
or Azg5 specifically in the brain causes neurodegeneration and
the formation of inclusion bodies that have intracellular protein
aggregates (Hara et al., 2006; Komatsu et al., 2006). These are
likely caused by a developmental reduction of autophagy, since
the genes were conditionally deleted in the brain during em-
bryonic development using the Nestin-cre driver. In Drosophila
melanogaster, mutations in several Atg genes (1, 2, 6, and 18)
result in significant reductions in the number of neuromuscu-
lar junction boutons (Shen and Ganetzky, 2009; Wairkar et al.,
2009). Conversely, overexpression of Afg/, which can induce
ectopic autophagy (Scott et al., 2007) results in a severe over-
growth of synapses (Shen and Ganetzky, 2009). However, it is
unclear whether autophagy is needed specifically at synapses for
synaptic development. Shedding some light on this issue, recent
work demonstrated that during Caenorhabditis elegans neuro-
development, the localization of A7g9 to specific sites in an axon
and the consequent formation of autophagosomes are required
for proper synapse formation at those sites (Stavoe et al., 2016).
On the postsynaptic side, lack of autophagy because of a loss of
Atg7 leads to a synaptic pruning deficit that results in an over-
abundance of dendritic spines in forebrain neurons in vivo and
causes autism-like phenotypes (Tang et al., 2014). These studies
suggest that autophagy has an important role in synaptogenesis
and neurodevelopment that needs to be further elucidated.

Signals inducing neuronal autophagy
Metabolic regulation of neuronal autophagy. One key
question is how neuronal autophagy may be triggered. Autoph-
agy is a catabolic process that can respond to a lack of amino
acids by degrading proteins; therefore, autophagy is strongly reg-
ulated by metabolic pathways that sense nutrient levels. Starva-
tion has classically been used as a means to experimentally
induce autophagy; for example, starvation causes the liver to rap-
idly up-regulate autophagy. However, the links between starva-
tion and autophagy in the brain are less clear. In mice, even after
48 h of starvation, there was no detectable up-regulation in auto-
phagy in the brain as measured by the presence of GFP-LC3 dots.
In contrast, there was a strong induction of autophagy in the liver,
muscle, heart, and other tissues (Mizushima et al., 2004). In con-
trast, other work has shown that food restriction can up-regulate
autophagy in cortical, Purkinje, and hypothalamic neurons (Ali-
rezaei et al., 2010; Kaushik et al., 2011) or Drosophila motor
neurons (Soukup et al., 2016). In vitro studies of cultured neurons
have also yielded disparate results. Recently, it was shown that
metabolic starvation of cultured hippocampal neurons does not
induce autophagy (Maday and Holzbaur, 2016), but earlier work
with cortical neuron cultures indicated otherwise (Boland et al.,
2008; Young et al., 2009). Differences in cell types and starvation
protocols may contribute to these contradictory results. A key
node within the cellular pathway that links metabolism and auto-
phagy is the kinase complex mTORC1 (Shimobayashi and Hall,
2014). mTORCI inhibits autophagy by the phosphorylation of
ULK1/Atgl, and nutrient deprivation relieves the inhibition, thus
triggering autophagy. As with starvation, there is conflicting in
vivo and in vitro evidence as to whether mMTORCT1 inhibition can
induce autophagy in the nervous system (Ravikumar et al., 2004;
Fox et al., 2010; Tsvetkov et al., 2010; Roscic et al., 2011; Maday
and Holzbaur, 2016). It is likely that different cell types in the
brain may be set up to respond differently to stimuli such as
starvation or mTORCI1 inhibition. Additionally, mTORCI1-
independent pathways may exist (Fig. 1; Egan et al., 2011).



Regulation of autophagy by neuronal activity.
Acute stimuli such as neuronal activity can also transiently
up-regulate autophagy. At the Drosophila neuromuscular junc-
tion, high-frequency stimulation results in a rapid increase in
Atg8 (LC3) puncta formation at presynaptic terminals (Soukup
et al., 2016; Vanhauwaert et al., 2017), whereas in rat hippo-
campal neurons, neuronal stimulation induces autophagosome
formation pre- and postsynaptically (Shehata et al., 2012; Wang
etal., 2015). Given that neuronal activity is a fundamental prop-
erty of the brain, the study of neuronal stimulation—induced au-
tophagy may be more physiologically relevant than
starvation-induced autophagy. It will be important to uncover
how neuronal firing induces synaptic autophagy. One potential
mechanism is calcium signaling. At a synapse, an action poten-
tial induces a drastic increase in calcium concentration, which
drives exocytosis (Rizzoli, 2014). However, autophagy can be
either inhibited or activated by calcium, based on the experi-
mental context (Johnson et al., 2012). Therefore, the specific
effect of calcium on autophagy at the synapse needs to be inves-
tigated. Several calcium-sensing proteins exist at the synapse,
for e.g., the synaptotagmins (Siidhof, 2013), but none of them
have been studied in the context of autophagy.

Autophagy at the synapse and its effect on
synaptic function

Within the presynaptic region of dopaminergic neurons, basal
and induced autophagy can reduce the kinetics of neurotrans-
mitter release and the density of synaptic vesicles (Hernandez
et al., 2012). The modulation of vesicle numbers or evoked neu-
rotransmitter release by presynaptic autophagy could therefore
potentially contribute to synaptic plasticity mechanisms such
as synaptic potentiation and depression. Autophagy has also
been implicated in the degradation of postsynaptic receptors
such as inhibitory GABAA receptors and AMPAR receptors,
thereby inducing synaptic long-term depression (Rowland et
al., 2006; Shehata et al., 2012). mTORCI has been implicated
in synaptic plasticity, but largely in the context of its ability
to regulate protein synthesis (Casadio et al., 1999; Tang et al.,
2002). However, mMTORCI1-mediated protein degradation by
autophagy could play an equally important role and deserves to
be studied in better detail. Along with removing defective pro-
teins, autophagy is also important for transporting extracellular
cargo internalized at synapses during endocytosis back to the
cell soma (Wang et al., 2015). Although we are just scratch-
ing the surface, these early studies show that autophagy can be
used for specific roles at the synapse. What has not been clear
is whether synaptic autophagy and autophagy in the soma are
distinct forms of autophagy.

Recent studies suggest that this may be the case, because
presynaptic proteins have now been shown to regulate autophagy,
and these proteins are largely excluded from the soma. Presyn-
apses have active sorting mechanisms regulated by Rab proteins
that direct endocytosed vesicles back to the synaptic vesicle pool
or toward the endosomal-lysosomal pathway (Wucherpfennig
et al., 2003; Uytterhoeven et al., 2011; Fernandes et al., 2014).
These sorting mechanisms can act to remove older, potentially
defective, transmembrane synaptic vesicle proteins and rejuve-
nate the vesicle protein pool (Fernandes et al., 2014). Further-
more, Rab26 was found to be associated with both synaptic
vesicles and autophagosomes (Binotti et al., 2015), hinting at a
potential parallel synaptic trafficking pathway that recycles older
vesicles and their associated proteins via autophagy as well.

Recent work from our laboratory and the Milosevic labo-
ratory has shown that Endophilin A (EndoA), a protein highly
enriched at presynapses, has an unexpected role in autophagy
(Murdoch et al., 2016; Soukup et al., 2016). In addition, we also
found that the EndoA binding partner Synaptojanin 1 (Synjl),
a protein also enriched at synapses, can regulate autophagy
(Vanhauwaert et al., 2017), corroborating data from zebrafish
(George et al., 2016). Both EndoA and Synjl have well-estab-
lished roles in synaptic vesicle endocytosis. During synaptic
vesicle endocytosis, EndoA is recruited to clathrin-coated pits,
which then recruit Synj1 to uncoat the vesicle after fission from
the membrane (Song and Zinsmaier, 2003). However, it is now
clear that they have additional, independent roles as well to reg-
ulate autophagy at the synapse.

Within the Drosophila neuromuscular junction presyn-
aptic endings, EndoA is required for starvation, and neuronal
stimulation induced increases in Atg8-mCherry and Lamp-GFP
punctae (Soukup et al., 2016). The Atg8-positive punctae at the
synapse were shown to be associated with large membranous
structures dubbed “synaptic autophagosomes” using correlative
light and electron microscopy. Furthermore, the phosphoryla-
tion of EndoA at serine 75 by the LRRK2 kinase, shown pre-
viously to happen at the synapse (Matta et al., 2012; Arranz
et al., 2015), selectively activates synaptic autophagy. A phos-
phomimetic EndoA (EndoS”"P) or an active LRRK2 (G2019S)
increases Atg8 and Lamp markers even in the fed state. Further-
more, phosphorylated EndoA recruits Atg3 to membrane and
causes it to colocalize with Atg8. Because EndoA is capable
of sensing and inducing membrane curvature (Farsad et al.,
2001; Gallop et al., 2006), the proposed model suggests that
EndoA may be creating docking sites for Atg3 on the growing
autophagosomes (Fig. 1).

The lipid phosphatase Synjl promotes the uncoating of
endocytosed synaptic vesicles by dephosphorylating PI(4,5)
P, through the actions of its 5-phosphatase domain (Cremona
et al.,, 1999; Verstreken et al., 2003). Synjl also has another
domain, the SAC1 domain, that dephosphorylates different
phosphoinositides, including PI(3)P and PI(3,5)P, (Guo et al.,
1999), two phosphoinositides essential during the formation of
autophagosomes (Noda et al., 2010; Dall’Armi et al., 2013).
Recently, two Parkinson’s disease (PD) mutations within SAC1
domain were described, and one of them has been studied in
detail. The R258Q mutation blocks the ability of Synjl to de-
phosphorylate PI(3)P and P1(3,5)P, (Krebs et al., 2013). Likely,
the more recently identified mutation R459P that also resides in
the SAC1 domain (Kirola et al., 2016) also affects the dephos-
phorylation of these phosphoinositides, but that remains to be
tested. In Drosophila and patient induced pluripotent stem cell—
derived human neurons, this mutation severely reduces auto-
phagic flux at synapses upon starvation or neuronal stimulation
(Vanhauwaert et al., 2017). In contrast, it does not have overt
effects on synaptic transmission at fly neuromuscular junctions.
In mouse, a R258Q knock-in mutation does appear to affect
synaptic vesicle endocytosis, but only during mild stimuli, not
during regular or intense activity (Mani et al., 2007; Cao et al.,
2017). Whether the mouse knock-in neurons display defects in
synaptic autophagy, similar to the patient-derived neurons, has
not yet been assessed. One of the effects of the lack of dephos-
phorylation of phosphoinositides in R258Q mutants is the pre-
synaptic accumulation of Atgl8a, a member of the PROPPIN
domain—containing protein family that binds PI(3)P and PI(3,5)
P, and has a role in autophagy (Dove et al., 2004; Baskaran
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et al., 2012). Therefore, Synjl dephosphorylation is required
for Atgl8a to leave nascent autophagosomes. The data suggest
a model by which the cycling of Atgl8a onto and then off of
the autophagosomal membranes, mediated by Synjl, aids in
the concentration of Atg8 and the formation of mature auto-
phagosomes (Fig. 1; Vanhauwaert et al., 2017). The loss of
EndoA and Synjl function also results in an activity-dependent
degeneration of photoreceptor neurons in Drosophila (Soukup
et al., 2016; Vanhauwaert et al., 2017). Furthermore, both the
EndoA phosphomutants and the Synjl mutation result in the
death of dopaminergic neurons in Drosophila brains at 30 days
of age. These observations are interesting because the R258Q
mutation in Synjl causes PD (Krebs et al., 2013; Quadri et al.,
2013; Olgiati et al., 2014), and the kinase LRRK2 that phos-
phorylates EndoA to induce autophagy is also mutated in PD
(West et al., 2005; Greggio et al., 2006). Dopaminergic neurons
also degenerate in PD (Fearnley and Lees, 1991), and the data
therefore suggest a role for synaptic autophagy defects in the
pathogenic cascade of PD.

In contrast to the autophagy-promoting roles of EndoA
and Synjl, another presynapse-specific protein, Bassoon, has
a role in actively inhibiting autophagy. Bassoon is known to
play a key role in organizing the presynaptic active zone from
which docked synaptic vesicles are released (Ackermann et al.,
2015). Okerlund et al. (2017) found that the loss of Bassoon
in cultured hippocampal neurons results in the up-regulation
of ATGS puncta at synapses, and an increased number of au-
tophagic vesicles can be seen via EM. Furthermore, Bassoon
inhibits autophagy by binding to Atg5, an E3-like ligase that is
crucial for the attachment of LC3 to autophagosomes (Fig. 1).
The loss of Bassoon also results in the reduction of a synaptic
vesicle marker, suggesting that Atg5-driven autophagy results
in the degradation of synaptic vesicles (Okerlund et al., 2017).

These new results suggest that synapse-enriched proteins
have evolved to interact with Atg proteins to regulate a form
of autophagy at synapses that uses the same core Atg compo-
nents but is regulated by these synaptic proteins. Interestingly,
these proteins have functional links to both vesicle cycling
and autophagy. It is tempting to speculate that they may be
part of a system that senses the amount of vesicle recycling
taking place and triggers autophagy if there is a buildup of
dysfunctional components.

Autophagy and neuronal dysfunction

Loss of protein quality control is highly correlated with aging
and age-related neurodegenerative diseases (L6pez-Otin et al.,
2013; Labbadia and Morimoto, 2015). In both these patho-
logical contexts, synaptic failure is a common feature that is
manifested much earlier than neuronal loss within the brain.
Commonly seen phenotypes such as memory deficits and loss
of motor control can be traced back to structural and functional
changes at synapses (Morrison and Baxter, 2012; Yeoman et
al., 2012; Petralia et al., 2014). These changes can severely
disrupt neuronal circuits, reduce coordination between brain
areas, and cause the brain-wide abnormalities seen in aging or
diseased human brains (Andrews-Hanna et al., 2007; Bishop
et al., 2010). Because a large number of proteins are required
for synaptic function (Rizzoli, 2014), it stands to reason that
dysregulated protein homeostasis caused, at least in part, by al-
terations in autophagy is what leads to the synaptic phenotypes
in disease and aging. Regular autophagy seems to decline with
age (Rubinsztein et al., 2011). In Drosophila, autophagosomes
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and assorted multivesicular bodies accumulate within presyn-
apses in old flies, indicating a defect in autophagosome clear-
ance via lysosomal fusion (Beramendi et al., 2007), whereas in
the human brain, expression of key autophagy genes is reduced
during aging (Lipinski et al., 2010). Conversely, a growing list
of studies have demonstrated that up-regulation of autophagy
increases lifespan and neuronal health in many organisms (Har-
ris and Rubinsztein, 2011).

A role for autophagy in mediating the benefi-
cial effects of caloric restriction? A large bOdy of evi-
dence shows that one of the strongest modulators of aging and
longevity in organisms from worms to monkeys is caloric re-
striction (CR; Blagosklonny, 2012; Fontana and Partridge,
2015). In humans, CR can improve memory (Witte et al., 2009),
which may be a result of improved synaptic plasticity. CR af-
fects many pathways in the body, but one of its major effects is
the up-regulation of autophagy (Donati, 2006; Bergamini et al.,
2007; Hansen et al., 2008). Notably, as discussed earlier, starva-
tion is used widely as a tool to induce autophagy. Potential mo-
lecular links between CR and autophagy are the mTOR and
AMPK pathways (Kapahi et al., 2010; Canté and Auwerx,
2011), both of which probably function at the synapse in certain
neurons (Yang et al., 2011; Shen et al., 2015). AMPK plays an
important role in energy homeostasis by sensing adenosine nu-
cleotide levels (Mihaylova and Shaw, 2011) and can directly
phosphorylate and activate the autophagy-initiating kinase,
ULK1/Atgl (Egan et al., 2011; Kim et al., 2011). mTORC1
actively inhibits autophagy, and the inhibition can be relieved
by the mTORCI inhibitor rapamycin, which has been repeat-
edly shown to increase the lifespan of animal models (Bjedov et
al., 2010; Wilkinson et al., 2012; Bitto et al., 2016). Excitingly,
even transient rapamycin treatment given late in adulthood is
capable of producing beneficial lifespan effects (Bitto et al.,
2016). The widespread benefit of CR is one of the strongest in-
dications that autophagy may have incredible therapeutic poten-
tial, but the links between CR, autophagy, and improved
synaptic and neuronal outcomes are mostly correlational in na-
ture at this point. Therefore, it will be important to understand
the exact molecular mechanisms that link these phenomena.

Modulating autophagy to
function during aging. In the mouse retina, age-related
changes to both the synaptic structure of photoreceptor neurons
(Liets et al., 2006; Terzibasi et al., 2009; Samuel et al., 2011)
and synaptic function (Kolesnikov et al., 2010; Samuel et al.,
2011) have been documented. Recent work has shown that re-
ducing AMPK signaling also results in similar synaptic defects,
whereas these defects can be reduced by increasing AMPK ac-
tivity through genetic means, CR, or administering the
AMPK-activating drug metformin (Samuel et al., 2011). Al-
though it was not explicitly tested, it seems possible that AMPK
could induce some of these synaptic changes through up-regu-
lation of autophagy. Similarly, age-related changes seen at the
neuromuscular junction synapses of mice (Jang and Van Rem-
men, 2011; Carnio et al., 2014) can also be improved by caloric
restriction and exercise (Valdez et al., 2010).

Administering spermidine, a natural polyamine, in-
creases the lifespan in yeast, worms, flies, and human cells in
an autophagy-dependent manner (Eisenberg et al., 2009). A
pair of studies in Drosophila have elegantly shown that sper-
midine can specifically affect synapses to improve neuronal
outcomes. In aged Drosophila (30 d), age-induced memory im-
pairment can be ameliorated by spermidine feeding, whereas
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this improvement is lost in flies in which key autophagy genes
Atg7 and Arg8 were deleted (Gupta et al., 2013). Furthermore,
the authors followed up by showing that age-induced mem-
ory impairment is connected to an age-related increase in the
level of synaptic proteins that results in structural changes at
the presynaptic active zone, concomitantly leading to enhanced
neurotransmitter release (Gupta et al., 2016). These age-related
protein changes are reversed when spermidine is added to the
diet of flies. These studies seem to suggest that modulations
that up-regulate autophagy can remedy the age-related changes
occurring at synapses. Once again, a better understanding of
molecular mechanisms could potentially mean that we can
modulate synaptic autophagy directly without resorting to or-
ganism-wide interventions such as caloric restriction.

Autophagy as a means to combat synaptic
dysfunction in Alzheimer’s and Parkinson’s dis-
eases. A common hallmark of Alzheimer’s disease (AD), PD,
and other neurodegenerative conditions is the presence of pro-
tein aggregates inside or outside the cell (Ross and Poirier,
2004). Whether these aggregates represent the loss of protein
quality control or are the remnants of the cellular attempt to re-
store homeostasis remains a matter of debate. Autophagy has
also been linked to several neurodegenerative diseases (Nixon,
2013). All the autophagy modulations discussed above—from
CR to spermidine—positively impact animal models of AD and
PD. Therefore, detailed knowledge about autophagic processes
that impact the synapse is critically required for a better under-
standing of disease etiology and to develop potential
therapeutic strategies.

AD is the most common cause of dementia. It is char-
acterized by the buildup of two forms of protein aggregates:
amyloid plaques mostly outside neurons and neurofibrillary
tangles within neurons. Amyloid plaques are composed pri-
marily of f-amyloid protein, and neurofibrillary tangles con-
tain the microtubule-binding protein tau. AD is a synaptopathy
in which failure of the synapse precedes neuronal dysfunction
and eventual loss of the neuron (Selkoe, 2002; Oddo et al.,
2003; Gouras et al., 2010). Intracellular neurofibrillary tangles
are formed when hyperphosphorylated tau comes off microtu-
bules and accumulates within or near synapses and may cause
synaptic dysfunction (Pooler et al., 2014). In animal and cell
models of tauopathies, increased autophagy can remove toxic
tau aggregates (Berger et al., 2006; Rodriguez-Navarro et al.,
2010), which may have important therapeutic significance be-
cause a reduction in all forms of tau reduces neurodegeneration
(Santacruz et al., 2005; Roberson et al., 2007; Lasagna-Reeves
et al., 2016). Up-regulating autophagy at the synapse could
therefore eliminate early tau isoforms that could be driving the
synaptic dysfunction. In line with this, inhibiting mTORC1, by
rapamycin or other means, reduces AD-related cognitive and
synaptic deficits in several AD animal model studies (Ma et al.,
2010; Spilman et al., 2010; Caccamo et al., 2013; Ozcelik et al.,
2013). One potential complication is that changes in autophagy
itself have been linked to the progression of AD. A build-up
of autophagic vacuoles was seen within swollen neurites, in-
cluding synapses, of AD patient brains and AD mouse models
(Boland et al., 2008; Nixon and Yang, 2011). This suggests that
there is a defect in autophagosome maturation and fusion with
the lysosome. Other data suggest that autophagy induction and
autophagosome biogenesis/maturation may be reduced in AD
(Pickford et al., 2008; Rohn et al., 2011). Therefore, one can
imagine a situation in which autophagy may be reduced in the

initial stages of the disease, driving a build-up of harmful pro-
teins. The cell then attempts to clear via increased autophagy,
which then fails, further compounding the disease pathology.

PD is characterized by a loss of motor control, dementia,
and other pathophysiologies. Like AD, a growing list of stud-
ies describing synaptic dysfunction in PD reflects the fact that
PD, like AD, can be considered a synaptopathy (Plowey and
Chu, 2011). Although a majority of PD cases are idiopathic,
PD has been linked specifically with several dysfunctional pro-
teins, among which a-synuclein, LRRK2, PINK1, and PARKIN
have attracted the most amount of scientific scrutiny (Bonifati,
2014). Mutations that enhance the kinase activity of LRRK2 are
linked to PD (West et al., 2005; Greggio et al., 2006). LRRK?2
functions at the synapse (Piccoli et al., 2011; Matta et al., 2012;
Arranz et al., 2015) and is also linked to the regulation of auto-
phagy (Plowey and Chu, 2011). We recently demonstrated that
LRRK2-dependent phosphorylation of EndoA is required for
autophagy at Drosophila synapses (as described in the section
Autophagy at the synapse and its effect on synaptic function;
Soukup et al., 2016). Therefore, LRRK2 dysregulation in PD
may drive alterations in synaptic autophagy, starting a cascade
leading to synaptic defects in PD. Like LRRK2, two other
PD-related genes, Parkin and Synaptojanin, also interact with
EndoA (Trempe et al., 2009; Krebs et al., 2013; Quadri et al.,
2013; Cao et al., 2014), suggesting that EndoA may be a crucial
node in the network linking PD with autophagy regulation at the
synapse. Finally, many PD cases are caused by increased o-syn-
uclein expression and aggregation into Lewy bodies. a-Synu-
clein functions at the synapse, and increased expression results
in decreased neurotransmitter release and decreased autophagy
(Chandra et al., 2005). Conversely, genetic reduction in autoph-
agy by the deletion of Atg7 increases a-synuclein at the synapse
and within Lewy bodies (Friedman et al., 2012).

Overall, three major concepts emerge when considering
the connection between autophagy and synaptic dysfunction. In
aging and disease, autophagy is reduced, defective proteins ac-
cumulate, and synapses become dysfunctional. In some cases,
synaptic pathologies are caused by defective proteins directly
disturbing normal autophagy. Finally, clearing defective pro-
teins by increasing autophagy could help ameliorate synaptic
deficits seen in aging and neurodegenerative diseases. Because
synaptic dysfunction is an early phenomenon in pathological
brain states, autophagy could be an important strategy for tar-
geting diseases at a nascent stage where neuronal loss has not
yet occurred and reversibility of phenotypes is feasible. Any
specific therapeutic strategy will be contingent on whether the
disease state directly affects autophagy. If not, then autophagy
up-regulation may be useful. However, if autophagy is itself in-
hibited, any up-regulation could exacerbate the disease pathol-
ogy by causing a buildup of autophagy intermediates (Fig. 3).

Conclusions and perspective

There is growing appreciation that autophagy plays distinct
roles in different tissues and that its role in the nervous sys-
tem is unique. However, very little is known about the role of
autophagy during normal neuronal function and behavior. Ev-
idence shows that neuronal firing and synaptic activity trigger
autophagy. But what role does autophagy play at the synapse
after it is triggered? It is known that specific patterns of synap-
tic activity trigger changes to the synapse that will modify its
future activity. This type of activity-dependent change is cru-
cial for processes such as memory encoding and the learning of
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Figure 3. Potential connections between autophagy and synaptic dys-
function in aging and disease. Synaptic dysfunction and a reduction of
autophagy are both common phenomena in aging and age-related neuro-
degenerative diseases. Therefore, it is possible that synaptic dysfunction is
driven, in part, by a reduction in autophagy at the synapse. The up-regula-
tion of autophagy has been considered a potentially beneficial therapeutic
strategy. However, it is crucial to analyze whether the loss of autophagy in
a particular context is caused by lower levels of autophagy induction or a
block in autophagic flux, i.e., the cycle of autophagosome generation and
subsequent fusion with the lysosome. In the first case, up-regulation of au-
tophagy is useful because it can counter the lowered levels of autophagy.
However, in the second case, the up-regulation of autophagy could exac-
erbate the disease state because of a buildup of autophagic intermediates
that are not cleared because of the block in autophagic flux.

new behaviors. One possibility that remains to be investigated is
that autophagy is one of the mechanisms used to effect activity-
dependent synaptic change. Another scenario is that autophagy
is useful to ameliorate the toxicity resulting from the intense,
repeated process of exo- and endocytosis. If so, it will be im-
portant to understand how the autophagy machinery detects the
levels of toxicity and how dysfunctional proteins are marked for
degradation by autophagy.

As with many other fields, our ability to answer key ques-
tions is contingent on the development of better experimental
tools (see Assays for the study of autophagy). For example, neu-
roscience research has been revolutionized by the development
of excellent tools in two categories. One set of tools allows for
the activation and inactivation of a specific set of neurons (i.e.,
optogenetics and chemogenetics; Aston-Jones and Deisseroth,
2013). The other set are sensors that let researchers monitor neu-
ronal activity, often in real time and in vivo (Rose et al., 2014).
Similarly, autophagy research would benefit from methodolo-
gies able to regulate autophagy in a temporally and spatially re-
stricted manner, thereby allowing us to investigate autophagy at
the level of specific synapses or neurons. Furthermore, a tool for
inducing autophagy would allow us to definitively test whether
the induction of autophagy can ameliorate synaptic defects seen
in neurodegenerative conditions. Interestingly, a small peptide
derived from the domain of Bassoon that inhibits Atg5 was able
to inhibit synaptic autophagy (Okerlund et al., 2017) and could
be developed into a synapse-specific autophagy inhibitor. This
finding also highlights the importance of identifying region- or
compartment-specific (for example, presynapse) modulators of
autophagy. Finally, the development of sensors that can accu-
rately measure autophagic flux in vivo or in real time is criti-
cal. Sensors that are more sensitive will be important for testing
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how specific interventions or drugs can modulate autophagy.
Furthermore, we need sensors or markers of autophagy that can
be applied in humans. These tools will accelerate our under-
standing of autophagy within the nervous system.
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