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Type 1 diabetes mellitus (T1DM) is a common chronic disease in children, characterized by
a loss of β cells, which results in defects in insulin secretion and hyperglycemia. Chronic
hyperglycemia causes diabetic complications, including diabetic nephropathy, neuropathy,
and retinopathy. Curative therapies mainly include diet and insulin administration. Although
hyperglycemia can be improved by insulin administration, exogenous insulin injection
cannot successfully mimic the insulin secretion from normal β cells, which keeps blood
glucose levels within the normal range all the time. Islet and pancreas transplantation
achieves better glucose control, but there is a lack of organ donors. Cell based therapies
have also been attempted to treat T1DM. Stem cells such as embryonic stem cells,
induced pluripotent stem cells and tissue stem cells (TSCs) such as bone marrow-, adipose
tissue-, and cord blood-derived stem cells, have been shown to generate insulin-producing
cells. In this review, we summarize the most-recently available information about T1DM
and the use of TSCs to treat T1DM.
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INTRODUCTION
Type 1 diabetes mellitus (T1DM) is a T cell-mediated
autoimmune disease, induced by permanent destruction of β

cells. Hyperglycemia causes complications that include diabetic
nephropathy, neuropathy, and retinopathy in T1DM patients.
Insulin therapy is effective because insulin is deficient in T1DM
patients. Available insulin delivery systems include syringes,
pumps, jet injectors, and pens. Insulin therapy helps decrease
blood glucose levels, but does not maintain the levels in the nor-
mal range over extended periods. β cell replacement therapies,
including islet and pancreas transplantation, have been shown to
be a useful approach to T1DM, but this approach suffers from
a lack of donors. Thus, stem cells therapies have recently been
in the spotlight as a means of controlling T1DM. Stem cells
include induced pluripotent stem cells (iPS), embryonic stem
cells (ESCs), and tissue-derived-stem cells, such as bone marrow-,
adipose-, and cord blood-derived-stem cells (Hussain and Theise,
2004). This review looks at the use of tissue-derived-stem cells for
the treatment of T1DM.

PATHOPHYSIOLOGY OF T1DM
T1DM is an autoimmune disorder in which β cells are destroyed
by immunoresponse. A T1DM animal model, the non-obese dia-
betic (NOD) mouse, has many of the same autoantigens targeted
by human T cells (Delovitch and Singh, 1997; Atkinson and
Leiter, 1999). NOD mice, which are genetically deficient in B lym-
phocytes, develop a very low incidence of diabetes, one report
suggesting that depleting B lymphocytes delays and/or reduces the
onset of diabetes (Hu et al., 2007).

Major histocompatibility complex (MHC) class I and II-
restricted islet-antigen-reactive T cells have been detected in the
NOD mouse, the NOD MHC I-Ag7 allele being essential for dis-
ease development (Bluestone et al., 2010). More than 20 potential

ldd loci were found to affect the development of T1DM, includ-
ing T lymphocyte antigen 4, and IL-2. Female NOD mice show a
higher incidence of diabetes than male mice, but another T1DM
animal model, the inbred BioBreeding (BB) rat, shows no dif-
ference between the sexes in the incidence of T1DM, its MHC
gene product being RT1u/u. Further, more than 12 loci related to
the development of diabetes have been detected. Some autoanti-
gens, including insulin, glutamic acid decarboxylase (GAD) 65,
IGRP, IA-2 and IA-β (phogrin) have been detected in T1DM
(Lieberman and DiLorenzo, 2003). CD4+, CD8+ T cells, and
macrophages have a role in the death of β cells. Dendritic cells
(DCs), natural-killer (NK) cells and NKT cells have been shown
to contribute to β cell death (Lehuen et al., 2010). CD4+T cells
play an important role in both the early and late stages of T1DM.
CD8+ T cells, which infiltrate the islets of NOD mice, recognized
the islet-specific glucose-6-phosphatase catalytic subunit-related
protein (IGRP); when IGRP autoimmunity was prevented, so was
the development of diabetes (Han et al., 2005a,b). Regulatory T
cells (T reg) play an important role in autoimmune diabetes, their
number, and function changing in the pancreas of autoimmune
mice. The number of IFNγ-producing T reg cells is significantly
lower in the peripheral blood of T1DM patients (D’Alise et al.,
2008; Tang et al., 2008). Macrophages produce IL-12 to pro-
mote CD8+ differentiation, and produce IL-1β, TNF, and ROS
to cause β cell death. NK cells were found to infiltrate the pan-
creas and directly or indirectly destroy β cells (Feuerer et al.,
2009). Macrophages, DCs, and NK cells produce inflammation
cytokines such as IFN-α and IFN-γ, which damage β cells in the
pancreata, and the NK cells also destroy the β cells when there is a
viral infection (Fairweather and Rose, 2002). Environmental fac-
tors also strongly affect the progression of T1DM. For example,
the incidence of diabetes decreased when mice were exposed to
microbial stimuli (Wen et al., 2008).
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Abnormal T cells infiltrate the islets and destroy the β cells
because they do not recognize β cell antigens as self anti-
gens. T cell precursors in the bone marrow (BM) develop into
mature T cells by positive and negative selection in the thy-
mus and then migrate to the peripheral tissue (Heinzel et al.,
2007). Thymocytes expressing low-affinity TCRs (T-cell recep-
tors) populate the peripheral lymphoid organs, where they can
recognize foreign antigens. Autoreactive T cells can escape thymo-
cyte negative selection and elicit autoimmunity in the absence of
adequate peripheral regulation (Marrack and Parker, 1994; Han
et al., 2005a,b). Approximately 20% of individuals with sponta-
neous mutation of autoimmune gene Aire develop T1DM with
other autoimmune diseases, which reflects their inability to select
against islet antigen reactivity (Gardner et al., 2009).

T1DM is a highly multigenic autoimmune disease in humans,
and some autoantibodies have been detected in the periph-
eral blood after the onset of diabetes. Autoantigens such as
insulin, Glutamate decarboxylase (GAD) 65, islet antigen (IA)-
2 and IGRP were defined as recognized by T cells in T1DM
patients (Yamamoto et al., 2004). The increased proliferation
of CD4+ T cells has been reported in the presence of GAD
extracted from human brain and islets (Harrison et al., 1993).
Autoantigen-specific CD4+T cells have been studied in very
different clinical settings, including T1DM patients undergoing
pancreas/kidney transplantation. Autoantibodies were detected
pre-transplant or reappeared post-transplant in normoglycemic
patients (Vendrame et al., 2010). And a strong inverse correla-
tion has been found to exist between the binding affinity of β

cell peptides to HLA-A and CTL responses against those pep-
tides in recently-diagnosed T1DM patients. These data confirmed
that many β cell epitopes are recognized by CTLs. Moreover,
pathogenic CD8+T cells target HLA-A∗0201 in transgenic NOD
mice (Takaki et al., 2006).

THERAPIES FOR T1DM
Insulin plays a key role in controlling hyperglycemia in T1DM
patients, and the available methods of delivery include syringes
(Keith et al., 2004), pumps and jet injectors (Keith et al., 2004)
and pens (Wong et al., 2013). Insulin therapy reduces microvascu-
lar risk in T1DM patients (Writing Team for the Diabetes Control
and Complications Trial/Epidemiology of Diabetes Interventions
and Complications Research Group, 2002). But although hyper-
glycemia can be improved by insulin administration, exogenous
insulin injection cannot exactly replicate the insulin secretion
from normal β cells when the blood glucose level constantly
changes. Islet and pancreas transplantation are more effective
treatments, but there is a lack of donors (Weir et al., 2011).
Recently, researchers have focused on the generation of new β

cells from stem cells for the treatment of T1DM, and this may
be one of the most significant advances in the treatment of
this disease (Weir et al., 2011). T1DM patients tend to have
decreased numbers of endothelial progenitor cells with reduced
repair potential, and these fail to differentiate into functional
vasculatures (Caballero et al., 2007). However, one report has
indicated that diabetes was improved after purified BM endothe-
lial progenitors were transplanted into diabetic mice, suggesting
that repairing islet vascularity helped preserve the newly-formed
β cells (Wan et al., 2013).

In addition to insulin therapy, a number of approaches, such
as the use of drugs and anti-cytokines, have been tested for
treating T1DM, and some have been or are in clinical trials. One
trial assessed the effects of mucosal insulin therapy for primary
immunoprevention (Bonifacio et al., 2008). Another found that
the combination of the immunosuppressant drugs mycopheno-
late mofetil and daclizumab did not preserve β cell function or
decrease insulin requirements in T1DM patients (Gottlieb et al.,
2010). In the case of Rituximab, another drug that targets the
CD20 transmembrane receptor expressing on B lymphocytes,
there was no significant difference between patients treated with
this drug and placebo-treated groups (Pescovitz et al., 2009).
Also, anti-TNF-α therapy failed to prevent the development of
T1DM (Koulmanda et al., 2012), but the inhibition of IL-1
action does have clinical efficacy in many inflammatory diseases.
The blockade of IL-1 action reduced the incidence of T1DM in
animals, and clinical trials have been started to study the fea-
sibility, safety and efficacy of IL-1 therapy in T1DM patients
(Tack et al., 2009; Mandrup-Poulsen et al., 2010). The blockade
of IL-1β also modulated the effects of anti-CD3 antibody, and
the combination of anti-CD3 antibody with IL-1 receptor antag-
onist thus improved islet inflammation and reversed diabetes in
NOD mice (Ablamunits et al., 2012). An antigen-based ther-
apy, alum-conjugated glutamic acid decarboxylase immunization
(GAD-Alum), has been reported to successfully treat T1DM in a
pilot study, but failed to alter the course of loss of insulin secretion
during a 1 year study of patients with recently diagnosed T1DM
(Ludvigsson et al., 2008; Wherrett et al., 2011).

STEM CELL TREATMENT FOR DIABETIC ANIMALS
ESCs, iPS cells and BM-, liver- and pancreas-derived stem cells
can differentiate into β cells. Hepatic stem cells expressing duode-
num homeobox protein-1 differentiate into β cells, and improved
hyperglycemia in diabetic mice (Yang, 2006). ESCs are isolated
from blastocysts, and can differentiate into endoderm, meso-
derm, and ectoderm cells. They can also differentiate into insulin-
producing cells (Soria et al., 2000), and these were able to release
insulin in response to glucose stimuli and to normalize the blood
glucose levels in diabetic mice when transplanted into those mice
(Naujok et al., 2008). iPS was induced from mouse embryonic
and adult fibroblast cultures by introducing four factors (Oct3/4,
Sox2, c-Myc, and Klf4), and the transplantation of iPS cells cor-
rected hyperglycemia in a T1DM mouse model (Takahashi and
Yamanaka, 2006; Alipio et al., 2010). Although ESCs are pluripo-
tent stem cells and can generate insulin-positive cells in vitro,
in vitro differentiation cannot be controlled (Segev et al., 2004;
Brolen et al., 2005).

BM mainly includes hematopoietic stem cells (HSCs), which
differentiate into myeloid and lymphoid lineages, and mesenchy-
mal stem cells (MSCs), which can differentiate into myogenic,
osteogenic, chondrogenic, and adipogenic lineages (Pittenger
et al., 1999; Colter et al., 2000). BM cells have the ability to
differentiate in vivo into functionally competent β cells (Ianus
et al., 2003), and NOD mice allotransplantated with BALB/c
nu/nu BM cells displayed normal T- and B-cell functions, and
newly developed T cells were tolerant to both donor and host.
These results suggest that allogeneic bone marrow transplanta-
tion (ABMT) might prevent islet destruction, and help to restore
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self-tolerance (Ikehara et al., 1985). One report has indicated that
BMT promotes β cell regeneration after acute injury through BM
mobilization (Hasegawa et al., 2007). MSCs are also multipotent
cells that can be isolated from not only BM but also adipose tis-
sue and cord blood. MSCs have significantly induced T-reg cells,
suppressed β cell-specific T cell proliferation in the pancreas, and
overcome the inherent autoimmune pathology associated with
T1DM (Urban et al., 2008; Madec et al., 2009). More recently, one
report has shown that mouse MSCs can differentiate into insulin-
producing cells through recombinant lentiviral transduction of
the pdx-1 gene in vitro (Rahmati et al., 2013).

CLINICAL APPLICATION FOR T1DM
A case report on the transplantation of allogeneic amniotic stem
cells (high percentage of CD34+ cells) in a young T1DM patient,
suggests that hyperglycemia had been improved without insulin
therapy during 36-month follow up, indicating that amniotic
membrane stem cell transplantation can improve islet cell func-
tion in vivo (Liu et al., 2013). Another case report has indicated
that co-infusion of HSCs and differentiated insulin-producing
cells from adipose tissue-derived MSCs was able to normalize
hyperglycemia in a T1DM patient (Dave et al., 2013).

Human ESCs differentiate into endocrine cells, but there is
a risk that ESCs promote the development of tumors (Kroon
et al., 2008). iPS can be generated from dermal fibroblasts of
T1DM patients, and it has been indicated that these cells can be
induced into insulin-producing cells, and would enable diagnos-
tic and therapeutic application of basic and translational T1DM
research (Maehr et al., 2009; Thatava et al., 2013). However,
until now, there are no reports of iPS cells being used to clini-
cally treat T1DM. Human adipose-derived-MSCs can differenti-
ate into insulin-producing cells which were sensitive to glucose
in vitro (Dave et al., 2012), and human BM-derived-MSCs can
differentiate into β cells, which expressed PDX1 and improved
hyperglycemia in diabetic mice (Karnieli et al., 2007). One report
has shown that human cord blood-derived MSCs are able to
differentiate into insulin-producing cells by transduction with
non-integrated LV-PDX1 (Boroujeni and Aleyasin, 2013), while
HSC transplantation has been shown to be a useful method for
treating T1DM patients with autologous HSC transplantation
achieving insulin discontinuation (Farge et al., 2010; Snarski et al.,
2011).

CONCLUSION AND FUTURE PROSPECTS
T1DM therapy using induced β cells from ESCs, iPSCs, and adult
stem cells has previously been reviewed (Muir et al., 2014). In
the present review, we summarize the pathophysiology of T1DM,
and the basic research and clinical studies focusing on develop-
ing therapies for T1DM. Cell-based therapy helps prevent the
autoimmune destruction of β cells in T1DM, while tissue-derived
stem cells such as BM-, adipose tissue-, liver- and pancreas-
derived stem cells have the ability to generate insulin-producing
cells, and to improve diabetes. BM-derived MSCs inhibit the T
cell-mediated immune response against newly-formed β cells,
and stem cell therapy may thus be a viable approach to treating
T1DM patients. The generation of β cells from various stem cells
may help overcome the problem of the lack of donors for islet or

pancreas transplantation, and this would be a valuable research
topic if these generated β cells were able to avoid immune destruc-
tion when the stem cells were allogeneically transplanted. Overall,
stem cell research directed at the treatment of T1DM might well
also be valuable in regards to other types of DM.
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