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Abstract

Huntington’s disease (HD) is caused by the expansion of N-terminal polymorphic poly Q stretch of the protein huntingtin
(HTT). Deregulated microRNAs and loss of function of transcription factors recruited to mutant HTT aggregates could cause
characteristic transcriptional deregulation associated with HD. We observed earlier that expressions of miR-125b, miR-146a
and miR-150 are decreased in STHdhQ111/HdhQ111 cells, a model for HD in comparison to those of wild type STHdhQ7/HdhQ7

cells. In the present manuscript, we show by luciferase reporter assays and real time PCR that decreased miR-146a
expression in STHdhQ111/HdhQ111 cells is due to decreased expression and activity of p65 subunit of NFkB (RelA/NFkB). By
reporter luciferase assay, RT-PCR and western blot analysis, we also show that both miR-150 and miR-125b target p53. This
partially explains the up regulation of p53 observed in HD. Elevated p53 interacts with RelA/NFkB, reduces its expression
and activity and decreases the expression of miR-146a, while knocking down p53 increases RelA/NFkB and miR-146a
expressions. We also demonstrate that expression of p53 is increased and levels of RelA/NFkB, miR-146a, miR-150 and miR-
125b are decreased in striatum of R6/2 mice, a mouse model of HD and in cell models of HD. In a cell model, this effect
could be reversed by exogenous expression of chaperone like proteins HYPK and Hsp70. We conclude that (i) miR-125b and
miR-150 target p53, which in turn regulates RelA/NFkB and miR-146a expressions; (ii) reduced miR-125b and miR-150
expressions, increased p53 level and decreased RelA/NFkB and miR-146a expressions originate from mutant HTT (iii) p53
directly or indirectly regulates the expression of miR-146a. Our observation of interplay between transcription factors and
miRNAs using HD cell model provides an important platform upon which further work is to be done to establish if such
regulation plays any role in HD pathogenesis.
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Introduction

Huntington’s disease (HD) is an autosomal dominant neurode-

generative disorder caused by the expansion of polymorphic CAG

repeats in exon1 of Huntingtin (HTT ) gene. Among various

molecular and cellular dysfunctions originated from mutations to

HTT gene, which eventually lead to neuronal loss from striatal

regions in HD patients, transcriptional deregulation is considered to

be one of the important events [1,2]. Such deregulation of genes has

been attributed, at least partially, to interactions and recruitments of

several transcription factors to the mutant HTT aggregates [2,3].

Transcription factors (TFs) like TBP, CBP, p53, Sp1, NFkB and

others are recruited to aggregates formed by mutant HTT, the

hallmark of HD [4–9]. Functional consequence of such recruitment

remains largely unknown. Recruitment of TFs to the aggregates

may result in loss of functions of the TFs. This can explain the

altered expressions of many genes in HD [2,3]. In the presence of

mutated HTT exon1, repression of transcription from p53-

responsive promoters is detected, indicating hypo function of p53

in HD [8]. However, the level of p53 is increased in various models

of HD as well as in the affected tissue in HD patients possibly due to

post transcriptional or post-translational modifications [4]. It has

also been shown that p53 directly interacts with the promoter

sequence of HTT gene that harbors multiple p53 response elements

[10]. Increased expression of mutant HTT due to higher level of

p53 in turn may increase the aggregates formed by mutant HTT.

Direct evidence that p53 participates in the pathogenesis of HD is

also available [11]. However, effects of recruitment and interaction

of NFkB with mutant HTT in HD pathogenesis remains unclear. In

a cell model of HD, it has been shown that NFkB activity is

increased in the early stage when there are no visible aggregates of

mutant HTT, while at a later stage when visible aggregates are

formed, NFkB activity is reduced [12]. Similar decrease in NFkB

activity after 72 hours of induction of mutant HTT was also

observed in a cell model of HD, while in early stage of induction,

NFkB activity was increased [13,14]. This dual role of mutant HTT

on NFkB activity could be due to initial protective action of NFkB,

which is suppressed at a later stage by the recruitment of NFkB into

the aggregates. Alteration of NFkB activity may result in altered

expression of NFkB regulated genes.
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Micro RNA (miRNA) belongs to a class of small non-coding

single stranded RNA, approximately 21 nucleotides long, and

generally regulates gene expression negatively. Mature miRNA

interacts mostly with 39 untranslated regions (39UTRs) of the

genes in human and down regulates the expression of the targets

either by degrading the mRNAs or by inhibiting their translation.

In some cases, increased expression of target genes by miRNAs

have also been reported [15]. Recent experiments show that at

least in few specific cases, mature miRNA can alter the expression

of genes even by binding to the coding regions as well as to the 59

UTRs of its targets [16,17,18]. It thus provides further complex

regulation of genes by miRNAs. It has been proposed on the basis

of theoretical analysis that as many as 30% of genes in the human

genome may be the targets of miRNAs [19]. However, latter

estimates predict that as large as 90% of human genes are targets

of miRNAs [20], although experimentally validated targets are

limited. MiRNA genes are regulated in similar way as that of

coding genes [21,22]. For example, p53 is known to increase as

well as decrease the expression of several miRNAs [23–27].

Interestingly, p53 is one of the targets of miR-125b [28], which is

itself negatively regulated by p53 [26]. RelA/NFkB regulates the

expression of miR-146a [29]. The neuron-restrictive silencer

factor (NRSF), also known as Repressor Element Silencing

Transcription Factor (REST), another HTT interacting protein,

regulates several miRNAs. Among them, miR-132, miR-124,

miR-9 and miR-9* are down regulated in affected tissues of HD

patients [30,31]. To investigate whether miRNA expressions are

altered in HD, we recently identified changes in expressions of

several miRNAs in STHdhQ111/HdhQ111 cells, a cell model of HD.

We also characterized that miR-146a which is down regulated in

the cell model targets TBP [32,33].

As RelA/NFkB regulates the expression of miR-146a [29], in

the present manuscript, we first tested the hypothesis that down

regulation of miR-146a could be due to decreased activity of NFkB

in STHdhQ111/HdhQ111 cells. Further, we tested whether p53 is a

target of miRNAs, which are down regulated in STHdhQ111/

HdhQ111 cells [33]. We then focused on the regulation of miR-146a

by both RelA/NFkB and p53. We observed that NFkB activity is

compromised in STHdhQ111/HdhQ111 cells and exogenous expres-

sion of p65 sub-unit of NFkB i.e. RelA/NFkB increased the

expression of mature miR-146a in STHdhQ111/HdhQ111 cells. In

addition, we showed that increased level of p53 in STHdhQ111/

HdhQ111 cells could be due to decreased level of miR-150 and

miR-125b. Besides, we also showed that exogenous p53 decreased

the expression of RelA/NFkB and also reduced NFkB activity.

Besides, p53 directly or indirectly regulated the expression of miR-

146a. Further, results obtained with mutant HTT aggregates led

us to postulate that in the presence of the aggregates there is an

initial decrease in miR-125b and miR-150 expression. These

down regulated miRNAs lead to increased p53 level. Elevated p53

then in turn, may decrease RelA/NFkB expression, NFkB activity

and miR-146a expression.

Results

Regulation of miR-146a by RelA/NFkB in STHdhQ7/HdhQ7

and STHdhQ111/HdhQ111 cells
We have shown earlier that expressions of several miRNAs are

altered in STHdhQ111/HdhQ111 cells in comparison with STHdhQ7/

HdhQ7 cells. Among the altered miRNAs, miR-146a is down

regulated [33]. It is known that RelA/NFkB regulates the

expression of miR-146a [29]. To investigate the possible role of

RelA/NFkB in the observed down regulation of miR-146a in

STHdhQ111/HdhQ111 cells, we first determined the steady state level

(expression) of p65 sub-unit of NFkB i.e. RelA/NFkB in these cells.

Western blot analysis revealed that the expression of RelA/NFkB

(denoted by p65 in Figure 1A) was indeed decreased significantly

(n = 3, p = 0.018) in STHdhQ111/HdhQ111 cells in comparison with

that in STHdhQ7/HdhQ7 cells (Figures 1A and 1B). Using

luciferase reporter assay with multiple NFkB responsive elements

(denoted as NFkB-RE), we further observed that NFkB activity

was also significantly (n = 4, p = 0.0082) compromised in

STHdhQ111/HdhQ111 cells (Figure 1C). This was further con-

firmed by using gastrin promoter tagged reporter luciferase activity

assay. It is known that RelA/NFkB regulates gastrin gene

expression [34]. This result shown in Figure 1D confirms that

NFkB activity is compromised in STHdhQ111/HdhQ111 cells (n = 2,

p = 0.034).

Given that RelA/NFkB regulates miR-146a expression [29] and

above observations that both RelA/NFkB steady state level and

activity are compromised in STHdhQ111/HdhQ111 cells, we tested

whether exogenous expression of p65 sub-unit of NFkB (RelA/

NFkB) could rescue the expression of miR-146a in these cells.

Transfection of RelA/NFkB (denoted by p65 in Figure 2A) in

STHdhQ7/HdhQ7 and STHdhQ111/HdhQ111 cells increased the

expression of the gene as determined by western blot analysis. In

such condition, NFkB activity as revealed by reporter luciferase

assay, was also increased significantly (n = 4, p = 0.022) as shown in

Figure 2B. Mature miR-146a expression was increased in such

condition in both STHdhQ7/HdhQ7 cells (n = 3, p = 0.036) and

STHdhQ111/HdhQ111 cells (n = 3, p = 0.045) as shown in Figure
2C. Even though miR-146a expression increased in STHdhQ111/

HdhQ111 cells exogenously expressing RelA/NFkB in comparison

to STHdhQ111/HdhQ111 cells with endogenous RelA/NFkB, it did

not rescue up to the level observed in STHdhQ7/HdhQ7 cells. It is

known that aspirin decreases NFkB activity [35]. We thus tested

whether decreasing NFkB activity by aspirin could alter miR-146a

expression. STHdhQ7/HdhQ7 cells treated with 2.0 mM aspirin for

24 hours decreased the basal NFkB activity significantly (n = 2,

p = 0.014) (Figure 2B). In such condition, expression of miR-146a

was significantly (n = 2, p = 0.031) reduced (Figure 2D). Taken

together, we show that increasing the expression of RelA/NFkB in

STHdhQ111/HdhQ111 cells increased miR-146a expression and

reducing the expression of RelA/NFkB decreased miR-146a

expression in STHdhQ7/HdhQ7 cells establishing that decreased

RelA/NFkB expression could result in the decreased expression of

miR-146a.

Over expression of p53 in STHdhQ111/HdhQ111 cells: role
of miR-125b and miR-150

Expression of p53 is increased in STHdhQ111/HdhQ111 cells [32]

as well as in various models of HD and post mortem HD brains.

The exact mechanism for the increase of p53 protein in HD

remains unknown. It has been shown by us that miR-125b is down

regulated in STHdhQ111/HdhQ111 cells compared to the wild type

cells [33]. Given that p53 is a validated target of miR-125b [28],

we explored whether increased expression level of endogenous p53

in STHdhQ111/HdhQ111 cells could be due to decrease in the

expression of miR-125b or any other miRNA down regulated in

these cells [33]. We confirmed that the endogenous expression of

p53 is increased in STHdhQ111/HdhQ111 cells (Figures 3A and
3B) compared to the wild type STHdhQ7/HdhQ7 cells. Luciferase

activity of the reporter vector pmiR-Report with 150 bp (position

733–739) of the 39-UTR of human p53 (p53-UTR1) containing

miR-125b recognition site [28] was also significantly (n = 3,

p = 0.026) increased in STHdhQ111/HdhQ111 cells compared to

that observed in STHdhQ7/HdhQ7 cells (Figure 3C) indicating that

down regulated miR-125b could target p53 and increase its

Regulation of miR-146a in Huntington’s Disease
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expression. Further, over expression of pre-miR-125b that

increased the expression of mature miR-125b significantly (data

not shown) decreased reporter luciferase activity significantly in

STHdhQ7/HdhQ7 cells (n = 3, p = 0.024) and STHdhQ111/HdhQ111

cells (n = 3, p = 0.0086) when co-expressed with p53-UTR1

(Figure 3D). In addition, exogenous expression of miR-125b

decreased the endogenous expression of p53 (n = 3, p = 0.039),

shown in Figure 3E. Taken together, these results confirmed the

earlier observation that p53 is one of the targets of miR-125b [28].

Thus, the increased expression level of endogenous p53 in

STHdhQ111/HdhQ111 cells could be due to decreased expression

of endogenous miR-125b.

We searched mirbase [36] (http://www.mirbase.org/) and

observed that human p53 could also be targeted by miR-150,

which is decreased in STHdhQ111/HdhQ111 cells [33]. We cloned

136 bp (position 234–256) of the 39-UTR of p53 (p53-UTR2)

Figure 1. RelA/NFkB expression and activity in STHdhQ111/HdhQ111 and STHdhQ7/HdhQ7 cells. (A) Representative Western Blot showing
decreased level of RelA/NFkB (denoted by p65 in the figure) in STHdhQ111/HdhQ111 cells compared to STHdhQ7/HdhQ7 cells; (B) Average integrated
optical density (IOD) of p65 protein bands (RelA/NFkB) in A, normalized to b-actin level (n = 3, p = 0.018) in these cells; (C) Average luciferase activity
using reporter luciferase with multiple NFkB response elements (denoted by NFkB-RE) in STHdhQ111/HdhQ111 cells compared to STHdhQ7/HdhQ7 cells.
Normalization of protein level between STHdhQ7/HdhQ7 cells and STHdhQ111/HdhQ111 cells was done by taking the ratio of Relative Luciferase Units
(RLU) of NFkB-RE and empty vector pGL3 in these cells. The normalized value obtained with STHdhQ7/HdhQ7 cells was taken as 1. Relative luciferase
activity of NFkB-RE was found significantly lower (n = 4, p = 0.0082) in STHdhQ111/HdhQ111 cells compared to STHdhQ7/HdhQ7 cells; (D) Average reporter
luciferase activity with Gastrin promoter (n = 2, p = 0.034) in STHdhQ7/HdhQ7 cells and STHdhQ111/HdhQ111 cells. Normalization of protein level between
the cells was done by taking the ratio of Relative Luciferase Units (RLU) of Gastrin promoter construct and empty vector pGL3 in these cells. The
normalized value obtained with STHdhQ7/HdhQ7 cells was taken as 1; Error bars represent standard deviation s of more than 2 experiments and each
experiment was done in duplicate. ‘‘*’’ represents statistical significance; * p#0.05; ** p,0.01.
doi:10.1371/journal.pone.0023837.g001

Regulation of miR-146a in Huntington’s Disease

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23837



containing the predicted recognition site of miR-150 in

luciferase reporter vector as described above. We observed

that the luciferase activity of the reporter with p53 39-UTR

containing the recognition site of miR-150, shown in Figure
S1 (A), was increased significantly (n = 3, p = 0.031) in

STHdhQ111/HdhQ111 cells compared to that in STHdhQ7/HdhQ7

Figure 2. Regulation of miR-146a by RelA/NFkB in STHdhQ7/HdhQ7 and STHdhQ111/HdhQ111 cells. (A) Western Blot showing increased p65
protein (RelA/NFkB) level in (i) STHdhQ7/HdhQ7 cells expressing exogenous p65 subunit of NFkB (RelA/NFkB) compared to control STHdhQ7/HdhQ7 cells
and in (ii) STHdhQ111/HdhQ111 cells expressing exogenous p65 subunit of NFkB (RelA/NFkB) compared to the control STHdhQ111/HdhQ111 cells; (B)
Average luciferase activity of NFkB response element (NFkB-RE) in STHdhQ7/HdhQ7 cells and STHdhQ7/HdhQ7 cells expressing exogenous p65 subunit
of NFkB (RelA/NFkB). Exogenous expression of p65 sub-unit of NFkB (RelA/NFkB) increased the luciferase activity significantly (n = 4, p = 0.022). Bars 3
and 4, from the left, represent changes in luciferase activity of NFkB-RE on treatment with 0.1 mM and 2 mM aspirin for 24 hours in STHdhQ7/HdhQ7

cells. Treatment with 2.0 mM aspirin reduced the luciferase activiy (n = 2, p = 0.014); (C) Fold increase in the expression of mature miR-146a detected
by real time PCR using stem loop specific primers in p65 subunit of NFkB (RelA/NFkB) transfected STHdhQ7/HdhQ7 cells (n = 3, p = 0.036) and
STHdhQ111/HdhQ111 cells (n = 3, p = 0.045). Expression of miR-17-5p was used as endogenous control. Expression of miR-146a was significantly higher
in cells expressing p65 subunit of NFkB (RelA/NFkB); (D) Treatment with 2.0 mM aspirin decreased the expression of mature miR-146a in STHdhQ7/
HdhQ7 cells (n = 2, p = 0.031). Error bars represent standard deviation s of more than 2 experiments and each experiment was done in duplicate.
‘‘*’’ represents statistical significance; * p#0.05; ** p,0.01.
doi:10.1371/journal.pone.0023837.g002
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cells (Figure 4A). This result indicated that miR-150 could also

target p53. We next cloned pre-miR-150 in pRNA-U61 vector.

STHdhQ111/HdhQ111 cells transfected with this construct showed

an increase in mature miR-150 levels as detected by Real Time

PCR with stem loop specific primers. The result shown in

Figure 4B was statistically significant (n = 3, p = 0.0056).

Exogenous expression of cloned pre-miR-150 construct de-

creased the reporter luciferase activity of p53-UTR2 in both

STHdhQ7/HdhQ7 (n = 3, p = 0.021) and STHdhQ111/HdhQ111

cells (n = 3, p = 0.040) as shown in Figure 4C. Moreover, over

expression of pre-miR-150 decreased the endogenous expres-

sion of p53 in STHdhQ111/HdhQ111 cells (n = 3, p = 0.043) as

shown by Western blot analysis (Figure 4D). These results

indicate that p53 could be targeted by miR-150 as well.

Figure 3. Endogenous expression of p53 in STHdhQ7/HdhQ7 and STHdhQ111/HdhQ111 cells: decreased miR-125b target p53. (A)
Representative Western Blot showing increased p53 protein level in STHdhQ111/HdhQ111 cells compared to STHdhQ7/HdhQ7 cells; (B) Average
integrated optical density (IOD) of p53 protein bands in A, normalized to b-actin level (n = 3, p = 0.024) in these cell lines. (C) Relative luciferase activity
of cloned p53-39UTR with miR-125b binding site (denoted by p53-UTR1) in STHdhQ111/HdhQ111 cells compared to STHdhQ7/HdhQ7 cells. Normalization
of protein level between STHdhQ111/HdhQ111 cells and STHdhQ7/HdhQ7 cells was done by taking the ratio of RLU of cloned construct i.e. p53-UTR1 and
empty vector pmiR. Relative luciferase activity of p53-UTR1 was found significantly higher (n = 3, p = 0.026) in STHdhQ111/HdhQ111 cells compared to
STHdhQ7/HdhQ7 cells; (D) Reduced luciferase activity of p53-UTR1 co-transfected with pre-miR-125b in STHdhQ7/HdhQ7 cells (n = 3, p = 0.024) and
STHdhQ111/HdhQ111 cells (n = 3, p = 0.0086) compared to those obtained in respective empty vector U61 tansfected cells; (E) Representative Western
Blot showing reduction in p53 protein level in STHdhQ111/HdhQ111 cells 72 hours following transfection with pre-miR-125b compared to STHdhQ111/
HdhQ111 cells transfected with empty vector U61, average IOD compared to b-actin (n = 3, p = 0.039) is shown in the adjacent bar diagram.
doi:10.1371/journal.pone.0023837.g003
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As a negative control, we tested 213 bp (position 145–359 of the

39 UTR) of p50 sub-unit of NFkB (also known as NFkB1) containing

no predicted recognition sites for either miR-125b or miR-150 and

did not observe any change in the luciferase activity significantly

when the construct (p50-UTR) was co-transfected with cloned pre-

miR-125b or pre-miR-150 in STHdhQ7/HdhQ7 cells (Figure 5A).

This result showed that the decrease in the luciferase activity by

exogenous expression of miR-150 was specific. Although endoge-

Figure 4. Reduced miR-150 also targets p53 in STHdhQ7/HdhQ7 and STHdhQ111/HdhQ111 cells. (A) Relative luciferase activity of cloned p53-
39UTR with miR-150 binding site (denoted by p53-UTR2) in STHdhQ111/HdhQ111 cells compared to STHdhQ7/HdhQ7 cells. Normalization of protein levels
between the cells was done as described earlier. Relative luciferase activity of p53-UTR2 was found significantly higher (n = 3, p = 0.031) in STHdhQ111/
HdhQ111 cells compared to STHdhQ7/HdhQ7 cells; (B) Fold increase (n = 3, p = 0.0056) in mature miR-150 expression detected by real time PCR using
stem loop specific primers in STHdhQ111/HdhQ111 cells transfected with cloned pre-miR-150 compared to STHdhQ111/HdhQ111 cells transfected with
empty vector U61, at 24 hours post transfection. Expression of miR-17-5p was used as endogenous control; (C) Reduced luciferase activity of p53-
UTR2 co-transfected with pre-miR-150 in STHdhQ7/HdhQ7 cells (n = 3, p = 0.021) and STHdhQ111/HdhQ111 cells (n = 3, p = 0.04) compared to those
obtained in respective empty vector U61 transfected cells; (D) Typical Western Blot showing reduction in p53 protein level in STHdhQ111/HdhQ111 cells
72 hours following transfection with pre-miR-150 compared to STHdhQ111/HdhQ111 cells transfected with empty vector U61. Average IOD compared
to b-actin (n = 3, p = 0.043) is shown in the adjacent bar diagram.
doi:10.1371/journal.pone.0023837.g004
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nous p53 level was decreased by over expressing miR-125b or miR-

150, there was no change in p53 level either in the presence of

exogenous miR-19a or miR-146a (Figure 5B and 5C). Neither of

these miRNAs has any predicted recognition site in the cloned

39UTRs of p53 as revealed from miRbase. Taken together, these

results show that p53 is specifically targeted by miR-125b and miR-

150. Since the expressions of miR-125b and miR-150 were

decreased in STHdhQ111/HdhQ111 cells compared to those obtained

in STHdhQ7/HdhQ7 cells, we expressed these miRNAs in

STHdhQ111/HdhQ111 cells and detected the endogenous expression

of p53 as shown in Figure 5D. It is evident that exogenous

expressions of both the miRNAs resulted in decreased expression of

p53 in STHdhQ111/HdhQ111 cells. However, the level of expression

did not reach exactly up to that of in STHdhQ7/HdhQ7 cells. Thus,

decreased expressions of miR-125b and miR-150 in STHdhQ111/

HdhQ111 cells could result in increased expression of p53.

Role of p53 in the expression of miR-146a in STHdhQ7/
HdhQ7 and STHdhQ111/HdhQ111 cells

There are conflicting results regarding the functional interac-

tions between RelA/NFkB and p53. Several reports show that p53

inhibits the transcriptional activity of RelA/NFkB [37–40] either

by binding to the promoter sequences or by altering the

interaction of NFkB with p53 and CBP. A different pathway has

been identified where p53 enhances RelA/NFkB activity [41,42].

These observations prompted us to find whether increased

expression of p53 in STHdhQ111/HdhQ111 cells had any influence

on the down regulation of miR-146a. We exogenously expressed

p53 in STHdhQ7/HdhQ7 cells and knocked down p53 in

STHdhQ111/HdhQ111 cells and also in STHdhQ7/HdhQ7 cells using

validated siRNA commercially available from Imgenex Corpora-

tion. Exogenous expression of p53 in STHdhQ7/HdhQ7 cells was

confirmed by RT-PCR Figure 6A (i) as well as by western blot

analysis Figure 6A (ii) while down regulation of the protein by

siRNA in STHdhQ7/HdhQ7 cells was confirmed by western blot

analysis as shown in Figure 6B. Detection of the expression of

mature miR-146a in these cells revealed that in the presence of

exogenous p53, miR-146a was down regulated significantly (n = 3,

p = 0.032) while as expected, knocking down p53 up regulated the

expression of the miRNA (n = 3, p = 0.029) as shown in Figure
6C.

To confirm further, we treated STHdhQ7/HdhQ7 cells with 5-

Flurouracil (5-FU, 10 mg/ml for 12 h and 18 h), which is known to

stabilize p53 protein [43]. In such condition, steady state level of

p53 was increased (Figure 7A) and the expression of miR-146a

was decreased significantly for both the time points as shown in

Figure 7B. As we have shown above that miR-150 might target

p53, we also expressed miR-150 in STHdhQ111/HdhQ111 cells and

as expected, significant increase (n = 3, p = 0.039) in the expression

of miR-146a was observed (Figure 7C), possibly due to down

regulation of p53 by miR-150. Similar increase in miR-146a

expression was observed when STHdhQ7/HdhQ7 cells were

transfected with miR-150. However, when p53 was co-transfected

with miR-150, no increase in the expression of miR-146a was

observed. This result shows that decrease in p53 expression by

miR-150 could be compensated here by the exogenous expression

of p53 which does not have the 39-UTR region bearing the target

site of miR-150. Indeed miR-146a was down regulated when p53

was co-transfected with miR-150. However, the extent of decrease

was less compared to when STHdhQ7/HdhQ7 cells were transfected

with p53 alone as shown in Figure 7D. These results showed that

in our experimental conditions, p53 directly or indirectly regulates

the expression of miR-146a.

Regulation of p65 subunit of NFkB (RelA/NFkB)
expression and activity by exogenous p53

It has been mentioned in the preceding section that there are

conflicting results regarding the functional interactions between

RelA/NFkB and p53. This conflicting result could arise from the

dependence of cellular needs in different conditions of growth as

well as for different types of cells. Depending on cellular needs, p53

may modulate NFkB activity differently. We tested whether p53

directly or indirectly regulates NFkB (RelA/NFkB) expression and

activity. Exogenous expression of p53 significantly (n = 3,

p = 0.041) reduced the steady state level of RelA/NFkB) in

STHdhQ7/HdhQ7 cells (Figure 8A). Exogenous expression of p53

in STHdhQ7/HdhQ7 cells significantly decreased (n = 3, p = 0.021)

the activity of NFkB whereas knocking down p53 by siRNA led to

an increase in NFkB activity (n = 3, p = 0.032) in STHdhQ7/HdhQ7

cells. Reduction of p53 expression in STHdhQ111/HdhQ111 cells by

expressing miR-150 that targets p53, significantly increased NFkB

activity (n = 4, p = 0.0482) as detected by luciferase reporter assay

(Figure 8B). Similar results were also obtained in HeLa cells

expressing exogenous p53 and by knocking down p53 by siRNA

(data not shown). Thus, in the presence of excess p53, RelA/NFkB

expression and activity are reduced. This result showed that

increased p53 in STHdhQ111/HdhQ111 cells might reduce NFkB

activity. Besides, there are evidence of physical interaction

between (RelA/NFkB) and p53 [37]. By co-immuno precipitation

analysis, we confirmed such interaction in both STHdhQ7/HdhQ7

and STHdhQ111/HdhQ111 cells (Figure 8C). However, it remains

unknown how p53 negatively regulates RelA/NFkB expression.

Poly Q aggregates cause alterations in the expressions of
protein coding genes and miRNAs and removal of
aggregates by chaperones rescue such changes

Formation of mutant HTT aggregates is the hallmark of HD

and has been shown in several studies using cell [44] and animal

models of HD as well as in the post mortem brains of HD patients.

Recently, we have shown that HYPK, an interacting partner of

HTT, possesses chaperone like activity and reduces mutant HTT

aggregates and toxicity [45]. Besides, other chaperones including

Hsp70 reduce mutant HTT aggregates [46]. Expression of DsRed

tagged N-terminal HTT with 83Q coded by exon1 of HTT gene

in STHdhQ7/HdhQ7 cells increased mutant HTT aggregates and in

the presence of exogenous HYPK such aggregates are reduced

(data not shown), similar to that which has been published earlier

by us in other neuronal cells [44]. Expression of p53 was increased

and RelA/NFkB expression was decreased (Figure 9A) in the

presence of aggregates as revealed by RT-PCR. In such

conditions, NFkB activity as determined by reporter luciferase

assay was significantly (n = 6, p = 0.0334) decreased (Figure 9B).

Expression of miR-146a was also significantly (n = 4, p = 0.011)

decreased along with the expression of miR-125b and miR-150 as

shown in Figure 9C, similar to that which has been shown in

STHdhQ111/HdhQ111 cells [33]. HYPK-GFP and Hsp70-GFP were

transfected into the cells which increased the level of HYPK and

Hsp70 respectively as shown by Western blot analysis in Figure
9D.

Interestingly, when 83Q was co-transfected with HYPK-GFP or

Hsp70-GFP in STHdhQ7/HdhQ7 cells, p53 expression was decreased

and RelA/NFkB expression was recovered in comparison to that

obtained in STHdhQ7/HdhQ7 cells expressing only mutant HTT

exon1 (Figure 10A and 10B). NFkB activity was also significantly

increased in such conditions in presence of HYPK-GFP (n = 6,

p = 0.031) and Hsp70-GFP (n = 6, p = 0.029) in 83Q-DsRed

transfected STHdhQ7/HdhQ7 cells (Figure 10C). Moreover, remov-
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Figure 5. p53 is specifically targeted by miR-125b and miR-150 in HD cell model. (A) No change in relative luciferase activity of p50-39UTR
(bearing no predicted recognition site for miR-125b or miR-150) in cells co-transfected with pre- miR-125b and pre-miR-150 compared to cells co-
transfected with empty vector U61; (B) RT-PCR showing (i) reduction in p53 mRNA in cells expressing exogenous pre-miR-150 and pre-miR-125b
compared to cells expressing empty vector U61, (ii) no reduction in p53 mRNA in cells expressing exogenous pre-miR-19a and pre-miR-146a
compared to cells expressing empty vector U61. (C) Average IOD showing relative expression of p53 mRNA in presence of over expressed miR-150
(n = 2, p = 0.021), miR-125b (n = 2, p = 0.029), miR-19a and miR-146a is given in the adjacent bar diagram (negative control). This indicates that p53 is
specifically targeted by miR-125b and miR-150 in HD cell model. (D) Average IOD showing relative expression of p53 protein level in cell extracts
prepared from STHdhQ7/HdhQ7, STHdhQ111/HdhQ111 and in STHdhQ111/HdhQ111 cells transfected with miR-125b or miR-150. Immunoblot analysis show
that the extent of p53 up regulation found in STHdhQ111/HdhQ111 cells when compared to STHdhQ7/HdhQ7 cells was reduced when STHdhQ111/HdhQ111

cells were transfected with miR-125b or miR-150.
doi:10.1371/journal.pone.0023837.g005
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al of aggregates by HYPK and Hsp70 also rescued the expression of

miR-146a, miR-125b and miR-150 (Figure 10D). It is to be noted

that the ability to recover the expressions of miR-125b, miR-146a

and miR-150 by Hsp70 was higher compared to that obtained with

HYPK, reasons remaining unknown. This result shows that mutant

HTT aggregates directly or indirectly increased p53 expression,

reduced RelA/NFkB expression and activity and also reduced miR-

146a, miR-125b and miR-150 expressions.

Expressions of p53, RelA/NFkB, miR-125b, miR-146a and
miR-150 in striatal region of the brains of R6/2 mice

Transgenic mice (R6/2 strain), an animal model of HD [47] has

been widely used by many investigators. Total RNA was isolated

from paraffinised tissue sections of these R6/2 mice and their age-

matched controls as described in the materials and methods

section. cDNA was prepared using random hexamer to determine

the expressions of p53 and RelA/NFkB in the striatal tissues.

Figure 6. Role of p53 in the expression of miR-146a. (A) (i) RT-PCR showing p53 over expression upon transfection of exogenous p53-CFP in
STHdhQ7/HdhQ7 cells compared to cells transfected with empty vector CFP and (ii) western blot showing p53 over expression at the protein level
under similar conditions; (B) Representative Western Blot showing reduction in p53 protein level in STHdhQ7/HdhQ7 cells trasfected with
pSuppressor plasmid containing p53 siRNA construct compared to STHdhQ7/HdhQ7 cells transfected with empty vector U61. Average IOD showing
significant reduction in p53 protein level (n = 3, p = 0.041) compared to that of b-actin (control) is shown in the adjacent bar diagram; (C) Fold
change in miR-146a expression in STHdhQ7/HdhQ7 cells in presence of over expressed p53 and reduced p53 levels respectively. miR-146a expression
was significantly decreased (n = 3, p = 0.032) in STHdhQ7/HdhQ7 cells 72 hours post transfection with p53-CFP compared to empty vector CFP
transfected cells and the expression was increased (n = 3, p = 0.029) in STHdhQ7/HdhQ7 cells compared to control STHdhQ7/HdhQ7 cells transfected
with empty vector U61.
doi:10.1371/journal.pone.0023837.g006
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Result obtained by RT-PCR revealed that expression of p53 was

increased significantly (n = 3, p = 0.05), while the expression of

RelA/NFkB was decreased significantly (n = 3, p = 0.04) compared

to control (Figure 11A). As described above similar result was

obtained in cell models of HD (Figures 1A, 3A and 9A). Besides,

cDNA prepared using stem-loop specific primers for mature miR-

125b, miR-146a and miR-150 also revealed a decrease in the

expressions of these miRNAs (n = 3, p,0.01), similar to that

Figure 7. Stabilisation of p53 by 5-FU in STHdhQ7/HdhQ7 cells leads to decreased expression of miR-146a. (A) Typical Western Blot
showing p53 stabilisation upon 5-FU treatment of STHdhQ7/HdhQ7 cells. STHdhQ7/HdhQ7 cells were treated with 10 mg/ml of 5-FU. Cells were harvested
12 hours and 18 hours successively post 5-FU treatment and immunoblotting with the cell extracts show an up regulation in p53 protein level in the
treated cells compared to the untreated ones; (B) miR-146a expression was reduced significantly in STHdhQ7/HdhQ7 cells treated with 5-FU for
12 hours (n = 2, p = 0.038) and for 18 hours (n = 2, p = 0.0089) compared to the respective untreated cells; (C). Relative differences in miR-146a
expression in presence of reduced p53 levels in STHdhQ111/HdhQ111 cells. miR-146a expression was increased significantly (n = 3, p = 0.039) in
STHdhQ111/HdhQ111 cells 72 hours post transfection with pre-miR-150 compared to STHdhQ111/HdhQ111 cells transfected with empty vector U61. (D)
Relative differences in miR-146a expression in endogenous STHdhQ7/HdhQ7 cells and in cells transfected respectively with pre-miR-150, p53 and pre-
miR-150 and p53 alone. Mature miR-146a expression was increased significantly (n = 3, p = 0.03) in cells transfected with pre-miR-150 which has been
shown to reduce p53. miR-146a expression was reduced in presence of p53 (n = 3, p = 0.032). However, the reduction was less in cells when p53 was
co-transfected with pre-miR-150 (n = 3, p = 0.044).
doi:10.1371/journal.pone.0023837.g007
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Figure 8. Regulation of RelA/NFkB expression and activity by p53. (A) Typical experiment by Western Blot showing decrease in NF-kB (p65)
i.e. RelA/NFkB expression upon over expression of p53 in STHdhQ7/HdhQ7 cells. RelA/NFkB expression was decreased significantly (n = 3, p = 0.0041) in
STHdhQ7/HdhQ7 cells 48 hours post transfection with p53-CFP compared to STHdhQ7/HdhQ7 cells transfected with empty vector CFP. Average IOD
obtained by comparing with b-actin is shown in the adjacent bar diagram; (B) Decrease in luciferase activity (n = 3, p = 0.0214) of NFkB-RE in STHdhQ7/
HdhQ7 cells 48 hours post transfection with p53-CFP compared to STHdhQ7/HdhQ7 cells transfected with empty vector CFP and increase in luciferase
activity (n = 3, p = 0.032) of NFkB-RE in STHdhQ7/HdhQ7 cells 48 hours post transfection with p53 si compared to control STHdhQ7/HdhQ7 cells; increase
in luciferase activity (n = 4, p = 0.0482) of NFkB-RE in STHdhQ111/HdhQ111 cells 48 hours post transfection with pre-miR-150 compared with that
obtained in STHdhQ111/HdhQ111 cells transfected with empty vector U61. Relative luciferase activity of NFkB-RE obtained in control Q7 was taken as 1;
(C) Co-immunoprecipitation analysis showing in vivo interaction of p53 with p65 sub-unit of NF-kB (RelA/NFkB) in wild type STHdhQ7/HdhQ7 cells and
mutant STHdhQ111/HdhQ111 cells. Cell extracts prepared from STHdhQ7/HdhQ7 cells and STHdhQ111/HdhQ111 cells were immunoprecipitated by anti-p53
antibody coupled to agarose-protein G beads. Western blotting the p53 immunoprecipitated complex with anti-p65 antibody reveals such
interaction as evident in lanes 2 and 6 denoted by ‘+’ ve Ab.
doi:10.1371/journal.pone.0023837.g008
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Figure 9. Poly Q aggregates alter the expressions of miR-125b, miR-150, p53, RelA/NFkB and miR-146a. (A) Increase in p53 expression
(n = 3, p = 0.028) and decrease in RelA/NFkB expression (n = 3, p = 0.031) in 83Q DsRed transfected STHdhQ7/HdhQ7 cells compared to STHdhQ7/
HdhQ7 cells transfected with empty vector DsRed. (B) Decrease in relative luciferase activity of NFkB-RE upon 83Q DsRed transfection in STHdhQ7/
HdhQ7 cells. Average luciferase activity of NFkB-RE was significantly decreased (n = 6, p = 0.0334) in STHdhQ7/HdhQ7 cells 48 hours post transfection
with 83Q DsRed compared to STHdhQ7/HdhQ7 cells transfected with empty vector DsRed. (C) Similarly, miR-146a expression (n = 4, p = 0.011), miR-
125b expression (n = 2, p = 0.048) and miR-150 expressions (n = 2, p = 0.039) were decreased significantly in STHdhQ7/HdhQ7 cells 48 hours post
transfection with 83Q DsRed compared to STHdhQ7/HdhQ7 cells 48 hours post transfection with empty vector DsRed. miR-17-5p was used as
endogenous control to calculate fold change in each case; (D) Immunoblotting with cell extracts prepared from HYPK-GFP transfected STHdhQ7/
HdhQ7 cells and Hsp70-GFP transfected STHdhQ7/HdhQ7 cells showed increase in the expression of HYPK (in panel I probed by anti-HYPK antibody)
and Hsp70 (in panel II probed by anti-GFP antibody) respectively compared to those obtained in STHdhQ7/HdhQ7 cells transfected with empty
vector GFP-C1.
doi:10.1371/journal.pone.0023837.g009
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Figure 10. Removal of aggregates by chaperones rescue expression pattern of micoRNAs, p53 and RelA/NFkB. (A) RT-PCR showing
increase in p53 expression in STHdhQ7/HdhQ7 cells co-transfected with 83Q DsRed and empty vector GFP-C1 (lane ii, n = 3, p = 0.028) and decrease in
p53 expression in STHdhQ7/HdhQ7 cells co-transfected with 83Q DsRed and Hsp70-GFP (lane iii, n = 3, p = 0.025) and 83Q DsRed and HYPK-GFP (lane iv,
n = 3, p = 0.019) compared to control STHdhQ7/HdhQ7 cells (lane i). Average IOD showing relative expression of p53 mRNA in each case is given in the
adjacent bar diagram. (B) Changes in p65 (RelA/NFkB) expression in STHdhQ7/HdhQ7 cells co-transfected with 83Q DsRed and HYPK-GFP and 83Q
DsRed and Hsp70-GFP compared to STHdhQ7/HdhQ7 cells co-transfected with 83Q DsRed and empty vector GFP-C1. The increase in RelA/NFkB
expression was significant in the presence of HYPK-GFP (n = 6, p = 0.028) and also in the presence of Hsp70-GFP (n = 6, p = 0.022). (C) Revival of
luciferase activity of NFkB-RE in presence of chaperones in 83Q DsRed transfected STHdhQ7/HdhQ7 cells. Luciferase activity of NFkB-RE in STHdhQ7/
HdhQ7 cells co-transfected with 83Q DsRed and HYPK-GFP was significantly increased (n = 6, p = 0.031) when compared to that obtained in STHdhQ7/
HdhQ7 cells transfected with 83Q DsRed and empty vector GFP-C1. Similar increase (n = 6, p = 0.029) in relative luciferase activity of NFkB-RE was
observed in STHdhQ7/HdhQ7 cells 48 hours post transfection with 83Q DsRed and Hsp70-GFP; (D) Similarly, miR-146a expression (n = 3, p = 0.033), miR-
125b expression and miR-150 expression were significantly increased in STHdhQ7/HdhQ7 cells 48 hours post transfection with 83Q DsRed and HYPK-
GFP compared to STHdhQ7/HdhQ7 cells transfected with 83Q DsRed and empty vector GFP-C1. Such increase in miR-146a expression (n = 3,
p = 0.0079), miR-125b expression and miR-150 expression were also observed with STHdhQ7/HdhQ7 cells 48 hours post transfection with 83Q DsRed
and Hsp70-GFP. miR-17-5p was used as endogenous control to calculate fold change in each case.
doi:10.1371/journal.pone.0023837.g010
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obtained in STHdhQ111/HdhQ111 cells [33]. This result shown in

Figure 11B reveals that the alterations in the expressions of p53,

RelA/NFkB, miR-125b, miR-146a and miR-150 might be

involved in the pathogenesis of HD.

In order to see whether miR-146a, miR-125b and miR-150

were specifically down regulated than others in striatal region of

the brains of R6/2 mice, we determined the expression levels of

additional ten miRNAs in the mouse model and compared the

results with that obtained earlier by us in HD cell model [33]. The

results given in Table S1 show that expressions of miR-100, miR-

125b, miR-135a, miR-138, miR-150, miR-146a, miR-221 which

were decreased in HD cell model [33] were also decreased in R6/

2 mice and the expressions of miR-127-3p and miR-214 were

increased in both STHdhQ111/HdhQ111 cells [33] and the R6/2

mouse model. miR-145, miR-148a, miR-190 and miR-335

however showed different expression pattern in R6/2 mice and

HD cell model [33]. Thus, out of the thirteen miRNAs whose

expressions have been studied, expressions of eight miRNAs

Figure 11. Expression pattern of p53, RelA/NFkB and microRNAs in striatal regions of the brains of R6/2 mice. (A) RT-PCR showing
expression levels of b-actin, p65 sub-unit of NFkB (RelA/NFkB) and p53 in striatal regions of the brains of R6/2 mice and their age matched controls.
Integrated optical density showing relative expression of p65 sub-unit of NFkB (RelA/NFkB) and p53 in the tissues normalized to b-actin are given in
the adjacent bar diagrams. RelA/NFkB expression was found to be lesser (n = 3, p = 0.041) and p53 expression greater (n = 3, p = 0.05) in striatum of
R6/2 mice when compared to their age matched controls. (B) Real time PCR analysis showing significant decrease in mature miR-150 expression
(n = 3, p = 0.01), mature miR-125b expression (n = 3, p = 0.002) and mature miR-146a expression (n = 3, p = 0.008) in striatum of R6/2 mice.
doi:10.1371/journal.pone.0023837.g011
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including miR-146a, miR-125b and miR-150 were decreased,

expressions of two miRNAs (viz., miR-127 and miR-214) were

increased and expressions of three miRNAs (viz., miR-145, miR-

190 and miR-335) remained unchanged in R6/2 mice. Earlier

observations by others showed miR-138, miR-218 and miR-222 to

be down regulated in HD mouse models [30,48] which had also

been confirmed by us in HD cell model [33].

We have already shown in the earlier section that Poly Q

aggregates cause decrease in the expressions of miR-146a, miR-

125b and miR-150 and removal of aggregates by chaperones

rescue such changes. To address the specificity of such alteration of

miR-146a, miR-125b and miR-150 in the presence of poly Q

aggregates, mutated exon1 of HTT gene that translated to N-

terminal HTT with 83 Q was exogenously expressed in four

different cell lines viz., Neuro2A (mouse neuroblastoma cell line),

STHdhQ7/HdhQ7 (mouse sriatal cells having two copies of full

length HTT with 7Q), SH-SY5Y (human neuroblastoma cell line)

and HeLa cells (human cells derived from cervical tumours) and

the expression of twenty two miRNAs were studied in these cell

models (Table S1). Similar cell models of HD had earlier been

shown by us [44,45] and others. Of these twenty two miRNAs

taken for study, eleven miRNAs were earlier found to be up

regulated and eleven miRNAs were found to be down regulated by

us in HD cell model [33]. Among the up regulated miRNAs in

STHdhQ111/HdhQ111 cells, expressions of miR-214, miR-299 and

miR-335 were also up regulated in three of the four cell models

and expression of miR-199a was increased in two cell models.

Expression of miR-148a, which was increased in STHdhQ111/

HdhQ111 cells, was however decreased in all the four cell models.

Among the down regulated miRNAs, expression of miR-146a was

decreased in all the four cell models whereas expression of miR-

125b and miR-150 were decreased in three of the four cell models

excepting Neuro2A where expressions of those were up regulated.

Expressions of miR-100 and miR-135b were also decreased in two

of the four cell models. The results shown in Table S1 suggests

that although there is a heterogeneity in the expressions of

miRNAs in different cell lines exogenously expressing mutated

exon1 of HTT, miR-146a, miR-125b and miR-150 were

preferentially decreased than others in the presence of poly Q

aggregates.

A probable model showing the involvement of NFkB
(RelA), p53 and miRNAs in the regulation of cell death in
HD pathogenesis

The model shows that mutant HTT modulates the expressions

of both p53 and RelA/NFkB, NFkB activity and decreases miR-

146a, miR-125b and miR-150 expressions. In the presence of

mutant HTT aggregates, miR-125b and miR-150 expressions

decrease leading to an increased level of p53. The elevated p53

then in turn, further increases mutant HTT aggregates and

decreases RelA/NFkB expression, NFkB activity and miR-146a

expression.

Discussion

In this study, we present evidences to show that (i) in

STHdhQ111/HdhQ111 cells decreased expression of miR-146a is

mediated through decreased expression and activity of RelA/

NFkB, (ii) increased expression of p53 in the same cells could be

due to decreased expression of miR-125b and miR-150, (iii) p53

and RelA/NFkB regulate the expression of miR-146a and (iv)

neuronal cells expressing N-terminal HTT with 83Q coded by

exon1 exhibit decreased miR-125b and miR-150 expressions,

increased p53 expression and reduced RelA/NFkB expression and

activity and miR-146a expression. Such changes could be rescued

by the expression of HYPK and Hsp70. Besides, we also show that

expressions of miR-125b, miR-146a, miR-150 and RelA/NFkB

were decreased while the expression of p53 was increased in

striatal tissues of R6/2 mice models of HD.

Transcription factor RelA/NFkB is known to regulate the

expression of miR-146a by binding to the upstream sequences

[29]. RelA/NFkB dependent increase in the expression of miR-

146a is shown earlier by several investigators in Alzheimer’s

disease (AD), viral infection, epilepsy and prion disease [49–52].

Increased expression of miR-146a results in the decreased

expression of complement factor H (CFH) in AD and Herpes

simplex virus type1 [49,50]. Even though elevated expression of

miR-146a is reported in epilepsy and scrapie, no targets of the

miRNA are reported. The reason for the difference in the

expression of the miRNA in AD and HD remains unknown. Here,

we show that the steady state level and activity of RelA/NFkB are

reduced in STHdhQ111/HdhQ111 cells compared to those in

STHdhQ7/HdhQ7 cells (Figures 1A–1D). Exogenous expression

of RelA/NFkB restores NFkB activity as well as the expression of

miR-146a (Figures 2A, 2B and 2C). Reducing the activity of

NFkB by treatment with aspirin [35] also compromised miR-146a

expression (Figure 2D). Taken together, the down regulation of

miR-146a in STHdhQ111/HdhQ111 cells seen earlier [33] could be

due to lower steady state level of RelA/NFkB in these cells. We

then confirmed the earlier observation that the level of p53 is

increased in STHdhQ111/HdhQ111 cells and also in other cell and

animal models of HD [10,11,32]. However, the mechanism of

such increased level of p53 was not known. Since p53 is a known

target of miR-125b [28] and the expression of miR-125b is down

regulated in STHdhQ111/HdhQ111 cells [33], we tested the

hypothesis that increased expression of p53 in these cells could

be due to decreased level of miR-125b. Increased reporter

luciferase activity of human p53 39-UTR (718 to 742) containing

miR-125b recognition site viz., p53-UTR1 in STHdhQ111/HdhQ111

cells compared to that in STHdhQ7/HdhQ7 cells (Figure 3C) and

decreased luciferase activity of the same in presence of exogenous

miR-125b indicated that miR-125b could target p53 (Figure 3D).

Using the prediction tool RNAhybrid [53] http://bibiserv.techfak.

uni-bielefeld.de/rnahybrid/), we observed that mouse p53 (Trp53)

could also be targeted by miR-125b at 39-UTR position 413–435

as shown in Figure S1 (B). Exogenous expression of miR-125b

decreased the endogenous level of p53 in STHdhQ111/HdhQ111 cells

(Figure 3E). These results confirmed that in STHdhQ111/HdhQ111

cells, increased p53 level could be mediated by decreased

expression of miR-125b. Significant decrease of mature miR-150

was detected in STHdhQ111/Q111 cells compared to that obtained

in STHdhQ7/HdhQ7 cells [33] and also in neuronal cells expressing

mutated exon1 of the HTT gene as well as in the post mortem

brain of HD mice R6/2. We confirmed the prediction that human

p53 could be a target of miR-150 at human p53 39-UTR position

234–256. Mouse p53 (Trp53) could also be a target of miR-150 at

39 UTR position 260–287 as shown in Figure S1 (C) using

RNAhybrid [53]. Increased expression of luciferase reporter with

predicted recognition site of miR-150 at the 39-UTR of human

p53 (p53-UTR2) in STHdhQ111/HdhQ111 cells in comparison to

that in STHdhQ7/HdhQ7 cells was observed (Figure 4A). In the

presence of exogenous miR-150, decreased expression of the same

luciferase reporter in STHdhQ7/HdhQ7 cells (Figure 4C) and

reduction of endogenous p53 in STHdhQ111/HdhQ111 cells (Figure
4D) were also observed. These results show that miR-150 also

targets p53. However, 213 bp (145–359) of the 39 UTR of NFkB1

(p50-UTR) containing no predicted binding site for either miR-

125b or miR-150 showed no change in its luciferase activity
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(negative control) when the construct was co-transfected with

cloned pre-miR-125b or pre-miR-150 (Figure 5A). Although

endogenous p53 level was decreased by over expressing miR-125b

and miR-150, there was no change in p53 level either in the

presence of exogenous miR-19a or miR-146a (negative control),

which bears no predicted recognition site in the 39UTR of p53

(Figure 5B). Taken together, these results show that p53 is

specifically targeted by miR-125b and miR-150. Report that

expressions of miR-125b and miR-150 are decreased in

STHdhQ111/Q111 cells [33] and p53 is one of the targets of these

two miRNAs provides an explanation for the increased expression

of p53 in these cells. If this down regulation of miR-125b and miR-

150 are confirmed along with increased p53 in the post mortem

brains of HD, then it may explain the cause for elevated p53 and

its role in HD pathogenesis as observed in other studies [4,10,11].

NFkB is known to resist apoptosis induction [54,55] while p53

in general, is a well-known inducer of apoptosis. Thus down

regulation of RelA/NFkB and increased expression of p53 as

observed in STHdhQ111/HdhQ111 cells, a cell model of HD, if

replicated in HD patients could be one of the mechanisms of

enhanced apoptosis observed in HD as reviewed by Imarisio et al.,

2008 [1]. The differential pattern of expression of the two

transcription factors NFkB and p53 in STHdhQ111/HdhQ111 cells,

prompted us to search for any relationship that might exist

between the expressions of these two transcription factors. We

observed an inverse correlation between the levels of p53 and p65

sub-unit of NFkB (RelA/NFkB) in neuronal cells. Exogenous

expression of p53 and stabilization of p53 by 5-FU treatment

decreased the expression of RelA/NFkB and activity of NFkB.

Reducing the expression of p53 either by siRNA or by expressing

exogenous miR-150 increased NFkB activity as detected by the

luciferase assay. It is unclear what exactly mediates such functional

inverse relationship. CREB binding protein (CBP) is known to

interact with both p53 and RelA/NFkB and depending on the

preference either induces or prevents apoptosis. Sequestration of

CBP to p53 may decrease NFkB activity [38]. Activated p53 is also

known to induce NFkB DNA binding but at the same time

suppresses its transcriptional activation [37]. This may provide an

explanation for the decreased NFkB activity as observed in our

studies. However, there is a report, which suggests for an

activation of the transcription factor NFkB in response to apoptosis

induced by p53 [41]. Besides, RelA/NFkB is also known to

regulate p53 expression in tumor cells in response to hypoxia [56].

All these results show that p53 directly or indirectly regulates

RelA/NFkB expression and activity of NFkB and thus the

expression of miR-146a. The other possibility of direct interfer-

ence of p53 on miR-146a expression could not be ruled out and

requires further studies. Even though it is conceivable that p53 can

modulate the activity of NFkB, how the expression of RelA/NFkB

is compromised remains unknown.

Chaperones are known to protect mutant HTT aggregates

possibly by preventing formation of aggregates. We have earlier

shown that HYPK possesses chaperone like activity and reduces

the aggregates formed by mutated N-terminal HTT coded by

exon1 of the gene [45]. Exogenous expression of N-terminal

HTT with 83Q increased the mutant HTT aggregates as have

been observed by many authors including us [44]. In such

condition, p53 expression was increased and RelA/NFkB

expression was decreased (Figure 9A) similar to that obtained

in endogenous STHdhQ111/HdhQ111 cells when compared with

endogenous STHdhQ7/HdhQ7 cells. NFkB activity and expression

of miR-146a, miR-125b and miR-150 were also reduced in such

condition (Figures 9B and 9C). However, co-expression of

HYPK together with mutant HTT exon1 reduced the aggregates,

reduced p53 expression and recovered the activity of NFkB and

miR-146a, miR-125b and miR-150 expressions (Figures 10A–
10D). Similar results were also observed with Hsp70. Results

obtained with STHdhQ111/HdhQ111 cells, a cell model of HD has

been schematically represented in Figure 12 to propose for a

probable model showing the involvement of RelA/NFkB, p53

and miRNAs in the regulation of cell death in HD pathogenesis.

The model shows that mutant HTT modulates the expression of

p53 and p65 subunit of NFkB (RelA/NFkB), NFkB activity and

miR-146a, miR-125b and miR-150 expressions. Since miR-125b

and miR-150 target p53, we postulate that in the presence of

mutant HTT aggregates there is an initial decrease in miR-125b

and miR-150 expression. These down regulated miRNAs lead to

increased p53 level as observed in presence of aggregates. The

elevated p53 then in turn, further increases mutant HTT

aggregates and decreases RelA/NFkB expression, NFkB activity

and miR-146a expression.

In summary, we may conclude that in STHdhQ111/HdhQ111 cells,

down regulation of miR-146a is mediated through RelA/NFkB.

Increased p53 level in HD models could be mediated through

down regulation of miR-125b and miR-150. p53 directly or

indirectly regulates the expression of miR-146a. Identification of

interplay between transcription factors and miRNAs regulating

their targets remains one of the challenges in miRNA biology. Our

investigation using HD cell lines provides important observations

that miR-146a is regulated by p53 and RelA/NFkB and increased

p53 could be mediated through down regulation of miR-125b and

miR-150. It requires further studies to establish if such regulation

plays any role in HD pathogenesis.

Materials and Methods

R6/2 mice
Ovarian transplanted hemizygote females carrying HD exon 1

gene with about 150 CAG repeats (strain name: B6CBA-

Tg(Hdexon1)62Gpb/3J) were purchased from Jackson Labora-

tory and crossed with B6CBAF1/J males. The transgenic strain

was maintained by crossing carrier males with CBA females. The

genotyping was carried out using PCR as described previously by

Mangirani et al., 1996 [47]. All animal experiments were

performed according to the protocol approved by the Institu-

tional Animal Ethics Committee of National Brain Research

Centre, Manesar. Animals had free access to pelleted diet and

water ad libitum. All efforts were made to minimize animal

suffering. The transgenic mice along with their age-matched

controls were anesthetized and then perfused with PBS

containing 4% PFA in PBS, brain samples were collected and

processed for paraffin embedding followed by cryosectioning with

20 mm thickness.

STHdhQ7/HdhQ7 and STHdhQ111/HdhQ111 cells
STHdhQ7/HdhQ7 cells express full-length wild type HTT with

7Q (homozygous) while STHdhQ111/HdhQ111 cells express full

length mutated HTT with 111Q (homozygous) from the

chromosomal region and is considered as a model for HD. These

cell lines were established from wild type and homozygous mutant

Hdh knock in embryonic mice respectively [32]. Dr. Marcy E.

MacDonald of Massachusetts General Hospital, USA, kindly

provided these cells to us. STHdhQ111/HdhQ111 cells exhibit

dominant HD phenotypes and indicate a disruption of striatal

cell homeostasis by the mutant HTT protein, via a mechanism

that is different from its normal activity (STHdhQ7/HdhQ7 cells).

This cell model of HD has been extensively used for identifying

molecular alterations in HD [57–64].
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Cell Culture
STHdhQ7/HdhQ7 and STHdhQ111/HdhQ111 cells, obtained from

Dr. Marcy E. MacDonald, were cultured in DMEM (HiMedia,

India) supplemented with 10% (v/v) heat inactivated FBS

(Biowest, France), antibiotics penicillin/streptomycin PS 1% (v/

v) and 400 mg/ml G418 (Invitrogen, USA) at 33uC in humidified

condition and 5% CO2. HeLa cells were cultured in MEM

(HiMedia, India), 10% (v/v) FBS (Biowest, France), 1% (v/v) PS at

37uC in humidified condition and 5% CO2. Growth conditions for

HeLa cells [44] and growth conditions for Neuro2a cells [45] were

similar to those which have already been published. Human

derived neuroblastoma cells SH-SY5Y were cultured in DMEM

(HiMedia, India), 10% (v/v) FBS (Biowest, France), 1% (v/v) PS at

37uC in humidified condition and 5% CO2.

Antibodies and materials
Anti-p53 monoclonal antibody (1:200, Clone DO7, Imgenex,

USA) was used for immuno-precipitation. Anti-p53 polyclonal

(1:2000, Clone DO7, Imgenex, USA), anti-p65 monoclonal

(1:1000, MAB3026, Chemicon, USA), anti-GFP monoclonal

(1:4000, CATALOG No. 632375, Clontech, USA) and anti-b-

actin monoclonal (1:10,000, A2228, Sigma Chemicals, USA)

antibodies were used for immunoblot analysis. Anti-HYPK

polyclonal was custom made by providing purified HYPK

protein [45] to Imgenex Biotech Pvt. Ltd, India (1:1000, CP 40

07, Imgenex Biotech Pvt. Ltd, India). Anti-mouse IgG-HRP

(1:8,000) and anti-rabbit IgG-HRP (1:6000) were purchased from

GENEI, India and used as secondary antibodies. Aspirin was

purchased from Central Drug House Laboratory Reagent, India

and 5-Fluorouracil (5-FU) obtained from Sigma-Aldrich, USA

was used.

DNA constructs
Precursor miRNA-125b (Chr11: 121970465–121970552, - strand)

and precursor miRNA-150 (Chr19: 50004042–50004125, - strand)

were amplified by PCR from human genomic DNA and respectively

cloned into pU61 Hygro (Genescript, USA) vector using BamHI and

HindIII (NEB, USA) sites. The primers used were miR-125b-

U6-F: 59-CGCGGATCCGTCTCAAGAAAGAAAACATTG-39

and miR-125b-U6-R: 59-CCCAAGCTTAAAAACACCAAATTT-

CCAGGATGCAA-39; miR_150_U6_F: 59-CGCGGATCCCT-

CCCCATGGCCCTGTCT-39 and miR_150_U6_R: 59-CCC-

AAGCTTAAAAAGTCCCCAGGTCCCTGTCC-39. Full-length

human p53 cDNA was obtained by PCR from human brain cDNA

library and cloned into CFP vector using BamH1 and Sal1 sites. The

primers used for cloning were p53_CFP_F: 59-ACGCGTCGA-

CGTGGAGCCGCAGTCAGATCCTA-39 and p53_CFP_R: 59-

CGCGGATCCCAGTCTGAGTCAGGCCCTTC-39. Full-length

p65 subunit of NFkB (RelA), cloned into pLG3 vector was obtained

as a kind gift from Dr. Susanta Roychoudhury, IICB, Kolkata. For

knocking down p53, pSuppressorNeo p53 plasmid DNA containing

p53 siRNA [65] construct (Imgenex, USA) was used.

For luciferase reporter assays, we cloned two fragments of the 39

UTR of human p53 into pmiR-Report vector (Ambion, USA),

one comprising of 150 bp (position 733–739) containing miR-

125b recognition site and the other comprising of 136 bp (position

Figure 12. Proposed model for the involvement of RelA/NFkB, p53 and microRNAs in the regulation of cell death in HD
pathogenesis. The model shows that mutant HTT modulates the expression of both p53 and p65 subunit of NFkB (RelA/NFkB) expression and
activity and miR-146a, miR-125b and miR-150 expressions. Since miR-125b and miR-150 target p53, we postulate that in the presence of mutant HTT
aggregates there is an initial decrease in miR-125b and miR-150 expression. These down regulated miRNAs lead to increased p53 level as observed in
presence of aggregates. The elevated p53 then in turn, further increases mutant HTT aggregates and decreases NFkB/p65 expression (RelA/NFkB),
NFkB activity and miR-146a expression.
doi:10.1371/journal.pone.0023837.g012
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234–256) containing miR-150 recognition site. These regions were

amplified by PCR from human genomic DNA and cloned in

vector using the MluI and HindIII (NEB, USA) sites. The

constructs were named p53-UTR1 and p53-UTR2 respectively.

For NFkB1 (p50), 213 bp (position 145–359) of the 39 UTR of

NFkB1 containing no predicted recognition site for either miR-

125b or miR-150 was cloned into the vector using SpeI and MluI

(NEB) sites and was named p50-UTR. The following primers were

used to generate the UTR constructs: p53-UTR1-F: 59-CGA-

CGCGTAAGGAAATCTCACCCCATCC-39 and p53-UTR1-

R: 59-CCCAAGCTTAAGCGAGACCCAGTCTCAAA-39; p53-

UTR2-F: 59-CGACGCGTGAGGAGGATGGGGAGTAGGA-

39 and p53-UTR2-R: 59-CCCAAGCTTAAGTGGGCCCCTA-

CCTAGAA-39; p50-UTR-F: 59-GGACTAGTTTGGCTTCC-

TTTCTTGGTTC-39 and p50-UTR-R: 59-CGACGCGTGGC-

GACCGTGATACCTTTAAT-39. For functional assay of NFkB

promoter, the plasmids NFkB luciferase, containing multiple

copies of NFkB response elements (NFkB-RE) and Gastrin

luciferase containing the promoter sequence of Gastrin cloned in

pGL3 vector were obtained as a kind gift from Prof. Susanta

Roychoudhury, IICB, Kolkata.

In order to induce poly Q mediated aggregation in STHdhQ7/

HdhQ7 cells, Neuro2a cells, SH-SY5Y cells and HeLa cells, N-

terminal HTT with 83Q coded by exon1 of the gene cloned into

Ds Red-C1 vector was used. For removal of such aggregates with

the help of chaperones in STHdhQ7/HdhQ7 cells, DNA constructs

containing full-length Hsp70 cloned into EGFP-C1 vector and N

terminal of HYPK also cloned into EGFP-C1 vectors were used.

For control experiments, empty vectors DsRedC1 and pEGFPC1

(both from BD Biosciences, USA) were used.

RNA preparation
Total RNA was prepared from cultured cells using TriZol

Reagent (Invitrogen, USA) according to manufacturer’s protocol.

RNA samples were quantitated using Biophotometer (Eppendorf,

Germany).

RNA extraction from paraffin embedded tissue samples
RNA was isolated from tissue sections routinely processed by

fixation and paraffin embedding that does not completely degrade

RNAs. Further, it is suggested that RNA fragments of around 100

bases in length or more are still present even in organs fixed at

later stages after removal and also in organs very rich in RNase

such as the pancreas [66]. We isolated RNA from paraffin

embedded tissue samples of R6/2 mice following the protocol

described by Santa et al., 1998, Korbler et al., 2003 [67,68]. Using

this method many investigators studied expressions of coding

sequences of DNA like b-actin, Ikaros and Aliolos from

paraffinised lymph node sections of patients with malignant

disorders of the lymphopoietic system (Hodgkin’s and non-

Hodgkin’s lymphoma) [68]. There have been previous reports of

studies on miRNA expression patterns from total RNA isolated

from formalin-fixed paraffin-embedded (FFPE) tissues and frozen

cells [69,70,71].

In brief, isolation method for RNA from paraffin embedded

tissues consists of the following steps: De-paraffinization: For RNA

extraction from tissue sections obtained from R62 mice, two

sections each of 20 mm thickness were taken per 1.5 ml eppendorf

tube. The sections were deparaffinised by two rinses in xylene for

5 min each at room temperature followed by two centrifugations

at room temperature for 10 min each at 10,000 g. Rehydration:

After paraffin solubilization, a rehydration step was introduced

where the supernatants from the previous step were carefully

removed and the pellets were successively washed with 1 ml of

absolute ethanol and 1 ml of 95% ethanol in DEPC water. After

each step the tissue was collected by centrifugation at 10,000 g for

10 min. Protein digestion: After the final wash, alcohol was

aspirated and the tissue pellets were air dried in a thermoblock at

37uC and re-suspended in 500 ml of digestion buffer (10 mM

NaCl, 500 mM Tris, pH 7.6, 20 mM EDTA and 1% SDS). To

obtain purified RNA, tissue proteins were removed by adding

500 mg/ml of the proteolytic enzyme proteinase K. The sections

were then incubated at 45uC for 16 hours (overnight). Prior to

RNA purification, proteinase K was inactivated at 100uC for

7 min in order to nullify its effects on PCR. RNA extraction: Total

RNA was then extracted from these tissue sections by using Trizol

reagent and following manufacturer’s protocol. Concentrations of

total RNA was measured and total RNA was used to measure

expression levels of genes like b-actin (contol), p53 and RelA/

NFkB (p65 sub-unit of NFkB) and microRNAs like miR-150, miR-

125b, miR-146a and miR-17-5p after making the cDNA.

Quantitative real time for miRNAs and their analysis
For Real time quantitation of microRNA, 100 ng of total RNA

was taken for cDNA preparation using mirna specific stem-loop

primers (ABI), Mulv-Reverse transcriptase (Fermentas), RNase

inhibitor (Fermentas) and dNTPs. cDNA was then subjected to the

procedure as described in [33]. We earlier confirmed miR-17-5p

expression to remain unaltered in various conditions and cells

including HD cell model viz., STHdhQ7/HdhQ7 and STHdhQ111/

HdhQ111 cells and thus it was used as an endogenous control in our

laboratory [33]. Besides, miR-17-5p has also been found to be

useful as a suitable endogenous control in other studies as well

[72]. In the present work also the expression of miR-17-5p was

found to remain unchanged in various conditions and cells used.

Thus, miR-17-5p was used as endogenous control to calculate fold

change in all RT-PCR studies. The fold changes were calculated

in accordance with SDS software V 2.0.

Real time PCR for mRNAs analysis
For real time of mRNAs 1 mg of total RNA was subjected to

DNase treatment (Sigma) followed by cDNA preparation using

random hexamer primer (Fermentas), dNTPs and MuLv- Reverse

transcriptase (Fermentas) following the procedure described in

[33]. The primers used for RT-PCR were: p53_expression_F: 59-

TCCCCCTTGCCGTCCCAA-39, p53_expression_R: 59-CGT-

GCAAGTCACAGACTT-39; RelA(mse)_expression_F: 59-GGC-

CTCATCCACATG- AACTT-39, RelA(mse)_expression_R: 59-

CACTGTCACCTGGAAGCAGA-39; and Actin-b_F: 59-TC-

CTGTGGCATCCACGA- AACT-39, Actin-b_R: GAAGCAT-

TTGCGGTGGAC. Yield of the PCR products was estimated

from the integrated optical density (IOD) using Image Master

VDS software (Amersham Bioscience, UK). Data show mRNA

expression levels relative to those of b-actin; the former was then

normalized to control expression levels for each experiment.

Luciferase assays
For reporter luciferase assay, STHdhQ7/HdhQ7 and STHdhQ111/

HdhQ111 cells were plated the day before transfection at 56104 cells

per well in 24-well plates (Nunc, USA). The following day, 50 ng

of p53-39UTR in pmiR-Report luciferase vector was transfected

into cells using Lipofectamine 2000 (Invitrogen) according to the

manufacturer’s instructions. 24 hours later, luciferase assays were

performed (Sirius Luminometer, Berthold detection systems, USA)

using Luciferase Reporter assay system (Promega) according to the

manufacturer’s protocol. 3 mg of total protein was taken for each

assay. Transfection efficiency was normalized by co-transfecting

cells with GFP-C1 and measuring the Fluoresence at 510 nm
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(Fluoromax-3, Jobin Yvon Horiba, USA). The luciferase activity of

cloned constructs in STHdhQ111/HdhQ111 and STHdhQ7/HdhQ7

cells were normalized to the activity of empty vector (pmiR-Report

luciferase vector), to nullify difference in protein synthesis levels

between the wild type STHdhQ7/HdhQ7 and STHdhQ111/HdhQ111

cells. The experiments were carried out in triplicate. For over

expression studies, 200 ng of pmiR-Report with desired clone and

300 ng of cloned pre-miR-125b or pre- miR-150 were co-

transfected and luciferase assay was done following the same

procedure.

For functional assay of NFkB response element and Gastrin

promoter construct, 16105 STHdhQ7/HdhQ7 cells and 1.56105

STHdhQ7/HdhQ7 and STHdhQ111/HdhQ111 cells were plated a

day before transfection per well in 6-well plates. The following

day, 1 mg of NFkB response element construct and Gastrin

luciferase construct were separately transfected. 24 h or 48 h

post transfection, cells were collected and luciferase assays were

performed as discussed above. For inhibiting NFkB activity, cells

were treated with 2 mM aspirin 24 hours prior to transfection.

For over expression studies 1 mg of p53-CFP and 1 mg of empty

vector (CFP) were separately co-transfected with NFkB response

element construct in STHdhQ7/HdhQ7 cells and for knocking

down p53, 1 mg of p53 siRNA construct was transfected in

HeLa cells (data not shown) and STHdhQ7/HdhQ7 cells and 1 mg

of miR-150 was transfected in STHdhQ111/HdhQ111 cells along

with 1 mg of NFkB luciferase construct. Luciferase assay was

performed in each case following the same procedure as

discussed above.

Immunoblot analysis
Cells were washed with cold phosphate-buffered saline (PBS),

scraped, pelleted by centrifugation and lysed on ice for 30 mins

using RIPA lysis buffer (50 mM Tris-HCl pH 8, 1% NP40,

150 mM NaCl, 12 mM deoxycholic acid sodium salt, 0.1% SDS)

with protease inhibitor cocktail (Thermo Scientific, USA). The

supernatant collected after centrifugation (at 4uC for 15 min at

18,000 g) was estimated by Bradford assay (BioRad, Hercules, CA)

according to manufacturer’s protocol. The OD readings of the

samples were measured at 595 nm in Biophotometer (Eppendorf).

For immunoblots 30 or 60 mg of total protein, boiled in SDS

PAGE sample buffer were run on 10% SDS-PAGE, transferred to

PVDF membranes (Thermo Scientific, USA) and detected by

immunoblottting with the indicated antibodies. Integrated optical

density (IOD) of each band compared to individual loading

control was measured using Image Master VDS software

(Amersham Biosciences, UK).

Co-immunoprecipitation assay
For co-immunoprecipitation assay, cells washed in cold PBS

were lysed in co-immunoprecipitation (co-IP) buffer (50 mM Tris,

pH 8.0, 150 mM NaCl, 1% NP40 and complete protease

inhibitor cocktail) for 1 hour at 4uC with gentle mixing on an

eppendorf rotor. Cell lysates were then centrifuged at 16,000 g for

15 min at 4uC and 50 mg of supernatant (total soluble extract) was

used as an input for immunoprecipitation. For each experiment,

200 mg of the supernatant in 200 ml co-IP buffer was pre-cleared

with agarose-protein G beads (GENEI, Bangalore, India) at 4uC
for 2 hours with gentle shaking and then centrifuged at 1000 g for

5 min at 4uC. The beads obtained were washed twice with co-IP

buffer, boiled in SDS PAGE loading buffer and used as negative

antibody. The supernatant obtained was incubated overnight with

1 mg of p53 antibody at 4uC with gentle shaking. Next day,

agarose-protein G bead was added to it and kept shaking for

6 hours at 4uC. The beads were precipitated by centrifuging at

18,000 g for 15 min at 48C, washed thrice by co-immunoprecip-

itation buffer, boiled with SDS–PAGE loading buffer and run on

10% SDS–PAGE and analyzed by immunoblotting technique

with anti-p65 antibody.

Statistical analysis
Statistical analysis was done with the help of Graphpad

Software, QuickCalcs, (http://www.graphpad.com/quickcalcs/

index.cfm). Student’s t-test was performed between control and

experimental values to determine their statistical significance.

Supporting Information

Figure S1 (A) hsa-miR-150 binds to the 39UTR of human
p53. The position (234–256) in human p53-39UTR predicted by

miRBase as the recognition site for hsa-miR-150. Texts in blue

indicate the ‘seed’ region. (B). mmu-miR-125b binds to the
39UTR of mouse Trp53. (I) The position (413–435) in mouse

p53-39UTR predicted by RNAhybrid as the recognition site for

mmu-miR-125b. Texts in blue indicate the ‘seed’ region. Their

predicted stable RNA-RNA duplex formed by the binding of miR-

125b to the 39UTR of mouse Trp53 is shown in panel (II). The

RNA strand in green represents mmu-miR-125b and the RNA

strand in brown represents 413–435 of the 39UTR in the mouse

Trp53 transcript. (C). mmu-miR-150 binds to the 39UTR of
mouse Trp53. (I) The position (260–287) in mouse p53-39UTR

predicted by RNAhybrid as the recognition site for mmu-miR-

150. Texts in blue indicate the ‘seed’ region. Their predicted stable

RNA-RNA duplex formed by the binding of miR-150 to the

39UTR of mouse Trp53 is shown in panel (II). The RNA strand in

green represents mmu-miR-150 and the RNA strand in brown

represents 260–287 of the 39UTR in the mouse Trp53 transcript.

(TIF)

Table S1 MicroRNA expression changes in 83Q DsRed
transfected cells compared to controls. Expressions of

several miRNAs were studied in striatal regions of the brains of

R6/2 mice and in four different cell lines exogenously expressing

N-terminal HTT with 83Q coded by the exon1 of HTT gene and

the results thus obtained have been indicated in the table. miR-17-

5p was taken as endogenous control and fold change greater than

1.5 was considered as deregulated. The results obtained were

compared with those found in HD cell model [33]. Texts in bold

show names of miRNAs which maintained similar trend in their

individual expression pattern in at least four of the six different

models used for comparison. miR-125b and miR-150 were down

regulated by more than 1.5 fold in five of the models including

R6/2 mice whereas miR-146a was down regulated in all the

models. Other miRNAs which showed a consistent expression

pattern across the models were miR-100, miR-214, miR-299,

miR-335, miR-34a and miR-148a. However, miR-148a which

was up regulated in HD cell model [33] had been shown to be

down regulated in all other models. The remaining miRNAs

which were deregulated in HD cell model [33] have however

showed heterogeneity in their expression pattern across the various

models. The results obtained indicate that despite differences in

miRNA expressions in various models, miR-146a, miR-125b and

miR-150 were preferentially down regulated than others in the

presence of poly Q aggregates.

(TIF)
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