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Abstract: Despite decades-long existence of the Philippine stingless bee industry, the biological activity of propolis 
from this native bee species (Tetragonula biroi Friese) remains poorly understood and sparingly investigated. 
Herein, we examined the potential anti-inflammatory efficacy of Philippine stingless bee propolis using the lambda 
(λ)-carrageenan-induced mice model of hind paw edema. Thirty (30), six-week-old, male ICR mice were randomly 
assigned into three treatment groups (n=10/group) as follows: distilled water group, diclofenac sodium group (10 
mg/kg), and propolis group (100 mg/kg). All treatment were administered an hour prior to the injection of the 
phlogistic agent. As observed at 3 h post-injection, λ-carrageenan remarkably evoked the classical signs of hind 
paw edema exemplified grossly by swelling and hyperemia. The ameliorative effect of propolis became apparent 
at the onset of 6 h post-injection with a statistically significant finding evident at the 24-h period. This gross 
attenuation histologically correlated to a considerable and specific reduction of the dermal edema, which mirrored 
those of the diclofenac sodium group. Furthermore, both propolis and diclofenac sodium significantly attenuated 
the λ-carrageenan-induced increase in the protein expression levels of the pro-inflammatory cytokine tumor necrosis 
factor-α (TNF-α) depicting more than two-fold decrement relative to the distilled water group. Altogether, these 
suggest that Philippine stingless bee propolis also exhibited a promising in vivo anti-inflammatory property, which 
can be partly mediated through the inhibition of TNF-α.
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Introduction

Propolis, sometimes referred to as bee glue, is a natu-
ral resinous substance that maintains the hive’s structure 
[1–3]. It is commonly used to coat the inner walls, pol-
ish the honeycomb cells, protect the hive from foreign 
substances, and maintain the concentration of bacteria 
and fungi at a minimum level [4, 5]. At least 300 com-
pounds have already been identified in different propolis 
samples and this includes various chemical components 
like esters, polyphenols, terpenoids, essential oils, vita-

mins, and cinnamic acid derivatives [6–8]. Propolis is 
also widely known to possess various therapeutic prop-
erties such as antibacterial [9, 10], antioxidant [11, 12], 
antiviral [13], fungicidal [14, 15], anticancer [16], anti-
hepatotoxic [17], and anti-inflammatory [18–22].

A number of studies have shown that propolis can 
prevent inflammation by interfering with the production 
of (1) inflammatory cytokines such as IL-1β, IL-2, IL-5, 
IL-6, and tumor necrosis factor-α (TNF-α) [18, 19, 
21–23], (2) granulocyte-macrophage colony stimulating 
factor (GM-CSF) [18], (3) nitric oxide (NO) and nitric 
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oxide synthase (iNOS) [18, 24, 25], (4) eicosanoid (i.e. 
prostaglandin E2 or PGE2) [19, 20, 26–28], and (5) cy-
clooxygenase and lipooxygenase activity [29]. Addition-
ally, It may act by depressing the migration of neutro-
phils and monocytes towards the inflammatory site and 
by increasing leukocyte apoptosis through modulation 
of NF-κB binding and pathway [30].

In the Philippines, experimental investigations dem-
onstrating the therapeutic potential of indigenous sting-
less bee propolis have been greatly limited to our study 
on its neuroprotective efficacy against ischemic stroke 
[31] and those from another group detailing its antimi-
crobial activity against Pseudomonas aeruginosa [32]. 
More recently, we have illuminated the pronounced 
specificity in its anticancer activity towards the differ-
entiated subtype of gastric adenocarcinoma but not the 
diffuse-type [33]. However, no existing evidence has 
been documented to date concerning its possible regula-
tory action on the inflammatory process. Hence, in this 
study, we described the anti-inflammatory potency of 
Philippine stingless bee propolis in a mouse model of 
λ-carrageenan-induced hind paw edema.

Materials and Methods

All procedures conducted in mice were approved by 
the Institutional Animal Care and Use Committee of the 
University of the Philippines Los Baños (UPLB) (IA-
CUC Approval Number: 069).

Propolis sample preparation
The samples of the Philippine stingless bee propolis 

were provided by the UPLB Bee Program, Institute of 
Biological Sciences, UPLB. Propolis was extracted to 
obtain a 30% ethanolic fraction with a final concentration 
of 300 mg/ml as indicated in our earlier publication [31]. 
Upon phytochemical screening, this crude extract has 
been found to contain more than 500 chemical constitu-
ents, which include carbohydrates, steroids, alkaloids, 
anthraquinones, phenols, and terpenoids, among others 
[33]. Moreover, a previous report on propolis samples 
taken from the same colonies of Philippine stingless bees 
revealed high amounts of flavonoids and polyphenols 
i.e. pinobanksin-5, 7-dimethyl ether, artepillin C, api-
genin, quercetin, luteolin-5-methyl ether, pinobanskin 
3-0 butyrate or isobutyrate, and kaempferol [34].

Mice
Thirty (30), six-week-old, male ICR mice were ob-

tained from the Research Institute for Tropical Medicine 
(RITM), Alabang, Muntinlupa City, Philippines. Mice 
were randomly allocated into three (3) treatment groups 

(n=10/group) namely: Distilled water (negative control); 
Diclofenac sodium, a non-steroidal anti-inflammatory 
drug (NSAID) given at a concentration of 10 mg/kg body 
weight [35] and served as a positive control; and propo-
lis, which was administered at a concentration of 100 
mg/kg body weight [31, 33]. Right before use, ethanolic 
extract of propolis was diluted to several folds of distilled 
water thereby allowing the vehicle alcohol to fall to 
negligible concentration (<1%). All mice were caged 
individually in standard polycarbonate cages with stain-
less steel top under 12h light: 12h dark period, 22 ± 4°C, 
and 30–50% humidity. Commercial pellets and distilled 
water were provided ad libitum. All animals were ac-
climatized for one week prior to experimentation.

Treatment administration
Mice were given distilled water, diclofenac sodium, 

or propolis via oral gavage one hour prior to the injection 
of the phlogistic agent, λ-carrageenan [35, 36]. All treat-
ments were duly coded and independently prepared by 
a member of the group who was not directly involved in 
the administration process and scoring of hind paw 
edema. This was done to ensure that those who were 
tasked to perform the aforementioned procedures would 
be blinded to the assigned treatments.

λ-carrageenan-induced hind paw edema in mice 
and edema paw scoring

The λ-carrageenan was prepared as a 1% suspension 
in a sterile normal saline and then 0.1 ml was injected 
subcutaneously into the right dorsal hind paw of each 
mouse [37]. The extent of inflammation was then as-
sessed by performing edema scoring starting at 0 h 
(prior to treatment), and 3, 6, and 24 h post-injection. 
The hind paw scoring system reported by Jeengar et al. 
[38] was adapted, with slight modifications, as follows: 
0 = absence of swelling of the paw, 1 = one toe inflamed 
and swollen, 2 =>1 toe swollen but not the entire paw 
inflamed and swollen, 3 = entire paw inflamed and swol-
len, and 4 = very inflamed and swollen paw or ankylosed 
paw. Gross assessment of the effects of each treatment 
on the development of hind paw edema was performed 
by two independent researchers, who were completely 
oblivious of the treatment assignment.

Euthanasia, collection and histopathology of the 
paw

Twenty-four hours following induction with 
λ-carrageenan, 250 µl of blood was collected from the 
retro orbital plexus of each mouse for subsequent TNF-α 
cytokine analysis. Afterwards, mice were euthanized by 
intraperitoneal injection of pentobarbital sodium (Dole-
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thal®, Vetoquinol UK Ltd., Buckingham, UK) at a dose 
of 50 mg/kg body weight. The right hind paw was ex-
cised using surgical scissors, fixed in 10% formalin for 
at least 72 h, decalcified overnight, embedded in paraffin, 
and sectioned at 5 µm in thickness. Tissue sections were 
stained with hemotoxylin and eosin (H&E) and exam-
ined using a microscope for pathological changes.

Microscope assessment of the hind paw was modified 
and adapted from the protocol by Jansen and Haveman 
[39] and Hussein et al. [40]. Microscopic thickness of 
the three sections of the paw dermal region was measured 
using a binocular research microscope and the mean 
thickness of these sections was recorded. Extent of lym-
phocytic infiltration was examined and categorized as: 
0 = no infiltration, 1 = mild, 2 = mild to moderate, 3 = 
moderate, 4 = moderate to severe, and 5 = severe. Ede-
ma, on the other hand, was evaluated as: 0 = no edema, 
1 = minimal edema, 2 = moderate edema, and 3 = exten-
sive edema [40]. Activation of endothelium was also 
assessed as: 0 = no vascular changes, and 1 = swollen 
endothelial cells. The scores in each parameter were 
averaged and recorded. Analysis and interpretation of 
the histological data were independently carried out by 
a veterinary pathologist. All the slides were deliberately 
coded to make sure that the expert was completely un-
aware of the treatment assignment.

Cytokine measurement
Five blood samples from each treatment group were 

randomly selected for the assay. Additional five blood 

samples were taken from the normal non- λ-carrageenan-
treated mice (n=5) to serve as mock (negative) control. 
Each blood sample was transferred into a properly la-
beled 1.5 ml microcentrifuge tubes and centrifuged for 
five minutes at 3,000 rpm. Plasma samples were recov-
ered and utilized for subsequent measurement of TNF-α 
using mouse TNF-α ELISA kit (Abcam, Cambridge, MA, 
USA) and microplate reader at 450 nm.

Statistical analysis
Data were presented as means ± SD and analyzed 

using one-way analysis of variance (ANOVA) and 
Tukey-HSD posttest. All analyzes were performed using 
SPSS v.23 (IBM Corp., Armonk, NY, USA) and values 
with P<0.05 were considered statistically significant.

Results

Propolis significantly abrogated the λ-carrageenan-
induced gross morphological changes

Subcutaneous injection of λ-carrageenan successfully 
induced an acute inflammatory reaction in all treatment 
groups as exemplified by swelling and hyperemia of the 
mice hind paw at the onset of 3 h post-injection (Figs. 
1A and B). Pretreatment with diclofenac sodium and 
propolis substantially minimized these perceptible signs 
of gross inflammation, which became more pronounced 
with each advancing temporal course of observation. In 
particular, diclofenac sodium pre-treatment exhibited a 
remarkable improvement in the hind paw scores posting 

Fig. 1.	 (A) Gross appearance and (B) mean hind paw scores of mice treated with distilled water, diclofenac sodium, and propolis at 0, 
3, 6, and 24 h post-injection of λ-carrageenan. Pronounced erythema and swelling of the hind paw were observed 3 h post ad-
ministration of λ-carrageenan. A significant attenuation of these gross signs was apparent 6 and 24 h post-injection in the diclof-
enac sodium-treated group and at 24 h in the propolis-treated group.
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a mean value of 1.50 ± 0.53 at 6 h and 1.10 ± 0.32 at 24 
h in converse to those attained by the distilled water 
control group (vs. 2.90 ± 0.57 and 2.30 ± 0.68, respec-
tively). For the propolis-treated group, although a ten-
dency for a slightly lower mean score was observed at 
6 h post-induction, a statistically significant result was 
only achieved at the 24-h time period (1.20 ± 0.42 vs. 
2.30 ± 0.68) (Fig. 1B).

Propolis distinctively attenuated the histological 
lesion of dermal edema

Microscopically, the inflammatory changes evaluated 
after carrageenan administration include increased thick-
ness of the dermis, dermal edema, leukocytic infiltration, 
and dermal vascular alterations like dilation, thickening 
of dermal blood vessel walls, and perivascular lympho-
cytic infiltration (Figs. 2A and B). Of these parameters, 
dermal edema was distinctively reduced by propolis pre-
treatment reflecting a seven-fold diminution (0.10 ± 
0.32) as opposed to those of the distilled water-treated 
counterpart (0.70 ± 0.95). Whereas, in addition to dermal 
edema (0.10 ± 0.32), the magnitude of lymphocytic in-
filtration was also significantly decreased by diclofenac 
sodium (1.10 ± 0.74 vs. 1.40 ± 0.84). No striking differ-
ence was noted, however, when considering the mean 
dermal thickness and alterations of the dermal vascular 
epithelium irrespective of the treatment group (Fig. 2B).

Propolis substantially inhibited the profound 
elevation of plasma TNF-α levels

The mean plasma concentration of TNF-α was subse-
quently examined to determine the tendency of each 

treatment to modulate the expression of this classical 
mediator of inflammation. In relation to the normal 
mock-treated group, injection of λ-carrageenan pro-
moted a mean TNF-α concentration of around 576 mg/
ml, which steeply deviated from the baseline level of 
about 56 mg/ml (Fig. 3). Interestingly, mice belonging 
to the diclofenac sodium- and propolis-pretreated groups 
both effectively alleviated this profound escalation 
thereby restricting the cytokine expression level to a 
value of only ~209 mg/ml (Fig. 3).

Discussion

Acute inflammation involves a well-programmed ho-
meostatic response that is usually triggered whenever 

Fig. 2.	 (A) Mean scores of different treatment groups in relation to various microscopic parameters such as dermal thickness, lympho-
cytic infiltration, dermal edema, and vascular changes. (B) Representative histological sections of the hind paw of distilled 
water, diclofenac sodium, and propolis treated groups (Above). Scale bar: 1,000 µm. The distilled water group had a moderate 
edema (asterisk) whereas both diclofenac sodium- and propolis-treated groups showed a very minimal to almost absent edema-
tous lesion (Inset, Below).

Fig. 3.	 Mean blood TNF-α levels of mice belonging to different 
groups at 24 h following administration of λ-carrageenan. 
Both diclofenac sodium and propolis group exhibited pro-
found inhibition of TNF-α expression, which steeply devi-
ated from those of the distilled water control group.
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the host protective barriers are disrupted by physical, 
chemical, or biological noxae, and whose duration of 
action must be short-lived to preclude the occurrence of 
any unwanted outcomes like organ dysfunction and dis-
eases such as arthritis, diabetes, and cancer [41, 42]. In 
acute paw edema induced by λ-carrageenan, a complex 
interaction is typically observed among several factors 
including immune cells, non-immune mediators, and 
vascular elements. During the early phase, the ensuing 
inflammation is mainly invoked through the concomitant 
release of various endothelial-, platelet-, and mast cell-
derived components such as histamine, 5-hydroxytryp-
tamine, and bradykinin, thereby prompting the increase 
in vascular permeability leading to the enhanced leakage 
of plasma proteins, fluids, and polymorphonuclear leu-
kocytes [43–45]. These infiltrating immune cells, pre-
dominated by neutrophils, in turn liberate a number of 
inflammatory cytokines i.e. IL-1β, IL-6, and TNF-α, 
which together with endothelial and sensory nerve cells 
stimulate the generation of nitric oxide (NO) [46–48]. A 
further augmentation in vascular permeability is also 
provoked by an intensified production of prostaglandin 
species particularly PGI2 and PGE2, and this is com-
monly accompanied by a commensurate increase in the 
levels of bradykinin, cytokines, and NO [49, 50]. On the 
other hand, the late phase of λ-carrageenan-induced paw 
edema is characterized by an excessive degree of inflam-
mation in which the preponderant immunoreactive cell 
populations are the mononuclear macrophages [51]. In 
conjunction with neutrophils, these cells instigate the 
biosynthesis and release of various inflammatory me-
diators as well as toxic radicals (oxygen and nitrogen 
species) and their by-products (peroxynitrite). Of these, 
PGE2 and NO have been largely thought to be respon-
sible for modulating this delayed phase of inflammatory 
process owing to the maximal expression of COX-2 and 
inducible nitric oxide synthase (iNOS) enzymes [50, 52, 
53]; unlike in the early stage where the increment in their 
respective levels are primarily dependent on the activa-
tion of COX-1 and constitutive NOS (cNOS) [45, 47, 
48]. Also, the enhanced production of these mediators 
correlated to a profound activation of the transcription 
factor NF-κB, which directly regulates the downstream 
transcriptional expression of multifarious inflammatory 
molecules including chemokines, cytokines, and adhe-
sion markers [54–56]. These result, therefore, in an 
exuberant amplification of the inflammatory response.

In the present study, subcutaneous injection of the 
phlogistic agent λ-carrageenan considerably recapitu-
lated these hallmarks of acute inflammatory reaction 
therefore serving as a useful in vivo model for screening 
compounds with potential anti-inflammatory activity [57, 

58]. Here, we demonstrated that pretreatment with Phil-
ippine stingless bee propolis caused a significant reduc-
tion of the hind paw edema showing a two-fold decre-
ment at 24 h post-induction in relation to those obtained 
by the distilled water control group. Intriguingly, the 
data generated at this particular time point almost paral-
leled those of the positive control group, diclofenac 
sodium, albeit mice belonging to this latter group had 
an early onset of marked improvement starting at 6 h 
post-induction. This result suggests that a promising 
anti-inflammatory activity is also part of the biofunc-
tional repertory of the Philippine stingless bee propolis.

The histopathological finding of the significant ame-
lioration of dermal edema by propolis and diclofenac 
sodium on the 24th hour period consistently supported 
the profound gross attenuation of the hind paw swelling 
and hyperemia. In fact, there was a complete removal or 
absence of dermal edema in 9 out of 10 carrageenan-
injected mice in both pre-treated groups relative to those 
of the distilled water-treated counterpart. The same ob-
servation was reported by Yasukawa et al. [59], Bolfa et 
al. [60], and Jastrzebska-Stojko et al. [61] using Brazil-
ian, Romanian, and Polish propolis, respectively. How-
ever, the extent of dermal edema formation especially 
in the distilled water-treated control group, which 
yielded an output that was only indicative of a mild 
grade, was rather unexpected. This may be explained in 
part by the biphasic nature of dermal edema that is being 
elicited following λ-carrageenan injection [51, 62]. As 
described elsewhere, administration of 1% λ-carrageenan 
in mice, as in the present study, promoted a first wave 
of low intensity reaction at the first 6 h while the second 
wave of an exaggerated inflammatory reaction could 
only be perceived after 24 h with peak detected at 72 h 
[48, 51]. Moreover, this underwhelming response may 
also be ascribed to the genetic strain of the experimental 
animals used. For example, mice on a C57BL/6J back-
ground have been documented to stimulate a relatively 
weaker degree of biphasic edema in opposition to 
BALB/c [46] and CD1 [48] mice. Succeeding experi-
ments, which carefully integrate these crucial factors, 
are already in place to comprehensively analyze the 
impact of Philippine stingless bee propolis on the forma-
tion of dermal edema.

TNF-α is a pleotropic cytokine that assumes a pivotal 
role not only in inflammation but also in the intricate 
process of apoptosis, survival, proliferation, and dif-
ferentiation [37, 63, 64]. It has been shown to promote 
a collateral cytotoxicity in carrageenan-induced mouse 
paw edema by acting as a stimulator of prostaglandin 
synthesis [65], an inducer of NO formation (46) and 
neutrophil migration (66), and an activator of the NF-κB 
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signal transduction pathway [55]. In addition, it has been 
intrinsically linked with both phases of the edemato-
genic response. This was confirmed by the data on TNF-α 
p55 receptor deficient mice and TNF-α antibody- or 
Thalidomide-pretreated mice unveiling a superior reduc-
tion of edema formation with the early phase exemplify-
ing a higher degree of inhibition (60–90%) than the late 
phase (40–65%) [66, 67]. In the present work, oral pre-
treatment with Philippine stingless bee propolis strong-
ly evoked a suppressive action on TNF-α cytokine ex-
pression approximating around 63% deduction relative 
to those obtained by the corresponding control group. 
This restraining effect appears to be mediated through 
the modulatory influence exerted by propolis upon 
mononuclear macrophages most likely via the engage-
ment of TNF-R1 receptor [66, 68]. Congruent with this 
proposition, propolis treatment has been noted by few 
independent investigations to considerably obviate the 
profound upregulation of TNF-α levels in several human 
and murine monocyte/macrophage cells such as THP-1 
[69], J774A.1 [70], and peritoneal macrophages [71]. 
However, the detailed molecular underpinnings by which 
propolis regulate the TNF-α signaling pathway remains 
to be elucidated. Nevertheless, our findings, together 
with the result of the former studies, underline the key 
contributory role of TNF-α in the regulation of acute 
inflammation in the context of this animal model; and 
more importantly, validates the glaring potential of 
propolis in addressing various inflammatory-type of hu-
man diseases like asthma [72], gout [73], inflammatory 
bowel disease (IBD) [74, 75], Alzheimer’s disease [76], 
arthritis [77], and diabetes [78]. Indeed, oral intake of 
propolis capsule by type 2 diabetes mellitus patients, 
who were recently enrolled in a randomized double-blind 
clinical trial, substantially improved their lipid profile, 
post-prandial blood glucose level, and insulin resistance; 
and effectively abrogated the unconstrained expression 
of inflammatory biomarkers especially TNF-α cytokine 
level [79]. Subsequent studies will be directed on iden-
tifying the activity of Philippine stingless bees propolis 
on other established mediators of inflammation.

Propolis is enriched with biologically active constitu-
ent compounds such as flavonoids and phenolic acids, 
which are demonstrated to affect specific mediators of 
inflammation including cytokines [6–8]. For instance, 
artepillin C has been previously reported to restrain 
TNF-α [79] whereas quercetin has been proposed to act 
by decreasing IL-6, TNF-α, IL-12, and IL-17 [80, 81]. 
Meanwhile, few studies have recounted that kaempferol, 
apigenin, and luteolin significantly hampered the expres-
sion levels of IL-1, IL-6, and TNF-α [82–85]. Interest-
ingly, all these above-mentioned chemical compounds 

have been documented to be present at higher concentra-
tions in the crude extracts of the Philippine stingless bee 
propolis [34]. Moreover, in our most recent publication, 
we have identified the existence of several components 
of this crude propolis extract, which may serve as can-
didate chemical markers with promising anticancer and 
anti-inflammatory activity. Based on GC-MS/MS analy-
sis, some of these compounds might possibly constitute 
a new report at least for the propolis samples [33]. Fur-
ther studies are being undertaken to verify these specu-
lations. Taken together, it seems reasonable to suggest 
that the anti-inflammatory activity of propolis from the 
Philippine stingless bees may be due to the collective 
action of these bioactive compounds, which affect vari-
ous cytokines involved in inflammation.

In conclusion, we herein reported that propolis from 
the indigenous population of Philippine stingless bees 
also exhibited a promising in vivo anti-phlogistic/anti-
inflammatory activity, which could be partly achieved 
by reversing the λ-carrageenan-mediated increase in the 
expression of the pro-inflammatory cytokine, TNF-α.
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