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ABSTRACT

Background. Olive (Olea europaea L.) oil is well-known commercial product world-
wide for its nutritional and therapeutic properties. The molecular mechanisms
underlying lipid variations in different olive cultivars remain unclear.

Methods. To investigate the molecular mechanism involved in lipid synthesis and
metabolism, untargeted metabolome and RNA-Seq analyses were performed based on
two varieties of olive fruits, i.e., Kalinjot (JZ) with low oil content and Coratina (KLD)
with high oil content.

Results. Totally, 38 lipid compounds of 375 differentially accumulated metabolites
(DAMs) were identified in JZ and KLD fruits, with 24 metabolites showing higher
contents in KLD than those in JZ. Integrated transcriptome and metabolome analyses
identified 48 differentially expressed genes (DEGs) associated with six lipid DAMs from
JZ and KLD fruits. The contents of decanoic acid, sphinganine, and leukotriene D4 in
KLD fruits were 2.33, 1.91, and 1.53 times greater than that of JZ fruits, respectively.
In particular, two BCCP, one ACC, seven KAR, one EAR, one FATA and one SPT
genes were observed involving to the content and quality of lipids in olive fruits. These
DEGs were associated with the pathways of fatty acid biosynthesis, arachidonic acid
metabolism, and limonene degradation. This study provides a strong theoretical and
experimental foundation for further revealing the molecular mechanisms regulating
lipid synthesis and metabolism in different olive cultivars.

Subjects Agricultural Science, Plant Science

Keywords Differentially accumulated metabolite, Differentially expressed gene,
Metabolic pathway, Lipid compund, Olea europaea

INTRODUCTION

Olive oil is one of the most important ingredients of Mediterranean diet, and the main

component of its fatty acid (FA) is oleic acid (Contreras et al., 2020; Qu et al., 2022). Oleic
acid is the main monounsaturated FA in olive oil (Menendez et al., 2005). Previous studies
have shown that frequent consumption of olive oil can reduce an overall risk of all-cause
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mortality by 11%, cardiovascular mortality by 12%, cardiovascular disorder by 9%, and
stroke by 17% (Vazquez-Aguilar et al., 2023). The therapeutic effects of olive oil are mainly
due to some specific substances, such as fatty acids (FAs), phenolic, and dietary flavonoids.
Anti-inflammatory effects of olive oil are depended on FA content and antioxidant
compounds (Kabaran, 2018). There are at least 30 different kinds of phenolic compounds
in olive oil, which are considered strong antioxidants and radical scavengers (Bendini

et al., 2007). In addition, a high intake of dietary flavonoids can (a) enhance metabolic
and cardiovascular health, (b) enhance cognitive and vascular endothelial functions, (c)
improve glycemic response in type 2 diabetes mellitus, and (d) a reduce risk of some cancer
(Solnier, Chuck ¢ Joseph, 2023). Because of its nutritional and therapeutic properties, olive
oil plays a crucial role in preventing age-related illnesses (Kurtoglu, Uzundumlu ¢ Givez,
2024). The world population of adults over 60 years of age grew from 9.10% in 1990
and 13.52% in 2020, with the population expected to rise to 21.91% by 2050 (Kurtoglu,
Uzundumlu & Govez, 2024). The world population continues to age, and the consumption
of olive oil is rapidly increasing worldwide (Qu et al., 2022). To meet the growing demand
of olive oil in the market, researchers have adopted various strategies to increase the
production of olive oil, such as cultivating olive varieties with high oil content, improving
the olive oil extraction technology, and revealing molecular mechanisms of oil biosynthesis
(Servili et al., 2011; Inarejos-Garcia et al., 2009; Parvini et al., 2015). These studies provide
valuable technologies to increase olive oil contents and further insights into understanding
the biosynthesis and metabolic mechanisms of lipid in olive fruits.

To explore the biological processes in organisms, transcriptome and metabolic analyses
have been widely performed to reveal metabolite variation and gene expression in various
plants and animals (Wu et al., 2023; Wan et al., 20205 Liang et al., 2022). Previous studies
have shown that olive oil mainly contains oleic acid, followed by palmitic acid, linoleic
acid, stearic acid, palmitoleic acid, and linolenic acids (Contreras et al., 2020; Herndndez et
al., 2019; Lukic et al., 2019). These six FAs are associated with the synthesis of oil in olive
fruits; the greater the FA content, the higher the oil biosynthesis (Liu et al., 2021). The total
FA content increased significantly from 80 days after flowering, and reached a maximum
value of about 130,000 j.g/g at 140 days after flowering (Liu et al., 2021). Meanwhile, the
composition and concentration of total FAs are important criterion for evaluating the
quality of olive oil (Liu et al., 2021; Lukic et al., 2019), especially the content of oleic acid
(Wang et al., 2019). The synthesis and metabolism of FAs in olive fruits involve several
complex metabolic pathways (Niu et al., 2022), e.g., FA biosynthesis, FA degradation, FA
metabolism, alpha-linolenic acid metabolism, linoleic acid metabolism, and sphingolipid
metabolism. Among these metabolic pathways, genes and metabolites of the FA biosynthesis
have been comprehensively analyzed. Acetyl-COA is the substrate of the FA biosynthesis,
and catalyzed into malonyl-CoA by acetyl-CoA carboxylase (ACC) and biotin carboxyl
carrier protein (BCCP) in FA biosynthesis (Unver et al., 2017). Several genes involved in
oleic acid biosynthesis pathway were comprehensively characterized in oleaster (Unver
etal., 2017), e.g., three genes encoding acetyl-CoA carboxylase (ACC) (Oen028727.1,
Oeu040801.1, and Oeu028778.1). Liu et al. (2021) reported that down-regulated expression
of BCCP genes lead to reduction of FA content in olive cultivar Leccino. Three BCCP
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genes (OE6A092496, OE6A034317, and OE6A006214) were identified in olive fruits (Liu
et al., 2021). Then, malonyl-CoA is converted to C16:0-ACP by B-ketoacyl-ACP synthase
(KASI/II), Enoyl-ACP reductase (EAR), and f-ketoacyl-ACP reductase (KAR) (Zhou et
al., 2024). Liu et al. (2020) reported two EAR and two ACC genes in olive cultivar Leccino,
which were highly expressed in fruits than those in new and old leaves. Metabolitic analysis
showd that few FAs changed in leaves (Liu et al., 2020). Up-regulated expression of the
KAR and EAR genes increasing the oil content also have been observed in cottonseed
and oil palm (Zhou et al., 2024). Additionally, a total of 15 and eight metabolic pathways
related to FA and flavonoid metabolism, respectively, were identified in olive cultivars of
Arbequina, Frantoio selection, and Nikitskii I with 44 and 32 transcripts tested based on
GC-MS/LC-MS and transcriptome analyses (Niu, Hu ¢ Ding, 2022), with a group of genes
revealed encoding important enzymes involved in FA biosynthesis, such as ACC, KASI,
KASII, and SAD. Specially, the expression level of KAS T and KAS III in Arbequina is much
higher than that of Frantoio and Nikitskii I, which was consistent with the variation of C16:0
in three cultivars. Meanwhile, two DEGs (OE6A055531 and OE6A095422) were detected
encoding ACCase (Niu, Hu ¢ Ding, 2022). Subsequently, C16:0-ACP was converted to
C18:0-ACP by KAS II (Unver et al., 2017), and fatty acyl-ACP thioesterase A/B (FATA/B)
catalyze the ACP into free FA (Liu et al., 2021). Oleoyl-ACP (C18:1-ACP) was specifically
catalyze into Oleic acid (C18:1) by FATA (Resetic et al., 2013). Previous studies showed that
two up-regulation of FATA (OE6A018491 and OE6A059595) and two down-regulation of
FATB (OE6A080663 and OE6A029754) caused high proportion of C18:1 in total FAs of
olive cultivar Leccino fruits (Liu ef al., 2021). On the contrary, the up-regulation of FATB
and down-regulation of FATA in oil palm and date palm caused the accumulation of
saturated palmitic acid (Huang et al., 2016). Though fatty acid is the main lipid in olive oil,
other kind of lipid had been reported having effect on the synthesis of fatty acid. Inés et al.
(2018) found that sphingolipids contributed to plant cell multiplication and enlargement,
producing larger fruits. Thus, larger size fruit would benefit to the accumulation of lipids.
These studies provide some useful information for understanding the mechanisms of
lipid metabolism, but the molecular mechanisms of different lipids are still unclear. Qu
et al. (2022) identified 170 DEGs related to oil biosynthesis of different olive cultivars
between Kalinjot (JZ) and Coratina (KLD) based on RNA-seq (Niu et al., 2022). However,
it was not clear how these DEGs participated in the synthesis or metabolism of lipids. To
date, due to the varied components and content of lipid in different olive varieties, the
molecular mechanism underlying lipid biosynthesis metabolism and content variation in
olive remains unclear.

This study aimed to identify differentially accumulated metabolites (DAMs) and DEGs
involved in lipid synthesis and metabolism between fruits of two olive varieties KLD and JZ
at stage of maturity index 3 (MI-3) based on UHPLC-QTOF-MS untargeted metabolomics
and integrated transcriptome and metabolome analysis, respectively, and to provide
a strong theoretical and experimental foundation for further revealing the molecular
mechanisms regulating lipid synthesis and metabolism in different olive cultivars.
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MATERIALS & METHODS

Plant materials and transcriptome analysis

Two olive cultivars, JZ of low oil content and KLD of high oil content, were planted

in the field of Liangshan Zhongze New Technology Development Co., Ltd. (Xichang,
China). When the skin of fruits was reddish or light violet color (at MI-3 stage) (Hassan,
El-Rahman & Attia, 2011), fresh fruits of JZ and KLD were randomly collected and stored
in liquid nitrogen (—196 °C) with three biological repeats. Fruits were at the onset of
ripening, and the size of KLD was almost twice as JZ at MI-3 stage. Then, the total RNA
of fruit samples was extracted, and DNA was removed by RNase-free DNase (Qiagen,
Hilden, Germany). Next, one pg RNA sample was used to construct the cDNA libraries,
and a 14 cycles of PCR amplification was performed with LongAmp Tag (New England
Biolabs, Ipswich, MA, USA). The PCR products were subjected to ONT adaptor ligation
by the T4 DNA ligase (NEB). After purification, cDNA libraries were sequenced using
the PromethION platform (Oxford Nanopore Technologies Ltd., Oxford, UK) at the
Biomarker Technology Company (Qu et al., 2022). The transcriptomics data of olive fruits
at MI-3 stage were downloaded from the Sequence Read Archive (SRA) database of the
National Center for Biotechnology Information (NCBI, https:/iwww.ncbi.nlm.nih.gov/sra/)
with the accessions of SRR18361025, SRR18361026, SRR18361027, SRR18361032,
SRR18361033, and SRR18361034 (Qu et al., 2022). The minimum average read quality
score of seven and minimum read length of 500 bps were discarded using the in-house
perl script from raw reads (Qu et al., 2022). The rRNA sequences and full-length non-
chimeric transcripts were removed based on the rRNA database and primer sequences
(Qu et al., 2022). The clean full-length non-chimeric transcripts were mapped onto

the olive reference genome (Rao et al., 2021) using minimap2 (V2.16) (Li, 2018). The
pinfish V0.1 (https:/github.com/mnanoporetechpinfish accessed on 21 March 2022) was
employed to identify the consensus isoforms. Subsequently, the cDNA_Cupcake package
(https:/github.com/MagdollcDNA_Cupcake accessed on 21 March 2022) was used to
remove redundant full-length sequences (minimum coverage of 85% and minimum
identity of 90%). The nonredundant full-length transcripts were aligned with the olive
reference transcriptome sequences (Rao ef al., 2021). Reads were further quantified, whose
match quality value were greater than 5. The counts per million (CPM) was used to
normalize the expression level of each gene. Finally, the DESeq2 R package were employed
to identify DEGs between two samples based on |log2 (fold change)| > 1 and false discovery
rate (FDR) < 0.01 (Qu et al., 2022). Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) annotation of the DEGs were performed by the R package
ClusterProfilerv4.0 (Qu et al., 2022).

Detection of untargeted metabolites

Fresh olive fruits of KLD and JZ at MI-3 stage were used to determine their untargeted
global metabolites. A total of six biological replicates were performed for each cultivar.
Porcelain beads and extraction solution (methanol:acetonitrile:water = 2:2:1) were added
into each fruit sample. The mixture was crushed into pulp by the grinder (MM400, Retsch,
Haan, Germany) at 45 Hz for 10 min, and then sonicated using ultrasonic instrument
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(XM-250ULF; Xiaomei Ultrasonic Instrument Company, Kunshan, Jiangsu, China) in
ice-cold water (at 0 °C) for 10 min. After that, the samples were kept at —20 °C for 1 h.
Subsequently, the samples were centrifuged at 4 °C and 16,099 g for 15 min in a Eppendorf
5430R (Eppendorf UK, Cambridge, UK) centrifuge. 100 wL of supernatant was collected
and mixed with 500 L of extraction solution (methanol:acetonitrile = 1:1), sonicated in
ice-cold water (at 0 °C) for 10 min, and centrifuged at 4 °C and 16,099 g for 15 min. After
centrifugation, a total of 100 wL of supernatant was collected. Each sample was extracted
three times. Finally, 10 pL supernatant of each sample was collected and used for detection
by UPLC-MS/MS system (Agilent technologies, Santa Clara, CA, USA), with the injection
volume set at one pL of each sample. The L-2-chlorophenylalanine (20 ug/ml) was used
as an internal standard. The raw data were acquainted by MassLynx V4.2 and processed
by the Progenesis QI software (Wang et al., 2022). Peak extraction, peak alignment, and
other data processing operations were performed by the Progenesis QI software. The
data of untargeted metabolites was deposited in the OMIX, China National Center for
Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (accession
no. OMIX007455).

Data processing

To evaluate the reliability of six biological replicates for JZ and KLD, intra-group differences
of six biological replicates for JZ and KLD, were assessed by one-way analysis of variance
(ANOVA) using the statistical software SPSS V.20 (IBM, Armonk, NY, USA). Levene
test was used to assess homogeneity of variances. Prcomp function within R V3.3.2
(http:/www.r-project.org) was utilized to do principal component analysis (PCA), and
ggplot2 of R V3.3.2 was used for visualization. Cor function in R was used to calculated
the Spearman’s rank correlation (SRC) coefficients between samples, and R package of
pheatmap was performed to plot the heatmap. Ropls package (Yuan et al., 2023) of R
V3.3.2 was employed to conduct the orthogonal partial least square-discriminant analysis
(OPLS-DA), including score plots and permutation plots. The best-fitted OPLS-DA
model was selected by a 200-step permutation test. Parameters R*Y and Q? were used to
evaluate the fitting validity and predictive ability of the selected OPLS-DA model. Variable
importance in the projection (VIP) values were calculated from OPLS-DA. P-values of
metabolites variances between JZ and KLD were obtained, and R V3.3.2 were employed
to do a two-tailed Student’s ¢ test. A significant difference between metabolites was
considered when the fold change (FC) exceeded 1, P-value was less than 0.05, and the VIP
score was greater than 1. The non-parametric Mann—Whitney—Wilcoxon test was used to
validate the metabolites variations of selected DAMSs between JZ and KLD. The metabolites
identified were further annotated based on HMDB (http:/www.hmdb.ca/), PubChem
(https:/pubchem.ncbi.nlm.nih.gov/), and KEGG (https:/iwww.genome.jp/kegg/) databases.
To establish the correlations between DEGs and DAMs, we used two-way orthogonal PLS
(O2PLS) model. Their correlations were calculated by OmicsPLS R package (Bouhaddani et
al., 2018) with the absolute value of Pearson correlation was greater than 0.8, and P-value
was less than 0.05. Furthermore, the similarities of DEGs involving to lipids were aligned
by BLAST against sequences in previous studies mention above.
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RESULTS

UPLC-MS/MS was used to investigate the variations in the contents of metabolites

in fruits of JZ and KLD at MI-3 stages. A total of 725 metabolites in 47 classes were
detected in olive fruits (Fig. 1A). The details of 725 metabolites were showed in Table S1.
The top 10 classes of metabolites included carboxylic acids and their derivatives (27
metabolites), fatty acyls (26 metabolites), organooxygen compounds (25 metabolites),
prenol lipids (23 metabolites), benzene and substituted derivatives (22 metabolites),
phenols (13 metabolites), polyketides (13 metabolites), steroids and steroid derivatives (six
metabolites), organonitrogen compounds (five metabolites), coumarins and derivatives
(five metabolites), and glycerophospholipids (five metabolites). Among the 725 detected
metabolites, 79 (10.9%) were lipid compounds, showcasing a diverse lipidome that
encompasses fatty acyls, prenol lipids, and sphingolipids. These 79 lipid compounds
were 26 fatty acyls, 23 prenol lipids, 13 polyketides, six steroids and their derivatives, five
glycerophospholipids, three glycerolipids, and three Sphingolipids (Fig. S1). The intra-
group differences of JZ and KLD replicates by ANOVA were displayed in Table S2. The
P-value from Levene test of JZ and KLD were 0.999, and P-value of ANOVA was 1.000.
These results of ANOVA indicated that there was no significance among six biological
replicates for JZ and KLD, because P-values of homogeneity and ANOVA were greater
than 0.05 (Table 52). The correlation analysis results were deposited in Table S3. Figure 1B
displayed the correlation coefficients of different biological replicates. The SRC coefficients
among KLD fruits ranged from 0.84 to 1.0. All SRC coefficients for JZ samples were greater
than 0.8, except that of JZ_b and JZ_c. The SRC coefficients was 0.78 for JZ_b and JZ_c
(Fig. 1B). The PCA results were listed in Table S4. Figure 1C showed the results of PCA.
The first principal component (PC1) and the second principal component (PC2) could
explain 59.18% and 18.82% of the total variation, respectively, accumulating for 78% of
the total variation (Fig. 1C). The score plot of OPLS-DA showed the clear differentiation
of JZ and KLD: R2X was 0.575 and R?Y was 0.993 (Fig. 1D). Figure S2 showed the result of
permutation test, which was used to evaluate the validity and predictability of OPLS-DA
model. Q? value obtained by permutation test was 0.965 (Fig. 52).

Figure 2A showed the volcano plots of all metabolites detected in olive fruits. Totally,
there were 375 DAMs identified in fruits of JZ and KLD at the MI-3 stages, i.e., 254 DAMs
up-regulated in KLD and 121 down-regulated in JZ (Table S5). The majorities of DAMs
were lipids and lipid-like molecules, organic acids and derivatives, benzenoids, organic acids
and derivatives, phenylpropanoids and polyketides, organic oxygen compounds, organic
nitrogen compounds, organoheterocyclic compounds, and alkaloids and derivatives
(Table S5). The significant variances of 375 DAMs from Mann—-Whitney—Wilcoxon
test were in accordance with previous ¢ test, whose P-values were all less than 0.05
(Table S5). These statistical analysis results indicated that the variations of 375 DAMs
between JZ and KLD were significant. The results of KEGG enrichment analysis of
these 375 DAMs were presented in Fig. 2B, showing that these DAMs were significantly
enriched in metabolic pathways of phenylpropane biosynthesis, tyrosine metabolism, folate
metabolism, limonene and pinene degradation, isoflavone biosynthesis, FA biosynthesis,
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Figure 1 Metabolomics analysis of JZ and KLD fruits. (A) Composition of metabolites of olive fruits.
(B) Correlation analysis between JZ and KLD. (C) PCA of samples of JZ and KLD. (D) OPLS-DA of
samples of JZ an KLD.
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oxidative phosphorylation, and sphingolipid metabolism. The variations in the contents of
DAMs in JZ and KLD fruits showed that a total of 110 of these 375 DAMs were involved in
lipid biosynthesis or metabolism in JZ and KLD fruits (Fig. 2C), with the top three classes
of DAMs identified as carboxylic acids and derivatives (12 metabolites), organiooxygen
compounds (11 metabolites), and prenol lipids (11 metabolites). Specifically, 38 of these
110 DAMs were lipid compounds, e.g., fatty acyls, prenol lipids, glycerophospholipids, and
steroids or steroid derivatives. There were 11 prenol lipids among these 38 DAMs, with
six DAMs showing increased contents in KLD and five metabolites showing decreased
contents in JZ. There were 10 DAMs of fatty acyls, and the contents of six polyketides in
JZ were greater than those in KLD. Among the nine differentially expressed polyketides,
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Figure 2 Screening of differentially accumulated metabolites (DAMs) and KEGG enrichment analysis
of JZ and KLD fruits at MI-6 stage. (A) Volcano map of DAMs. (B) Bubble plot of KEGG enrichment of
DAM:s. (C) Content variation of DAMs involved in lipid metabolism. (D) Heatmap of contents of DAMs

in olive fruits.

Full-size Gal DOI: 10.7717/peer;j.18941/fig-2

the contents of four metabolites in KLD were higher than those in JZ. The remaining eight
lipid DAMs were glycerol ester, glycerol phospholipid, steroid and steroid derivatives, and

sphingolipids, each with two metabolites showing increased contents in KLD. The contents
of 38 DAMs involved in olive oil in JZ and KLD fruits at MI-3 stage were presented on the

(Fig. 2D).
Figure 3 revealed the metabolic pathways significantly enriched by the DAMs identified

heatmap, showing the evident difference between the contents of these 38 DAMs in JZ and
KLD, whereas the contents of 24 lipid compounds in KLD were greater than those in JZ

between JZ and KLD fruits at MI-3 stages. p-Cymene was the starting substrate of the

degradation of aromatic compounds and the xylene degradation pathway. Our results
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showed that the content of p-Cymene in KLD fruit was 2.51 times higher comparing

to JZ fruits (Table S5). p-Cymene was finally decomposed into 2-hydroxy-3-carboxy-
6-oxo-7-methylocta-2,4-dienoate by CymA, CymB, CymC, and so on. However, the
contents of 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate between KLD and JZ
fruits showed no significant difference (Table S1). Then, 2-hydroxy-3-carboxy-6-oxo-
7-methylocta-2,4-dienoate was decomposed into acetyl-CoA, and finally catalyzed into
decanoic acid through the FA synthesis pathway. The contents of acetyl-CoA and decanoic
acid in KLD fruits were 6.87 and 2.33 times greater than that of JZ fruits, respectively
(Table S5). In linoleic acid metabolism, linoleate was converted into 9(S)-HPODE in the
reaction catalyzed by linoleate 9S-lipoxygenase. However, 9(S)-HPODE was not detected in
our study, and its racemic mixture (+)9-hPODE was detected, showing decreased contents
in KLD (Fig. 2D). In addition, linoleate is also converted to y -linolenate/(6,9,12)-linolenic
acid in the reaction catalyzed by linoleoyl-CoA desaturase (EC:1.14.19.3). In our study,
the content of y-linolenate/(6,9,12)-linolenic acid in KLD was 0.23 accounting for that in
JZ (Table S5). Furthermore, y -linolenate/(6,9,12)-linolenic acid was finally converted to
15-keto-Prostaglandin E2 and leukotriene D4 in arachidonic acid metabolism pathway.
The content of 15-keto-prostaglandin E2 and leukotriene D4 in KLD were 1.49 and 1.53
times higher than those of JZ, respectively (Table S5). In limonene degradation pathway, the
content of (S)-(-)-perillyl alcohol produced in KLD was 1.99 times greater than that in JZ.
(S)-(-)-perillyl alcohol was further converted into perillic acid, and the content of perillic
acid in KLD was 0.18 accounting for that of JZ (Table S5). Two types of sphingolipids
compounds were detected increasing in KLD fruits, i.e., sphinganine and C17 sphinganine,
showing 1.91 and 3.00 times greater than that of JZ. Ceramide (d18:0/16:0) was synthesized
from Sphinganine. Then, ceramide (d18:0/16:0) was used to generate galactosylceramide,
but its content in KLD was 0.13 accounting for that in JZ (Table S5). In the isoflavonoid
biosynthesis pathway, formononetin was generated based on ononin. The contents of both
ononin and formononetin were decreased in KLD compared to JZ, whereas the contents of
pentanamide, glycerol 2-phosphate, and sophoraflavanone B in KLD werel.37, 3.43, and
4.52 times greater than those of JZ (Table S5).

Figure 4 showed the results of integrated analysis of DAMs and DEGs in fruits of JZ and
KLD at MI-3 stage. Combined KEGG enrichment analysis of DAMs and DEGs showed
that only the FA synthesis pathway showed consistent expression pattern with significantly
differences (P < 0.05) (Fig. 4A). Correlation network of DAMs and DEG involved in
lipids of olive fruits showed that six lipid compounds were significantly correlated with
48 DEGs (Fig. 4B, Table S6). Four of these five compounds were upregulated in KLD,
except perillic acid (Table S5). In Fig. 4B, the green line represented a positive correlation
between DAMs and DEGs, while the black line represented a negative correlation. The
thicker the line, the higher the correlation value. Pink genes were up-regulated expression
in KLD, while black genes were down-regulation in KLD. Figure 4C showed expression
pattern of the 48 DEGs of KLD and JZ fruits at MI-3 stage. Eight out nine DEGs having
positive correlations with decanoic acid were up-regulated in KLD; a down-regulated
gene in KLD, EVM0023073 was negatively correlated with decanoic acid (Fig. 4B). If
the correlation coefficient between DEGs and DAMs in KLD was positive, it indicated
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Figure 3 Metabolic pathway of differential metabolites relating to lipid in JZ and KLD fruits. The
metabolites with lower content and higher abundance in KLD than those in JZ are marked in green and

blue, respectively.
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that metabolites increased with the increasing of gene expression level; on the contrary,
metabolites increased as gene expression levels decrease. Therefore, the decanoic acid
content in KLD was 2.33 times greater than that in JZ (Table S5). Similarly, perillyl alcohol,
leukotriene D4, glycerol 2-phosphate, and sphinganie metabolites were significantly higher
accumulated in KLD than in JZ (Fig. 4B). Whereas, perillic acid was significantly lower
in KLD than in JZ. The correlations between EVM0039296, EVM0042586 and perillic
acid were negative, and the two DEGs were up-regulated genes in KLD. The higher the
expression level of EVM0039296 and EVM0042586, the lower the perillic acid in KLD
(Fig. 4B). In additions, EVM0027624, EVM0060777, and EVMO0037656 were positively
correlated with perillic acid, and these three genes were down-regulated in KLD (Fig. 4C),
causing a decrease of perillic acid in KLD (Fig. 4B). In addition, there were 15 enzyme genes
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involved in the fatty acid synthesis pathway (Table 56). Sequence alignment results showed
that genes identified in this study had not been reported yet, because the best identity
and coverage between them were 100% and 99%, e.g., EVM0031337 and OE6A094355T1
(Table S6).

DISCUSSION

Variations in lipid metabolites of JZ and KLD fruits

Olive fruits contain various kinds of FAs (Contreras et al., 2020; Herndndez et al., 2019),
whose synthesis and metabolism involve a variety of lipid substances. In recent years,
metabolomics has been widely used to study FAs and their secondary metabolites in olive
fruits, and to reveal the synthesis and metabolism mechanism of FAs (Rao et al., 2017;
Liu et al., 2020). In order to identify the causes of lipid variations in the fruits of different
varieties of olive, the metabolites of JZ and KLD fruits at MI-3 stage were detected by
UHPLC-QTOEF-MS non-target metabolomics. The real biological compounds from test
samples and contaminants from sample collection and processing will be detected in the
untargeted metabolomics analysis, as well as matrix effects and noise deriving from the
computational algorithm (Frigerio et al., 2022). Previous studies have shown that using a
pooled quality control (QC) sample can reduce matrix effects, noise and contaminants
(Frigerio et al., 2022). A solution obtained by mixing an equal volume of each test sample
is often used as pooled QC sample for untargeted metabolomics analysis (Kirwan et al.,
2022). Then, compounds not detected or with a low detection rate and with a high relative
standard variation in QC analyses will be filtered out from the data matrix (Frigerio et al.,
2022). This approach is widely used in the untargeted metabolomics analysis (Godzien
et al., 2015; Frigerio et al., 2022; Kirwan et al., 2022). In this study, we used a pooled QC
solution from JZ and KLD for quality control. Moreover, L-2-chlorophenylalanine is used
as an internal standard in this study, which has been widely used as an internal standard in
lipids metabolism analysis for reducing matrix effects (Li et al., 2018; Ribbenstedt, Ziarrusta
& Benskin, 2018; Chen et al., 20225 Liu et al., 2024). These approaches improve the accuracy
of metabolite identification. PCA was carried out to detect the variations of samples from
different groups (Lin et al., 2016). The total cumulative explained variance ratio of first two
principal components was counting for 78% (Fig. 1A). This suggests that this PCA model
can retain most of the information. Fruit samples of JZ are clearly separated from those of
KLD (Fig. 1A). This result shows that there are evident variations in metabolites between
them. Correlation analysis is generally used to evaluate the correlation among different
biological replicates (Yang et al., 2010). Correlations of different biological replicates were
considered good for SRC coefficient absolute values from 0.8-0.89, fair for values from
0.7-0.79, and poor for values less than 0.7 (Lemarignier et al., 2017). Most of biological
replicate for JZ and KLD fruits have good or even high correlations, only the JZ_b and
JZ_c have fair correlation (Fig. 1B). This indicates that the metabolism data of JZ and KLD
is reliable and reproducible. OPLS-DA is widely performed to highlight the variation of
metabolites in plant and animals. R?Y and Q? values from permutation test, reflecting the
explained fraction of variance and the model predictability, are used to evaluate the quality
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Figure 4 Integrated analysis of differentially accumulated metabolites (DAMs) and differentially
expressed genes (DEGs) in JZ and KLD fruits. (A) KEGG enrichment analysis of the DEGs (blue column)
and DAMs (yellow column) that are enriched in the same metabolic pathway. The red and blue dotted
lines represent P-values less than 0.05 and 0.01, respectively. (B) Connection network of DEGs and DAMs
of olive fruits. (C) Expression pattern of genes involved in lipids of DAMs in JZ and KLD fruits.
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of OPLS-DA model (Lin et al., 2016). When the R?Y and Q? values are closer to 1, the
more reliable the model is (Lin et al., 2016). In this study, the R?Y and Q? values are 0.993
and 0.965 (Fig. 1C, Fig. 52), this suggests that the best fitted OPLS-DA model is stable and
reliable. In summary, metabolites of JZ and KLD fruits were significantly different.

DAMs and DEGs involved in lipid compounds variations between JZ
and KLD fruits

FA metabolism and accumulation in olive fruits involve complex metabolic pathways,
such as FA synthesis, sphingolipid metabolism, and linoleic acid metabolism, and relates
to a variety of lipid and non-lipid metabolites (Unver et al., 2017; Inés et al., 2018). We
utilized transcriptome and metabolome analyses to explore the variations of lipid and
molecular mechanism underlying in different olive cultivars at MI-3 stage. There were 38
lipid compounds of 375 differential metabolites detected in JZ and KLD fruits. Among
these 38 compounds, p-cymene was a kind of prenol lipids, which was finally decomposed
into acetyl-CoA through the xylene degradation pathway. Our results showed that the
content of acetyl-CoA in KLD fruit was 6.87 times higher than that of JZ (Fig. 2D,
Table S5), ultimately providing more acetyl-CoA raw materials, compared with JZ fruit,
for the metabolic pathway with acetyl-CoA involved. Acetyl-CoA is involved in several
metabolic pathways, including the TCA cycle, FA biosynthesis, elongation, degradation,
and FA metabolism (Riezman, 2007). In FA biosynthesis, acetyl-CoA is catalyzed into
malonyl-CoA by acetyl-CoA carboxylase (ACC) and biotin carboxyl carrier protein
(BCCP) in FA biosynthesis (Unver et al., 2017). Previous study has reported that down-
regulated expression of BCCP genes lead to reduction of FA content in olive cultivar
Leccino (Liu et al., 2021). In this study, we identify three BCCP genes in KLD, including
EVMO0009821, EVM0053294, and EVM0055867 (Table S6). Among them, EVM0053294
and EVMO0055867 are highly up-regulated in KLD comparing to JZ at MI-3 stage (Table S6).
We have reported that the oil content of KLD and JZ fruits at MI-3 stage was accounting
for 31.27% and 14.52% on a dry basis (Qu et al., 2022), and the oil content of KLD is 2.15
times greater than that of JZ. These results prove that the overexpression of EVM0053294
and EVMO0055867 can increase the oil content of olive seed, which is consistent with Liu’s
result (Liu et al., 2021). Then, malonyl-CoA is catalyzed into C16:0-ACP by S-ketoacyl-
ACP synthase (KASI/IIT), Enoyl-ACP reductase (EAR), and B-ketoacyl-ACP reductase
(KAR) (Fig. 3, Zhou et al., 2024). There are seven KAR and one EAR genes significantly
expressed between JZ and KLD (Table S6). All of KAR and EAR genes are up-regulated
in KLD, and two KAR genes even have more than 20-fold changes in KLD (Table S6).
Though we have not detected the variance for all the medium and long chain fatty acids,
some medium chain, long chain fatty acids or their derivatives are up-regulated in KLD,
such as decanoic acid, 12-hydroxydodecanoic acid, tridecanoic acid, and 2-dodecenal
(Table S6). This demonstrates that the overexpression of KAR and EAR genes promote
carbon chain extension in olive. Up-regulated expression of the KAR and EAR genes
increasing the oil content also have been observed in cottonseed and oil palm (Zhou et
al., 2024). Subsequently, KAS 1II catalyze C16:0-ACP into C18:0-ACP, and fatty acyl-ACP
thioesterase A/B (FATA/B) catalyze the ACP into free FA (Fig. 3). FATA specifically catalyze
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hydrolysis of oleoyl-ACP (C18:1-ACP) into oleic acid (C18:1) (Resefic et al., 2013). In this
study, we identify an up-regulated expression gene of FATA (EVMO0031236) in KLD,
whose expression level of KLD is 2.16 times more than that of JZ (Table S6). This value
is very close to total oil content difference between KLD and JZ, whose oil content in
KLD is 2.15 times more than that of JZ (Qu et al., 2022). Because the proportion of oleic
acid in total oil for KLD and JZ is at 76% (Nissim et al., 2020) and 75.11% (Topi et al.,
2021), which are very closer. Similarly, up-regulated expression of FATA gene leads to a
higher accumulation of oleic acid in olive cultivar Leccino (Liu ef al., 2021). These results
suggest that overexpression of FATA genes can increase the content of oleic acid, and
finally improve the oil production of olive fruits. Oleic acid is a monounsaturated fatty
acid. The accumulation of unsaturated fatty acid has similarly been observed in castor-oil
plant (Huang et al., 2016), because of the high expression level of FATA than FATB. On the
contrary, the highly expressed of FATB than FATA in oil palm and date palm contribute
to the accumulation of saturated palmitic acid (Huang et al., 2016). This indicates that
the expression level of FATA and FATB directly affect the proportion of unsaturated fatty
acids and saturated fatty acids in oil. The monounsaturated fatty acids proportion in olive
fruit is an important index for evaluating the quality of olive oil, especially the content of
oleic acid (Wang et al., 2019). Intake of a higher proportion monounsaturated fatty acids
in the diet can reduce the risk of cardiovascular disease and stroke (Donat-Vargas et al.,
2022). Thus, olive oil with higher oleic acid content has greater commercial and nutritional
values. Our finding indicates that the overexpression of FATA (EVM0031236) in KLD
can produce more oleic acid than JZ. These results can provide new strategies of olive
molecular breeding for improving oil content and quality. Moreover, previous studies have
shown that the TCA cycle can regulate FA synthesis and metabolism (Liu et al., 2020). In
our study, none of the metabolites showing significant variation in TCA cycle is detected
between KLD and JZ, indicating that the differences in lipid contents between KLD and JZ
are not caused by TCA cycle. In addition, acetyl-coA is finally converted into decanoic acid
in the FA biosynthesis pathway (Fig. 3). Decanoic acid is a medium chain saturated FA
with 10 carbon atoms, and both olive and canola fruits usually contain a certain amount
of decanoic acid (Larson et al., 2002). However, the molecular mechanism of decanoic acid
biosynthesis in olive fruit is unclear. In this study, the integrated analysis of DAMs and
DEGs reveals that the increase of decanoic acid in KLD is affected by nine DEGs (Fig. 4B).
Four of nine DEGs are up-regulated expression enzyme genes, including enoyl-ACP
reductase (EAR, EVM0026081), KAS (EVM0002152), KAR (EVMO0031337), and ACC
(EVM0049907) (Table S6). Previous studies have focused on the expression pattern of
FATB and FATA, showing an increase in the proportion of medium-chain FA content
in Brassica napus, Camelina sativa (Iskandarov et al., 2017), and palm seeds (Huang et al.,
2016). But the molecular mechanism of decanoic acid biosynthesis about other enzyme
genes in olive fruit is rarely reported. Thus, the four enzyme genes identified in olive
fruits can be used to comprehensively analyze the molecular mechanism of decanoic
acid synthesis. Overexpression of EAR, KAS, KAR and ACC genes were also observed
promoting the accumulation of C16:0-ACP in olive (Fig. 3). Decanoic acids can improve
weight loss comparing with long-chain fatty acids (St-Onge ¢ Bosarge, 2008), and can be
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used as ketogenic diets in epilepsy treatment (Warren ef al., 2021). Our result displays that
oil of KLD contains 2.33 times of decanoic acid greater than JZ (Table S5), suggesting that
the oil of KLD might have more values in weight loss and disease treatment than that of JZ.

In sphingolipid metabolic pathway, palmitoyl-CoA is catalyzed into sphinganine by
serine palmitoyltransferase (SPT) and 3-dehydrosphinganine (Fig. 3). The integrated
analysis of DAMs and DEGs identify an up-regulated expression of SPT gene
(EVMO0012032) in KLD (Table S6). This result suggests that KLD fruits can produce more
sphinganine than JZ (Fig. 2D). The sphinganine and ceramide (Cer(d18:0/16:0)) belong to
sphingolipids (Inés et al., 2018). Sphingolipids contribute to plant cell multiplication and
enlargement, which produce amounts of membrane matrix and larger fruits (Inés et al.,
2018). Similar results have been reported in cotton and Arabidopsis (Inés et al., 2018; Yang
et al., 2023). Our result shows that the contents of sphinganine and ceramide in KLD are
greater than that of JZ (Table S5, Fig. 2D), causing the larger fruit size and higher amounts
of membrane matrix for KLD than JZ (Qu et al., 2022). In olive fruit, oil accumulation takes
place mainly in the fleshy mesocarp (Herndndez, Sicardo & Martinez-Rivas, 2016). Larger
fruit size and higher amounts of membrane matrix can be benefit for lipids accumulation.
Thus, the oil content of KLD is greater than that of JZ (Qu et al., 2022). The SPT gene
(EVMO0012032) can be used to reveal the molecular mechanism about olive fruit size
development. Furthermore, previous studies demonstrated that a SPT gene (Unigene ID:
OL002160) is also positively associated with fruits ripening, whose highest expression level
was observed in olive fruit at the onset of ripening (Inés et al., 2018). We have identified
a SPT gene (EVMO0012032). However, the expression pattern of EVM0012032 is different
from OL002160. EVMO0012032 is not a DEGs during the development of JZ or KLD
fruits (Qu et al., 2022). This suggests that EVM0012032 might not involve in the olive
fruit ripening, and it only have effect on the fruit size. This result can be used for further
research on the molecular mechanism about olive fruit size development, and provide
useful information for the cultivation of new varieties.

Lipid oxidation will lead to food deterioration in terms of flavor, taste and nutritional
value (Ito et al., 2017). In linoleic acid metabolism, 9(S)-HPODE is oxidize from linoleic
acid by lipoxygenase (Reverberi et al., 2010). Although 9(S)-HPODE, which is not a lipid
compound, was not detected in KLD, its racemic mixture (+)9-HpODE has been detected.
The content of (£)9-HpODE in KLD was lower than that in JZ, suggesting that the linoleic
acid content decomposed in KLD was less than that in JZ. Meanwhile, the lower content
of (£)9-HPODE in KLD represents weak oxidation effect on linoleic acid of lipoxygenase
(Ito et al., 2017). This could be more beneficial for the storage of olive oil.

y-Linolenate is used to produce two types of fatty amides, i.e., leukotriene D4 and
15-keto-prostaglandin E2, in the arachidonic acid metabolic pathway. Both leukotriene D4
and 15-keto-prostaglandin E2 can modulate the inflammatory response in human body
(Jara et al., 2020). However, their roles in fatty acid synthesis have not been reported
yet. The integrated analysis of DAMs and DEGs identify an up-regulated gamma-
glutamyltranspeptidase (GGT5) gene in KLD, which is EVMO0015671 (Table 56). Our result
demonstrates that the overexpression of EVM0015671 can produce more leukotriene D4 in
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KLD than that of JZ (Fig. 2D). This result can be used to reveal the molecular mechanism
about the synthesis of leukotriene D4 in the future.

In the limonene degradation pathway, perillyl alcohol is converted to a non-lipid
compound of perillic acid by perillyl-alcohol dehydrogenase and aldehyde dehydrogenase
(Fig. 3). Previous study shows that aldehyde dehydrogenase (ALDH) can convert
acetaldehyde into acetate, and it presented indirectly affect the biosynthesis of fatty acids in
palm (Asadi et al., 2023). The integrated analysis of DAMs and DEGs identify four ALDH
genes, including EVM0027624, EVM0037656, EVM0039296, and EVM0042586 (Table S6).
Though EVM0027624 and EVMO0037656 are down-regulated in KLD, the expression levels
of EVMO0039296 in KLD is more than twice of EVM0027624 and EVM0037656 in JZ
(Table S6). This causes a large amount of perilla alcohol to be decomposed into perilla acid
in KLD, ultimately leading to an increase of perilla acid in JZ (Fig. 2D). Perillyl alcohol
plays a role in some disease treatment like cancer, diabetes, and parkinson (Saeidnia,
2015). Our results suggest that KLD have greater medical values than JZ in some disease
treatment. Furthermore, the four aldehyde dehydrogenase genes in this study can be used
to comprehensively analyze the metabolic pathways of limonene degradation.

CONCLUSIONS

In this study, untargeted metabolomics integrated with transcriptome analysis were used to
investigate the differential metabolites and genes related to lipid metabolism compounds
in KLD and JZ fruits at MI-3 stages. There were 38 DAMs detected between JZ and KLD
fruits, which are mainly involved in FA synthesis, sphingolipid metabolism, and linoleic
acid metabolism pathway. A total of 48 novel DEGs associated with six lipid differential
metabolites were detected between JZ and KLD. In particular, two BCCP, one ACC, seven
KAR, one EAR, one FATA and one SPT genes were observed involving to the content and
quality of lipids in olive fruits. This study provides a strong theoretical and experimental
foundation for further revealing the molecular mechanisms regulating lipid synthesis and
metabolism in different olive cultivars.
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