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Purpose: The aim of this study was to evaluate the performance of a proposed computer-aided 
detection (CAD) system in automated breast ultrasonography (ABUS).
Methods: Eighty-nine two-dimensional images (20 cysts, 42 benign lesions, and 27 malignant 
lesions) were obtained from 47 patients who underwent ABUS (ACUSON S2000). After boundary 
detection and removal, we detected mass candidates by using the proposed adjusted Otsu's 
threshold; the threshold was adaptive to the variations of pixel intensities in an image. Then, the 
detected candidates were segmented. Features of the segmented objects were extracted and 
used for training/testing in the classification. In our study, a support vector machine classifier was 
adopted. Eighteen features were used to determine whether the candidates were true lesions 
or not. A five-fold cross validation was repeated 20 times for the performance evaluation. The 
sensitivity and the false positive rate per image were calculated, and the classification accuracy 
was evaluated for each feature.
Results: In the classification step, the sensitivity of the proposed CAD system was 82.67% (SD, 
0.02%). The false positive rate was 0.26 per image. In the detection/segmentation step, the 
sensitivities for benign and malignant mass detection were 90.47% (38/42) and 92.59% (25/27), 
respectively. In the five-fold cross-validation, the standard deviation of pixel intensities for the 
mass candidates was the most frequently selected feature, followed by the vertical position of 
the centroids. In the univariate analysis, each feature had 50% or higher accuracy.
Conclusion: The proposed CAD system can be used for lesion detection in ABUS and may be 
useful in improving the screening efficiency.
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Introduction

Screening ultrasonography (US), as an adjunct to mammography, 
increases the sensitivity of the evaluation, particularly in the case 
of dense breasts [1-3]. However, hand-held US (HHUS) is operator 
dependent and time-consuming for whole breast evaluation. To 
overcome these problems, several automated breast US (ABUS) 
machines have been developed [4,5]. 

Several studies have shown that the ABUS is feasible [6-8]. ABUS 
can provide a high sensitivity similar to that of HHUS [9,10]. Kelly 
et al. [3,11] showed that the addition of ABUS to mammography 
improved cancer detection and made it possible to detect smaller 
cancer compared with mammography alone. However, there has 
been controversy about the sensitivity of ABUS. In some studies, 
ABUS exhibited a sensitivity that was as high as that of HHUS [9,10]. 
Other studies showed lower sensitivity than expected [12,13]. The 
high false-positive rate of ABUS is also problematic [9,10,12]. 

Furthermore, ABUS provides numerous images with a large field 
of view (FOV). The considerably large number of images provided by 
ABUS can lead to radiologist fatigue during interpretation. Subtle 
findings in a large FOV as well as the abovementioned fatigue can 
lead to a failure of lesion detection. More training or the application 
of a computer-aided detection (CAD) system may help to overcome 
these problems. The purpose of this study was to evaluate the 
performance of the proposed CAD system in ABUS. 

Materials and Methods

Data Acquisition
The US images used in this study were provided by our hospital. The 
images were collected prospectively from October 1 to December 
31, 2010. Informed consent was obtained from all the considered 
patients. This study protocol was reviewed and approved by the 
Institutional Review Board of our hospital. Ultrasonography was 
performed by two trained technologists by using ABUS (ACUSON 
S2000, Siemens Healthcare, Erlangen, Germany) with a large-
footprint wide-frequency-bandwidth transducer (5-14 MHz; center 
frequency, 9 MHz). A volume of up to 15.4 cm×16.8 cm×6 cm 
was captured by the acquisition of a series of 320 high-resolution 
axial images at a slice thickness of 0.5 mm. All malignant lesions 
were pathologically diagnosed by biopsy or surgery. The benignity 
of the benign lesions considered in our study was pathologically 
determined by biopsy or indicated by a demonstration of stability for 
2 years or longer [14]. 

The database consisted of the following three classes: a, cyst 
(n=20); b, benign lesion (n=42); and c, malignant lesion (n=27). 
Each class was composed of two-dimensional (2D) images. Images 

that were 707×463 pixels in size were used with the center at the 
seed point, placed by the consensus of two radiologists with 4 years 
and 12 years of experience in breast imaging, respectively. There 
were 89 2D images taken from 47 patients. Some patients presented 
with multiple lesions. The number of lesions per patient varied from 
1 to 8 (mean, 1.89 lesions/patient). To avoid redundancy, only one 
seed point was placed within a quadrant of a breast. The average 
size of the malignant or benign lesions was 25.61 mm (median size, 
21 mm; size range, 5 to 81 mm) for malignant tumors, 11.56 mm 
(median size, 10.1 mm; size range, 5 to 26 mm) for benign lesions, 
and 8 mm (median size, 7.4 mm; size range, 4 to 14.4 mm) for cysts.

Image Processing for Detection
Preprocessing
In general, the CAD system consists of data input, lesion detection 
with segmentation, and false positive reduction by classification. In 
the lesion detection process, we first removed the boundary area of 
an image, which is the border area having low pixel intensity outside 
of the breast in a given image. For the proposed CAD system, which 
was developed for research purposes only, boundary detection and 
removal based on edge detection and morphological operations 
including dilating, hole filling, bridging, region growing, and eroding 
as well as an average low-pass filtering were performed in the 
lesion detection process [15]. 

Once the boundaries were removed, areas with very bright 
intensities were also excluded. A bright area was determined by 
finding the top 25th percentile pixel intensity from the highest 
intensity values of the batch images. Then, the adjusted Otsu's 
threshold was applied in order to detect and segment the mass 
candidates. 

Adjusted Otsu's threshold
Otsu's threshold is one of the most widely used pixel-intensity-based 
methods for lesion detection and segmentation [16]. However, the 
problem is that the detection and segmentation results obtained 
using Otsu's threshold are often unsatisfactory. For instance, Fig. 
1A illustrates two Otsu's threshold values obtained for the mass 
candidates. For the Otsu's threshold represented by the left solid 
line, the pixel intensities for the mass candidates are located 
below the threshold, and the detection is assumed to be quite 
accurate. However, the true pixel intensities for the mass candidates 
are located between the solid and the dotted lines; thus, the 
abovementioned Otsu's threshold value fails to detect the lesions. 
Instead, the right dotted line represents the appropriate Otsu's 
threshold. In actual ABUS images, it was difficult for a CAD system 
to locate the true intensity values for the mass candidates since 
there were many factors affecting image intensities, including the 
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anatomical variations of the patients and the scanner parameters. 
Fig. 1B illustrates a case where the intensity values of the mass 
candidates are not differentiated because of the smooth distribution 
of the intensity values.

As we observe in Fig. 1A and B, the effectiveness of Otsu's 
threshold is influenced by the original Otsu's threshold and the 
distribution of the intensity values. We analyzed the images whose 
boundaries and top 25th percentile bright areas were removed. For 
the detection and segmentation of mass candidates, we proposed 
an adjusted Otsu's threshold. The proposed adjusted Otsu's 
threshold, Adj.Otsu's Th, is as follows:

Adj.Otsu's Th = a · Otsu's Th	 (1)

where Otsu's Th denotes the original Otsu's threshold (which implies 

a pixel intensity level that maximizes the between-class variance) 
and α represents a model parameter (a slope term in a linear 
model for correcting the original Otsu's threshold by reflecting the 
anatomical variations of the patients and the scanner parameters). 
To model α, we manually found the lowest Otsu's threshold 
values that detected the mass candidates correctly while similarly 
sustaining the corresponding shapes. Then, α was fit by using other 
variables such as the average non-zero pixel value for a masked 
image and the original Otsu's threshold because the adjusted 
Otsu's threshold was assumed to be related to the distribution 
of pixel intensities and the original Otsu's threshold. As a result, 
we observed that α is proportional to the average non-zero pixel 
value and inversely proportional to the original Otsu's threshold as 
follows:

A B

Fig. 1. Distribution of pixel intensities and Otsu's thresholds. 
A. Otsu's threshold values are represented by a solid line and a 
dotted line. If the pixel intensities of a mass candidate are located 
below the solid line, the mass candidate can be detected by both 
the lines. However, the mass candidates whose pixel intensities are 
located between the solid and the dotted line cannot be detected 
by the computer-aided detection (CAD) system with the Otsu's 
threshold value represented by the dotted line (x-axis, pixel intensity; 
y-axis, number of pixels). B. The intensity values of mass candidates 
are not differentiated because of the smooth distribution of the 
intensity values (x-axis, pixel intensity; y-axis, number of pixels). C. 
This graph shows the relation between α and the average non-zero 
pixel value divided by the original Otsu's threshold (x-axis, average 
non-zero pixel value for a masked image divided by the original 
Otsu's threshold; y-axis, the lowest Otsu's threshold values obtained 
from a manual adjustment to detect the mass candidates correctly).C
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α = a
 
·   

Average Nonzero Masked Image
	  Otsu's Th 	 (2)

A global estimate for α was found to be 0.003764 from 10 
data samples; resulting inthe coefficient of determination, R2, 

as 99.6%. Fig. 1C shows the linear relation between α and
 

 
Average Nonzero Masked Image
	 Otsu's Th    

in (2). 

Image Processing for Segmentation
To achieve precise segmentation, several morphological operations, 
including opening, eroding, bridging, dilating, and hole filling, 
followed the detection using the proposed adjusted Otsu's 
threshold. Among the resulting objects, the ones that were very 
small were removed from the mass candidates (pixel area of less 
than 120, which is equal to approximately 3.5 mm×3.5 mm). 
Likewise, objects located within 10% of the image width or height 
from the image boundaries were not considered masses. Finally, 
the segmented objects were labeled as either 0 or 1 depending on 
whether they belonged to the masses confirmed by the radiologists. 
Fig. 2 illustrates the described processes for the proposed CAD 
system.

Classification with Support Vector Machine
Feature extraction and selection
After the detection, segmentation, and labeling of the mass 
candidates were completed, the features of the segmented objects 
were extracted and used for training and testing in the classification. 

                  Boundary removal using:
(1) Sobel edge detection 
(2) Morphological operations (dilating, filling, 
      bridging, and region growing) with average 
      filtering
(3) Conversion to black and white image and its 
      complemented image with hole filling

Find the upper 25 percentile intensity and
remove the bright area

Determine Otsu’s threshold for an image without
boundary and bright area

Compute the average non-zero pixel intensity

Apply the adjusted Otsu’s threshold

Morphological operations for mass detection
(opening, eroding, bridging, dilating, and filling)

The final mask

                 Censor objects having:
(1) size < 120 or (2) center near boundaries
     (10% of width and height)

Object labeling

End

Start

Last image?

No Yes

Fig. 2. Proposed computer-aided detection system for the 
detection of breast masses.

Fig. 3. The concepts of feature 17 (object boundary_mean) and 
feature 18 (object boundary_standard deviation). One box in the 
illustration denotes one pixel. Black and gray boxes represent the 
boundary of an object. The gray box denotes the pixel of interest 
on the boundary. The mean pixel intensity of the boundary (feature 
17) is the mean pixel intensity of the gray box and that of the boxes 
with letters A (top), B (left), C (bottom), and D (right). The standard 
deviation of the pixel intensity of the boundary (feature 18) is the 
standard deviation of the abovementioned five pixels.

A

C

B D
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To determine whether a mass candidate was a true lesion or not, we 
chose 18 extracted features from each segmented mass candidate 
(Table 1). We proposed two of these features for this study (features 
17 and 18). These two features can be further described as follows:

Feature 17 (object boundary_mean) and feature 18 (object 
boundary_standard deviation) were added in the CAD system (Fig. 
3). These features were based on the idea that the margin of a mass 
plays a role in the differentiation between benignity and malignancy. 
Feature 17 (object boundary_mean) is the mean pixel intensity of 
the object boundary and four of its neighboring pixels (in other 
words, the pixels on the left, right, top, and bottom of the pixel on 
the original boundary). Feature 18 is the standard deviation of the 
pixel intensity of these five pixels.

Elimination of the unwanted features and development of CAD 
with the most contributive features often improve the performance 
of a classifier. Irrelevant features only contribute to the generation of 
redundancy of the feature space, and thereby result in performance 
degradation in terms of accuracy in addition to increasing the 
number of computations. Sequential forward selection is one of 
the feature selection methods used in classification. In sequential 
forward selection, features are added one-by-one to the current 

feature set until the performance of the given model stops improving 
by the addition of a new feature. 

Cross validation
Cross validation is a method for estimating accuracy in classification. 
K-fold cross validation splits data into k subgroups that are almost 
equal in size. Then, we build a classification model using k-1 
subgroups (training data). Once a classification model is determined, 
the model is fit to the remaining subgroup data called a test set, 
and the accuracy for the test set is measured (Fig. 4) [17]. 

In the proposed CAD study, class 0 was defined as a set of 
mass candidates that were a portion of normal tissue (that is, true 
negative), and class 1 was defined as a set of mass candidates that 
were either benign masses or malignant masses or cysts (that is, 
true positive). The true masses that were not detected by CAD (false 
negative cases) were not included in any class. We obtained 1,095 
data that belonged to either class 0 or class 1, which corresponded 
to the set of non-masses and that of masses, respectively. The 
number of correctly detected masses was 83 out of 89, and these 
masses were classified into class 1. The rest 1,012 (=1,095-83) 
datawere labeled as class 0. To prevent a biased estimate for the 

Table 1. Overview of features used as classifiers of the computer-aided detection system 
Feature Name Description

1 Mean Average intensity of pixels in mass candidate

2 Standard deviation Standard deviation of pixel intensity

3 Area Number of pixels

4 Bounding box Area of the bounding box, which is a 1×4 vector defining the smallest rectangle containing a mass candidate
5 Centroid (x-coordinate) 1×2 vector; the center of a mass candidate; the first element is the horizontal coordinate (or x-coordinate), 

and the second element is the vertical coordinate (or y-coordinate)
6 Centroid (y-coordinate)
7 Convex area The number of pixels in a convex image that is a convex hull with all pixels in the hull filled in (i.e., set to on); 

the convex hull is the smallest convex polygon that contains a mass candidate
8 Eccentricity Eccentricity of an ellipse with the same second moments as the mass candidate; the ratio of the distance 

between the foci of the ellipse and its major axis length
9 Equivalent diameter The diameter of a circle with the same area as the mass candidate 

10 Euler number Equal to the number of objects in the mass candidate minus the number of holes in those objects

11 Filled area The number of on pixels in a filled image, which is a binary image of the same size as the bounding box
12 Major axis length The length (in pixels) of the major/minor axis of the ellipse with the same second moments as the mass 

candidate
13 Minor axis length
14 Orientation The angle between the x-axis and the major axis of the ellipse with the same second moments as the mass 

candidate
15 Perimeter The sum of the lengths of all the sides
16 Solidity The proportion of the pixels in the convex hull that are also in the mass candidate; computed as area/convex 

area
17 Object boundary_mean The mean pixel intensity of the object boundary and four of its neighboring pixels
18 Object boundary_standard 

deviation
The standard deviation of pixel intensity of the abovementioned five pixels
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labels and negative labels, which corresponded to masses and non-
masses, respectively, was known in the cross validation. We set both 
the number of masses and that of non-masses to 83. To determine 
the classification accuracy of the proposed CAD system, we first 
computed the sum of the number of correctly classified masses and 
that of correctly classified non-masses. Then, this result was divided 
by the sum of the number of sampled masses and the number of 
sampled non-masses, as in (3)

Accuracy =  
No. of correctly classified masses and non-masses  

×100 (%)
	 No. of sampled masses and non-masses   

(3)

We also evaluated the possible causes of the false negative cases, 
that is, cases in which the proposed CAD system did not detect the 
true mass.

Results

To measure the effectiveness of the proposed CAD system, 
we computed the sensitivity and the false positive rate of the 
classification by using a five-fold cross validation. We calculated the 
sensitivity to be 82.67%±0.02% and the false positive rate to be 
0.26 per image. 

We also computed sensitivities for benign and malignant mass 
detection, which were 90.47% (38/42) and 92.59% (25/27), 
respectively, at the detection/segmentation step. All the cysts were 
detected at the detection/segmentation step. The lesion detected by 
the proposed CAD system is shown in Fig. 5.

There were two possible causes of failure in the detection of 
masses. Inaccurate segmentation was the first one. Some missed 
cases were segmented smaller than their true size and removed due 
to the small size (less than 120 pixels) or segmented unsuitably. 
The second possible cause was the inaccurate removal of mass 

classification accuracy due to the difference in the data sizes, we 
randomly selected 83 data from class 0. Then, we merged the 83 
data of class 1 with the randomly sampled 83 data of class 0 and 
applied five-fold cross validation. We repeated this process 20 times 
in order to measure the classification accuracy as shown in Fig. 4. 

Support vector machine
Some studies used a support vector machine (SVM) for the diagnosis 
of breast cancer using ultrasonography [18-21]. A linear SVM 
learns to distinguish between negative (normal tissue) and positive 
(mass) cases by constructing an optimal separating hyperplane. The 
optimal hyperplane leaves the largest fraction of the same class on 
the same side and maintains a maximal distance from either class. 
In this study, an SVM with a nonlinear classifier based on a radial 
basis function was used for each cross validation. First, we applied 
univariate classification with the SVM, which used each of the 
considered features. Then, we used all the 18 features for building 
the final SVM classifier. The library for SVM (LIBSVM) was utilized for 
the implementation of the SVM classification [22].

Statistical Analysis
To measure the effectiveness of the proposed CAD system, we 
computed the sensitivity, false positive rate per image, and accuracy 
of each feature in the classification using five-fold cross validation 
that was repeated 20 times. Sensitivity is calculated by dividing 
the number of the objects which were correctly classified asmasses 
by the total number of true mass The term “false positive objects” 
refers to mass candidates that were not true masses but normal 
breast tissue. In the detection step, it was difficult to define a 
negative case since the negative case was referred to as the whole 
area of images in which no mass is detected. However, in the 
classification step, the number of samples including both positive 

Fig. 4. The example of k-fold cross validation. The dataset is divided into k subsets. One set is used for testing (black boxes), and the 
remaining k-1 subsets (empty boxes) are used for training. Then, the entire dataset is again divided into k subsets, which are different from 
the abovementioned k subsets. Then, training and testing are carried out. These steps are repeated 20 times.

1	 2	 3	 4

Step 1
Step 2

Step k

k
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candidates according to their location in the considered image. In 
some false negative cases, the true masses were removed during 
the removal of mass candidates within 10% of the image width or 
height from the image boundary (Fig. 6). The characteristics of the 
missed cases are given in Table 2.

The order of the detection power of each feature is given in Table 3. 
All the features had 50% or more accuracy of lesion detection when 
inserted in the proposed CAD system alone. The results of sequential 
forward feature selection during the 20 rounds of cross validation are 
presented in Table 4. The best accuracy was 89.80%; it was obtained 
when five features, namely features 2, 6, 7, 1, and 13, were used. The 
order of addition during forward feature selection is given in Table 5. 
In the five-fold cross validation, the standard deviation of the pixel 
intensities of the mass candidates were the most frequently selected 
feature followed by the vertical position of the centroid, the size of 
the bounding boxes, the convex area, the average intensity of the 
pixels, and the mean pixel intensity of the object boundary. All the 
benign lesions and cysts were assigned as Breast Imaging Reporting 
and Data System (BI-RADS) category 2. The BI-RADS categories of all 

considered and missed malignant lesions are listed in Table 6.

Discussion

ABUS reduces many shortcomings of HHUS, such as operator 
dependency, and provides high-resolution three-dimensional (3D) 
images. However, the considerable number of images with a large 
FOV provided by ABUS can lead to a failure of lesion detection 
due to radiologist fatigue during interpretation and subtle findings 
in a large FOV. Several studies have suggested that a precise 
interpretation of ABUS requires substantial training and experience 
[4,12]. As with other CAD systems in other imaging modalities such 
as chest computed tomography, CT colonography, or mammography, 
CAD system for ABUS can improve the radiologist’s performance in 
the detection of masses in ABUS.

The sensitivities and the false positive rates of the previous CAD 
systems in ABUS were 70% with 2.7 false positives per pass [23] 
and 64% with 1 false positive per image [24]. The proposed CAD 
had substantial sensitivity as compared to the previous methods. 

A B

Fig. 5. True positive case in a 46-year-old female with a pathologi-
cally proven fibroadenoma in her right breast. 
A. The original automated breast ultrasonogram shows a 1.84-cm 
circumscribed hypoechoic nodule (fibroadenoma). B. The final mask 
after the adjusted Otsu's threshold and mor-phological operations 
shows mass candidates in white. C. The gray-scaled frame with 
the final mask reveals the true positive object (circle) and the false 
positives (some of which will be removed from the final mask after 
support vector machine classification).

C
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The sensitivity during detection and segmentation in the case of the 
proposed CAD system was 93%, and the cross validation estimated 
a sensitivity of 82.67%±0.02% with 0.26 false positives per image. 
Because most of the cases missed by the proposed CAD system were 
not detected during the false positive reduction (such as censoring 
according to the location or removal of objects that were less than 

120 pixels in size), modification of the level of false positive reduction 
is likely to improve the sensitivity of the proposed CAD system.

Four benign masses and two malignant masses were not 
detected. Except one malignant mass (size, 23 mm), the missed 
lesions were less than 8 mm in size (average, 5.88 mm; range, 5 to 
7.4 mm).

A B

Fig. 6. False negative case in a 53-year-old female with an isoechoic nodule in her left breast, which has been stable for 2 years. 
A. The original automated breast ultrasonogram shows a 6-mm isoechoic nodule (circle) in the left subareolar area. B. The true nodule is 
detected before being censored by size and location. C. The final mask after censoring by size and location demonstrates only false positive 
mass candidates. D. The gray-scaled frame after applying the final mask shows only false positive mass candidates.

C D

Table 2. Characteristics of missed cases
Case no. Pathology Size Error category Detailed cause of detection failure

1 Benign 6 Censored according to the location Initially detected but removed (located within upper 10% height)

2 Benign 7.4 Censored according to the location Initially detected but removed (located within upper 10% height)

3 Benign 5 Inaccurate detection or segmentation Initially detected but removed (segmented smaller than its true size)

4 Benign 6 Inaccurate detection or segmentation Not detected

5 Malignant 5 Inaccurate detection or segmentation Initially detected but removed (segmented smaller than its true size)

6 Malignant 23 Censored according to the location Initially detected but removed (located within right 10% width)
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Table 3. Order of detection power of 18 features obtained by 
univariate analysis

Order Feature no., name Accuracy (%, mean±SD)

1 2, Standard deviation 78.67±2.16

2 18, Boundary_standard deviation 74.64±2.50

3 8, Eccentricity 67.26±2.98

4 13, Minor axis length 65.69±3.02

5 9, Equivalent diameter 63.83±3.45

6 6, Centroid (y-coordinate) 62.41±3.80

7 5, Centroid (x-coordinate) 62.17±2.38

8 1, Mean 58.61±3.36

9 3, Area 58.37±3.72

10 11, Filled area 57.98±2.56

11 16, Solidity 57.74±2.59 

12 7, Convex area 56.30±3.81

13 15, Perimeter 56.27±3.27

14 12, Major axis length 55.75±2.32

15 4, Bounding box 55.60±2.46

16 10, Euler number 52.89±0.75

17 14, Orientation 52.05±5.17

18 17, Boundary_mean 51.08±6.44

Table 4. Results of sequential forward feature selection

Feature Name
No. of selections 
(out of 20 times)

1 Mean 6

2 Standard deviation 20

3 Area 5

4 Bounding box 8

5 Centroid (x-coordinate) 5

6 Centroid (y-coordinate) 15

7 Convex area 11

8 Eccentricity 2

9 Equivalent diameter 3

10 Euler number 0

11 Filled area 1

12 Major axis length 3

13 Minor axis length 4

14 Orientation 3

15 Perimeter 2

16 Solidity 1

17 Object boundary_mean 6

18 Object boundary_standard deviation 4

Table 5. Order of addition during forward feature selection

#
Feature number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 4 1 5 6 3 7 2

2 5 2 3 4 6 1

3 1 5 2 4 3

4 1 4 5 6 7 8 2 3

5 1 4 3 2

6 1 2 3

7 3 1 2 4

8 1 2 4 3

9 4 1 2 3 5

10 5 1 2 3 8 7 9 6 4

11 1 2 3 4

12 1 4 3 5 2

13 1 5 2 3 4

14 1 2 3

15 1 2 3

16 2 1 4 3 5

17 1 3 2 4

18 1 4 5 2 3

19 1 3 5 2 6 4

20 1 2 3 4
#, cross validation.
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We adopted the adjusted Otsu's threshold for segmentation and 
detection based on the pixel intensity. The pixel intensity was used in 
most of the previous CAD systems [4,25]. We found that the results 
of the proposed CAD system were similar to those of a previous 
CAD system using a blob detection algorithm [23]. First, there were 
numerous false positives, and most of them were small in size (less 
than 120 pixels in our study). Second, some of the mass candidates 
were segmented smaller than their true size.

According to the univariate analysis, all the features had 50% 
or more accuracy. Feature 2, which reflects the heterogeneity of 
the mass candidates, had the highest discriminatory power. It was 
selected every time during the 20 repetitions of the cross validation 
and had the highest accuracy when inserted alone. This implies that 
a true positive lesion is more heterogeneous than a false positive 
mass candidate. The standard deviation of the pixel intensity 
is a unique feature, because we cannot easily notice the inner 
heterogeneity of the mass candidates with our naked eye.

The y-coordinate of the center of the mass candidate was the 
second most commonly selected feature by sequential forward 
selection. The y-axis is the vertical axis of the given image. This 
result agrees with the common knowledge. As the breast on an 
oval-shaped chest wall was scanned by using a flat transducer 
(dimensions, 15.4 cm×16.8 cm), the semicircular black background 
and the chest wall where breast lesions could not arise were 
covered in the inferior aspect of the scanned image. The far upper 
portion of the scanned image would also not include many masses; 
most of the breast masses would arise in the parenchymal tissue 
rather than in the fat layer. 

The third and fourth most commonly selected features were 
feature 7 (convex area) and feature 4 (bounding box). Because 
a larger mass has a larger convex area and bounding box, the 
proposed CAD system seems to consider a larger mass candidate to 
be a true positive lesion.

The fifth most frequently selected features were feature 1 (mean) 
and feature 17 (object boundary_mean). Between feature 1 and 
feature 17, feature 17 seemed to have more discriminatory power. 
Although the accuracy of feature 17 in the univariate analysis was 

of the last order, the number of second-order selections after feature 
2 during the sequential forward selection was larger for feature 17 
than for feature 1. This result implies that the mass candidate with a 
lower mean pixel intensity of the object boundary had a tendency to 
be regarded as a true positive lesion. Feature 1, which is the average 
intensity of pixels in the mass candidate, shows that a true positive 
mass candidate is darker than a false positive mass candidate. These 
findings agree with the general knowledge that most of the masses 
in the glandular tissue are hypoechoic as compared to the echogenic 
glandular tissue. As Otsu's threshold already discriminates mass 
candidates from normal tissue according to the pixel intensity (the 
lower area was detected as mass candidates), the discriminatory 
power was not as high as expected.

The proposed CAD system has some limitations. First, the sample 
size in each class was not equal between classes and was small 
for training a clinically robust classifier. A sufficient number of 
reference standards are required to develop a more accurate and 
clinically useful CAD system. Further, the development of a CAD 
system with more training data can improve the performance of 
the CAD system. Second, there was a difference in the data storage 
techniques between malignant lesions and the other classes. Only 
post-processing data, some of whose information was deleted, 
were stored for certain cases in the malignant class. Finally, the 
adjustment of censoring according to the location from the image 
boundary and the size of the mass candidates might be further 
calibrated to improve the classification performance.

In order to reduce the radiologists’ burden, we proposed a CAD 
system for the most recently developed and more widely used ABUS. 
The proposed CAD system is based on detection and segmentation 
with a simple adjusted Otsu's threshold and classification with 
a nonlinear SVM classifier. The proposed CAD has accuracy 
substantially higher than the accuracy of the previously reported 
methods. The sensitivity during detection and segmentation in the 
case of the proposed CAD system is 93%, and the cross validation 
estimates the sensitivity to be 82.67%±0.02%. 
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BI-RADS category
No. of patients

All lesions Missed lesions

4-A 7 1

4-B 6 0

4-C 4 0

5 10 1
BI-RADS, Breast Imaging Reporting and Data System.
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