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A new Cu(II)-catalyzed annulation–cyanotrifluoromethylation of 1,6-enynes with Togni’s

reagent and trimethylsilyl cyanide (TMSCN) has been established, enabling the direct

construction of trifluoromethylated 1-indanones with an all-carbon quaternary center

in good yields. This reaction was performed by using low-cost Cu(OTf)2 as the

catalyst and Togni’s reagent as both the radical initiator and a CF3 source, providing

an efficient protocol for building up an 1-indanone framework with wide functional

group compatibility. The reaction mechanism was proposed through a radical triggered

addition/5-exo-dig cyclization/oxidation/nucleophilic cascade.

Keywords: Cu(II) catalysis, annulation–difunctionalization, cyanotrifluoromethylation, 1,6-enynes, 1-indanones

INTRODUCTION

Trifluoromethylation of organic molecular skeletons has attracted considerable attention in
pharmaceutical chemistry, agrochemicals, and functional materials, owing to the fact that
incorporation of the trifluoromethyl group into organic molecules can modulate their abilities
including lipophilicity, bioavailability, and metabolic stability (Umemoto, 1996; Müller et al., 2007;
Hagmann, 2008; Studer, 2012; Yang et al., 2015). Therefore, many efforts have been done in
the past few decades, which mainly depended on transition-metal-catalyzed trifluoromethylation
reactions. Such reactions enable direct construction of the C–CF3 bond in an atom-economic
manner and provide efficient and practical methods for the collection of trifluoromethyl-containing
compounds, such as catalytic trifluoromethylation of alkane (Pan et al., 2011; Fu et al., 2012;
Kuninobu et al., 2015; Wang et al., 2015; Xiao et al., 2019), alkenes (Chu and Qing, 2012; Shimizu
et al., 2012; Zhu and Buchwald, 2013; Lin et al., 2016; He et al., 2018), and alkynes (Ge et al., 2014;
Iqbal et al., 2014; Tomita et al., 2015; Wu et al., 2017; Huang et al., 2018). Among them, a vast
majority of reports focused on the difunctionalization of alkenes or enynes (He et al., 2014a,b),
such as hydrotrifluoromethylation (Wilger et al., 2013; Wu et al., 2013), carbotrifluoromethylation
(Chen et al., 2013; Egami et al., 2013; Liu et al., 2013), and oxytrifluoromethylation (Egami
et al., 2012; Janson et al., 2012; Li and Studer, 2012; Zhu and Buchwald, 2012) for their high
utilization by incorporating trifluoromethyl groups into target molecules across the unsaturated
π system. On the other hand, 1-indanones are privileged structural motifs commonly present
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providing an efficient protocol for building up 1-indanone framework with wide functional group compatibility. The reaction mechanism was proposed through a radical

triggered addition/5-exo-dig cyclization/oxidation/nucleophilic cascade. nt protocol for building up 1-indanone framework with wide functional group compatibility. The

reaction mechanism was proposed through a radical triggered addition/5-exo-dig cyclization/oxidation/nucleophilic cascade.

in many bioactive molecules and natural products such as
Pterosin B and C (Nagle et al., 2000; Wessig and Teubner,
2006), pauciflorol F (Dai et al., 1998; Nitta et al., 2002;
Ito et al., 2004), and (+)-indacrinone (DeSolms et al.,
1978) (Figure 1). Consequently, many chemists made their
contributions to establish numerous elegant protocols for their
synthesis including Friedel–Crafts acylation (Koelsch, 1932;
Frank et al., 1944), Grignard reactions (Bergmann, 1956;
Manning et al., 1981), and transition metal-catalyzed annulation
of arylalkynes (Shintani et al., 2007; Chernyak et al., 2011;
He et al., 2018; Song et al., 2019), radical addition–cyclization
of 1,6-enynes (Shen et al., 2018a,b, 2019), and other methods
(Zhu et al., 2017, 2018a,b; Shi et al., 2019a). To the best of
our knowledge, introduction of a trifluoromethyl group into
the 1-indanone framework via a radical-triggered annulation–
difunctionalization strategy remains elusive.

Multicomponent reactions (MCRs) represent an attractive
and powerful tool for building complex molecular architectures
under usually mild conditions (Hao et al., 2016; Wang et al.,
2016a,b; Ji et al., 2019; Liu et al., 2019; Qin et al., 2019; Shi
et al., 2019b). Radical-triggered annulation–difunctionalization
cascades, standing at the intersection of both radical and
multicomponent transformations, constitute a unique reaction
category, which enables direct assembly of difunctionalized cyclic
systems containing both isocyclic and heterocyclic skeletons
which are not available from other methods. As a result,
lots of unsaturated compounds endowed with alkene and/or
alkyne units are devised and prepared as radical acceptors
to capture the various radical species (Chen et al., 2008; Liu
et al., 2014; Kong et al., 2015; Wang F. et al., 2016; Zhang
et al., 2019). Generally, the success of the radical annulation–
difunctionalization relies on the radical continuous transfer
across the unsaturated systems through a synergistic orientation
process. Over the years, our group has been heavily involved in
the development of new annulation–difunctionalization cascades
for multiple ring formations. For example, we reported a
copper-catalyzed annulation–halofluoroalkylation of 1,6-enynes,
leading to the atom-economic and highly stereoselective protocol
toward functionalized 1-indenones (Scheme 1, path a) (Shen
et al., 2019). To continue our interest in this project, we
approach a radical addition–cyclization strategy to install

FIGURE 1 | 1-Indanone-containing natural products.

SCHEME 1 | Profiles for annulation–difunctionalization of 1,6-enynes.

both trifluoromethyl and cyano moieties into the 1-indenone
framework, due to the behaviors of trifluoromethyl and cyano
groups in the wide application potentiality in assigning and
discovering new biological lead compounds. An extensive
literature survey revealed that the radical-triggered annulation–
cyanotrifluoromethylation of 1,6-enynes toward 1-indanones
remains unreported to date. For this reason, the copper-
catalyzed annulation–cyanotrifluoromethylation of 1,6-enynes 1
with Togni’s reagent 2a and trimethylsilyl cyanide (TMSCN)
was carried out by 1,10-phenanthroline (phen) as the ligand,
enabling a radical-induced three-component cascade to access
trifluoromethylated 1-indanones 3 with generally good yields
(Scheme 1, path b). Remarkably, some cases showed complete
stereoselectivity, and only E-selectivity was observed. Herein, we
report this copper-catalyzed radical transformation.
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TABLE 1 | Optimization of reaction conditions[a].

Entry Cat. (mol%) Ligand (mol%) Solvent Base (equiv) Yield (%)b

1 Cu(OAc)2 (10) L1 (20) CH3CN – 36

2 Cu(OAc)2 (10) L1 (20) DMSO – 34

3 Cu(OAc)2 (10) L1 (20) DMF – 31

4 Cu(OAc)2 (10) L1 (20) 1,4-Dioxane – NR

5 Cu(OAc)2 (10) L1 (20) THF – ND

6 Cu(OAc)2 (10) L1 (20) CH3CN NaOAc (2) 40

7 Cu(CH3CN)4PF6 (10) L1 (20) CH3CN NaOAc (2) 41

8 CuCN (10) L1 (20) CH3CN NaOAc (2) 48

9 CuI (10) L1 (20) CH3CN NaOAc (2) 46

10 Cu(OTf)2 (10) L1 (20) CH3CN NaOAc (2) 55

11 Cu(OTf)2 (10) L2 (20) CH3CN NaOAc (2) 53

12 Cu(OTf)2 (10) L3 (20) CH3CN NaOAc (2) 47

13 Cu(OTf)2 (10) L4 (20) CH3CN NaOAc (2) 50

14c Cu(OTf)2 (10) L1 (20) CH3CN NaOAc (2) 42

15 Cu(OTf)2 (10) L1 (20) CH3CN K3PO4 (2) 64

16 Cu(OTf)2 (10) L1 (20) CH3CN Cs2CO3 (2) 52

17 Cu(OTf)2 (10) L1 (20) CH3CN Et3N (2) 39

18d Cu(OTf)2 (10) L1 (20) CH3CN K3PO4 (2) 87

[a]Reaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), Cu(OTf)2 (10 mol%), L1 (20 mol%), K3PO4 (0.4 mmol), acetonitrile (2.0ml), TMSCN (0.4 mmol), Ar conditions at 50◦C for 3 h.
[b] Isolated yield based on substrates 1. [c]Umemoto’s reagent 2b was used. [d]Mole ratio of 1a, 2a, and TMSCN in 1:3:2.

RESULTS AND DISCUSSION

At the outset of our studies, we chose the preformed 1,6-enyne
1a, Togni’s reagent 2a, and TMSCN as the model substrate
(Table 1). To our delight, the reaction of 1a with 2a and
TMSCN in a 1:2:2mol ratio catalyzed by 10 mol% Cu(OAc)2
proceeded smoothly in acetonitrile at 50◦C by using 1,10-
phenanthroline (phen, L1) as a ligand, and the target product
3a as a sole (E)-stereoisomer was obtained in 36% yield. The
following screening of solvents showed that the use of DMSO
and DMF led to a slightly decreased yield of 3a compared with
acetonitrile (entries 2 and 3 vs. entry 1), whereas both 1,4-
dioxane and THF completely suppressed the formation of 3a
(entries 4 and 5). Thus, acetonitrile was the best solvent for the
reaction. An employment of NaOAc as the base facilitated the
reaction process, delivering 40% yield of the desired product 3a
(entry 6). After that, we conducted the screening of a variety
of copper salts, such as Cu(CH3CN)4PF6, CuCN, CuI, and
Cu(OTf)2, that are often utilized in catalytic transformations,
for this addition–cyclization cascade by using acetonitrile as
the reaction medium. All these catalysts could promote the
conversion of 1a into 3a (entries 7–10), and the latter one showed
the best catalytic performance in the current reaction, generating
product 3a in 55% yield (entry 10). As the next optimization
step, several ligands, such as 1,10-phenanthroline-5,6-dione

(L2), 2,2
′-bipyridine (L3), and 2,2′:6′,2

′′

-terpyridine (L4), were
investigated and anticipated to enhance the yield of product
3a. Disappointingly, ligands L2-L4 showed slightly weaker
performance on the conversion of 1a into 3a as compared
with L1 (entries 11–13). Using Togni’s reagent 2b to replace
2a resulted in a lower conversion (42%, entry 14 vs. entry 10).
Different bases such as potassium phosphate tribasic (K3PO4),
trimethylamine (Et3N), and cesium carbonate (Cs2CO3) were
then screened. The results indicated that K3PO4 could improve
the reaction, providing product 3a in 64% yield. After careful
optimizations, we found that fine-tuning the substrate ratio
1a/2a/TMSCN to 1:3:2 delivered product 3a in a higher 87% yield
(entry 18).

With the optimized conditions in hand (Table 1, entry
18), the substrate scope of this radical-triggered annulation–
cyanotrifluoromethylation of 1,6-enynes was investigated. The
results were presented in Scheme 2. Upon repeating the reaction
with 2a and TMSCN, substrate 1 with diverse substituents
such as fluoro (1b), chloro (1c and 1d), and bromo (1e)
groups on the arylalkynyl moiety all work well, giving the
corresponding functionalized (E)-1-indanones 3b–3e in 45–
78% yields. Notably, substrates 1c–1e could completely orient
the E-selectivity to the target products 3c–3e. Alternatively,
both cyclopropyl 1f and n-butyl 1g counterparts were proven
to be favorable, enabling radical-induced cyclization reactions
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SCHEME 2 | Substrate scope of 1,6-enynes.

to offer the corresponding (E)-1-indanones 3f and 3g with
complete stereoselectivities, albeit with low yields. Due to the
pharmacological significance of fluorine-containing molecules
compared to their non-fluorinated analogs, we decided to
prepare 1,6-enynes 1h–1j containing the fluoro group residing
in the 5-position of the internal arene ring and employed them to
react with 2a and TMSCN. The reaction worked well, accessing
the corresponding polyfluoro products 3h–3j in 42–64% yields
and 5:3 to 5:2 E/Z ratios. Other substituents including chloro
(1k–1o, 1r, and 1s), methyl (1p and 1t–1x), and methoxy (1q)
located at the C4- or C5-position on the internal arene ring did
not hamper this copper-catalyzed reaction, and a range of new
substituted 1-indanones 3k–3x can be isolated in synthetically
useful yields, in which a complete diastereoselectivity was also
observed in the cases of 3k, 3l, 3p, 3q, 3r, and 3t. However,
unsatisfactory E/Z ratios were detected for the other products.
Either electronically neutral (H), poor (fluoro, chloro, and
bromo), or rich [methyl, ethyl, t-butyl, and methoxy (PMP =

p-methoxyphenyl)] groups at the para-position of the arylalkynyl
moiety (R1) are well-tolerated with the catalytic conditions.
Unfortunately, 1,6-enyne 1y carrying a 2-thienyl group was an
ineffective reaction partner in this transformation. The structures
of these resulting 1-indanones were fully characterized by NMR
spectroscopy and HRMS data (Data Sheet 1).

To gain mechanistic insight into this transformation,
radical trapping experiments were performed. When 2,2,6,6-
tetramethylpiperidine-1-oxyl (TEMPO) as a radical scavenger
was subjected to the reaction conditions, the generation of
3a was completely suppressed (Scheme 3a). Similarly, BHT
could inhibit the formation of 3a. These results showed that
the reaction may include a radical process. Moreover, the
developed transformation could be valorized through post-
functionalization of indanone 3q (Scheme 3b). The combination
of NaBH4 and I2 was found to be effective to reduce 3q to give
2,3-dihydro-1H-inden-1-ol 4 (51% yield) (He et al., 2015; Chen
et al., 2018).
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SCHEME 3 | Control experiments and application of compound 3q.

MECHANISM

According to these results and related literature (Kamigata et al.,
1990; Liu et al., 2012; Pair et al., 2013; Yasu et al., 2013; He
et al., 2014b; Shen et al., 2019), a plausible mechanism was
proposed (Scheme 4). The copper(II) catalyst activates Togni’s
reagent 2a to give the activated complex A, which releases a
Cu(III) species and the trifluoromethyl radical. The latter rapidly
adds to 1,6-enyne 1a to give the radical intermediate B. In the
presence of ligands and TMSCN, Cu(III) species activates an
alkyne unit of intermediate B to drive 5-exo-dig cyclization,
giving favorable anti-Cu(III) species C (Shen et al., 2019), some
of which is converted into syn-Cu(III) species C′, together with
trimethylsilyl 2-iodobenzoate D. Finally, anti-Cu(III) species C
undergoes reductive elimination to give the desired (E)-product
3a as amajor isomer and regenerate a Cu(II) complex to complete
a catalytic cycle through the release of ligands (He et al., 2014b),
whereas syn-Cu(III) species C′ undergoes the same reductive
elimination to access minor (Z)-product 3a.

CONCLUSION

In summary, we have established a copper-catalyzed annulation–
cyanotrifluoromethylation of 1,6-enynes with easily available
Togni’s reagent and TMSCN, by which a wide range of 1-
indanones with a quaternary carbon center were stereoselectively
synthesized in generally good yields. Notably, a complete
stereoselectivity could be detected in most cases. This approach
is efficiently induced by Togni’s reagent as a radical donor and
ultimately terminated by TMSCN as the nucleophilic reagent.
The transformation offered a new entry to prepare the CF3-
containing 1-indanone skeleton via a complex radical addition–
cyclization cascade. Further investigations into the mechanism
and its application will be conducted in due course.

MATERIALS AND METHODS

General
1H NMR (13C NMR, 19F NMR) spectra were measured on
a Bruker DPX 400-MHz spectrometer in CDCl3 (DMSO-d6)
with chemical shift (δ) given in ppm relative to TMS as
internal standard [(s = singlet, d = doublet, t = triplet, brs

SCHEME 4 | Proposed reaction mechanism.

= broad singlet, m = multiplet), coupling constant (Hz)].
HRMS (ESI) was done by using a micrOTOF-Q II HRMS/MS
instrument (Bruker).

General Procedure for the Synthesis of 3
Example for the Synthesis of 3a
Under Ar conditions, a mixture of Togni’s reagent 2 (0.6 mmol),
Cu(OTf)2 (0.02 mmol), K3PO4 (0.4 mmol), and ligand L1 (0.04
mmol) was added in a Schlenk tube. Acetonitrile was added into
the tube. Then, 2-methyl-1-[2-(phenylethynyl)phenyl]prop-2-
en-1-one 1a (0.2 mmol) and TMSCN (0.4 mmol) were put in the
system, stirred for 3 h at 50◦C until thin-layer chromatography
(TLC) revealed that conversion of the starting material 1a

was complete. Next, the reaction mixture was concentrated in
vacuum, and the resulting residue was purified by silica gel
column chromatography (petroleum ether/ethyl acetate = 25:1,
v/v) to afford the desired product 3a.

General Procedure for the Synthesis of 4
Under Ar conditions, 3q (0.05 mmol), NaBH4 (3.0 equiv), and
I2 (1.0 equiv) were added in a Schlenk tube. THF was added,
and the reaction mixture was stirred at room temperature for
10 h. The solution was treated with water and extracted with
dichloromethane. The combined organic layers were washed
with brine, dried over Na2SO4, concentrated in vacuum, and
purified by preparative TLC (petroleum ether/ethyl acetate =

2/1) to afford product 4 (He et al., 2015; Chen et al., 2018).

(E)-2-[2-Methyl-3-oxo-2-(2,2,2-trifluoroethyl)-2,3-

dihydro-1H-inden-1-ylidene]-2-phenylacetonitrile (3a)
Light yellow solid, 59mg, 87% yield; mp 105.2–106.1◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.96 (d, J = 8.0Hz, 1H), 7.94 (d, J =
7.6Hz, 1H), 7.90–7.85 (m, 1H), 7.73–7.67 (m, 1H), 7.54–7.49 (m,
3H), 7.46–7.41 (m, 2H), 2.66–2.53 (m, 1H), 2.25–2.12 (m, 1H),
1.19 (s, 3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 202.3, 153.2,
144.5, 136.3, 135.5, 133.0, 132.4, 129.9, 129.5, 129.2, 125.0 (q, J =
85.1Hz, CF3), 118.9, 109.1, 49.8, 40.4 (q, J = 27.6Hz, CH2CF3),
25.1. 19F NMR (376 MHz, CDCl3; δ, ppm): −61.29 (s, 3F). IR
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(KBr, ν, cm−1): 2,200, 1,721, 1,577, 1,447, 1,361, 1,256, 1,138, 967,
775. HRMS (ESI, m/z): calcd for C20H14F3NONa [M + Na]+

364.0919, found 364.0928.

(E)-2-(4-Fluorophenyl)-2-[2-methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-

ylidene]acetonitrile (3b, Major)
Light yellow solid, 56mg, 78% yield; mp 148.9–150.9◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.94 (d, J = 8.0Hz, 1H), 7.94 (d, J =
7.6Hz, 1H), 7.86 (d, J= 8.0Hz, 1H), 7.73–7.67 (m, 1H), 7.46–7.42
(m, 2H), 7.27–7.22 (m, 2H), 2.67–2.58 (m, 1H), 2.18–2.09 (m,
1H), 1.20 (s, 3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 202.0,
163.3 (d, 1J = 247.0Hz, CF), 153.9, 144.3, 136.3, 135.3, 132.6,
131.6 (d, 3J = 8.3Hz, CF), 128.9 (d, 4J = 3.7Hz, CF), 126.6, 125.0
(q, J = 80.7Hz, CF3), 117.4, 117.2, 116.4 (d, 2J = 21.8Hz, CF),
108.0, 49.8, 40.3 (q, J = 27.8Hz, CH2CF3), 25.2.

19F NMR (376
MHz, CDCl3; δ, ppm): −61.31 (s, 3F), −109.82 (s, 1F). IR (KBr,
ν, cm−1): 2,202, 1,724, 1,599, 1,509, 1,361, 1,257, 1,142, 1,070,
776. HRMS (ESI, m/z): calcd for C20H13F4NONa [M + Na]+

382.0825, found 382.0784.

(E)-2-(3-Chlorophenyl)-2-[2-Methyl-3-oxo-2-(2,2,2-

Trifluoroethyl)-2,3-Dihydro-1H-Inden-1-

Ylidene]Acetonitril (3c)
Light yellow solid, 34mg, 45% yield; mp 174.6–177.1◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.94 (d, J = 8.0Hz, 1H), 7.96 (d,
J = 7.6Hz, 1H), 7.91–7.86 (m, 1H), 7.75–7.69 (m, 1H), 7.52–
7.42 (m, 3H), 7.34 (d, J = 7.2Hz, 1H), 2.69–2.61 (m, 1H), 2.21–
2.12 (m, 1H), 1.21 (s, 3H). 13C NMR (100 MHz, CDCl3; δ,
ppm): 201.9, 154.0, 144.2, 136.4, 135.6, 135.2, 134.6, 132.7, 130.5.
130.2, 129.8, 127.7, 125.1 (q, J = 78.5Hz, CF3), 118.5, 107.6,
49.8, 40.2 (q, J = 55.5Hz, CH2CF3), 25.2.

19F NMR (376 MHz,
CDCl3; δ, ppm): −61.31 (s, 3F). IR (KBr, ν, cm−1): 2,204, 1,728,
1,595, 1,336, 1,260, 1,140, 1,069, 776. HRMS (ESI,m/z): calcd for
C20H13ClF3NONa [M+ Na]+ 398.0529, found 398.0520.

(E)-2-(4-Chlorophenyl)-2-[2-Methyl-3-oxo-2-(2,2,2-

Trifluoroethyl)-2,3-Dihydro-1H-Inden-1-

ylidene]Acetonitrile (3d)
Light yellow solid, 53mg, 70% yield; mp 154.5–155.3◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.94 (d, J = 8.4Hz, 1H), 7.95 (d, J
= 7.6Hz, 1H), 7.91–7.85 (m, 1H), 7.75–7.69 (m, 1H), 7.50 (d,
J = 8.4Hz, 2H), 7.39 (d, J = 8.4Hz, 2H), 2.69–2.59 (m, 1H),
2.20–2.11 (m, 1H), 1.20 (s, 3H). 13C NMR (100 MHz, CDCl3; δ,
ppm): 201.9, 153.9, 144.2, 136.4, 136.3, 135.6, 132.7, 131.4, 131.0,
129.6, 125.1 (q, J = 78.5Hz, CF3), 118.6, 107.8, 49.8, 40.7 (q, J =
27.7Hz, CH2CF3), 25.2.

19F NMR (376 MHz, CDCl3; δ, ppm):
−61.28 (s, 3F). IR (KBr, ν, cm−1): 2,204, 1,729, 1,593, 1,491,
1,360, 1,256, 1,143, 1,072, 835, 776. HRMS (ESI, m/z): calcd for
C20H13ClF3NONa [M+ Na]+ 398.0529, found 398.0569.

(E)-2-(4-Bromophenyl)-2-[2-Methyl-3-oxo-2-(2,2,2-

Trifluoroethyl)-2,3-dihydro-1H-inden-1-

ylidene]Acetonitrile (3e)
Light yellow solid, 53mg, 63% yield; mp 103.9–104.7◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.93 (d, J = 8.0Hz, 1H), 7.95 (d, J
= 7.6Hz, 1H), 7.91–7.85 (m, 1H), 7.74–7.68 (m, 1H), 7.66 (d,
J = 8.4Hz, 2H), 7.32 (d, J = 8.4Hz, 2H), 2.71–2.59 (m, 1H),

2.21–2.11 (m, 1H), 1.20 (s, 3H). 13C NMR (100 MHz, CDCl3;
δ, ppm): 201.9, 153.9, 144.2, 136.4, 135.6, 132.7, 132.5, 131.9,
131.2, 125.1 (q, J = 77.7Hz, CF3), 124.5, 118.5, 107.8, 49.8, 40.4
(q, J = 27.8Hz, CH2CF3), 25.2.

19F NMR (376 MHz, CDCl3;
δ, ppm): −61.27 (s, 3F). IR (KBr, ν, cm−1): 2,205, 1,728, 1,585,
1,486, 1,360, 1,255, 1,142, 1,069, 1,011, 968, 832, 723. HRMS
(ESI, m/z): calcd for C20H13BrF3NONa [M + Na]+ 442.0024,
found 442.0020.

(E)-2-Cyclopropyl-2-[2-Methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-

ylidene]Acetonitrile (3f)
Light yellow oil, 9mg, 14% yield. 1H NMR (400 MHz, CDCl3; δ,
ppm): 7.82 (d, J = 7.6Hz, 1H), 7.72–7.61 (m, 2H), 7.46–7.39 (m,
1H), 5.99–5.89 (m, 1H), 2.86–2.77 (m, 1H), 2.65–2.58 (m, 1H),
2.58–2.46 (m, 4H), 1.33 (s, 3H). 13C NMR (100 MHz, CDCl3;
δ, ppm): 203.5, 146.2, 135.9, 129.2, 124.4 (q, J = 28.8Hz, CF3),
118.9, 110.0, 97.0, 48.1, 40.0 (q, J = 28.1Hz, CH2CF3), 25.3, 25.2,
17.1. 19F NMR (376 MHz, CDCl3; δ, ppm): −61.78 (s, 3F). IR
(KBr, ν, cm−1): 2,248, 1,964, 1,719, 1,602, 1,471, 1,362, 1,261,
1,142, 1,069, 799. HRMS (ESI, m/z): calcd for C17H14F3NONa
[M+ Na]+ 328.0920, found 328.0856.

(E)-2-[2-Methyl-3-oxo-2-(2,2,2-Trifluoroethyl)-2,3-

dihydro-1H-inden-1-ylidene]hexanenitrile (3g)
Light yellow oil, 19mg, 30% yield. 1H NMR (400 MHz, CDCl3;
δ, ppm): 8.88 (d, J = 8.0Hz, 1H), 7.90 (d, J = 7.6Hz, 1H), 7.83–
7.77 (m, 1H), 7.64–7.59 (m, 1H), 3.08–2.99 (m, 1H), 2.82–2.72
(m, 1H), 2.57–2.48 (m, 2H), 1.83–1.69 (m, 2H), 1.49–1.45 (m,
2H), 1.41 (s, 3H), 1.01 (t, J = 7.2Hz, 3H). 13C NMR (100 MHz,
CDCl3; δ, ppm): 202.7, 149.9, 144.8, 136.2, 134.8, 131.6, 124.8
(q, J = 49.1Hz, CF3), 118.8, 110.3, 49.2, 40.3 (q, J = 25.2Hz,
CH2CF3), 31.8, 30.0, 23.7, 22.6, 13.9.

19FNMR (376MHz, CDCl3;
δ, ppm): −62.09 (s, 3F). IR (KBr, ν, cm−1): 2,210, 1,731, 1,596,
1,469, 1,365, 1,257, 1,142, 1,070, 777. HRMS (ESI,m/z): calcd for
C18H18F3NONa [M+ Na]+ 344.1213, found 344.1197.

(E)-2-[5-Fluoro-2-methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-ylidene]-2-

phenylacetonitrile (3h, Major)
Light yellow solid, 30mg, 42% yield; mp 107.0–109.0◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 9.00–8.94 (m, 1H), 7.59–7.55 (m,
2H), 7.51–7.48 (m, 3H), 7.44–7.42 (m, 2H), 2.62–2.53 (m, 1H),
2.24–2.15 (m, 1H), 1.19 (s, 3H). 13C NMR (100 MHz, CDCl3; δ,
ppm): 201.3, 165.0 (d, 1J = 256.3Hz, CF), 152.1, 140.6 (d, 5J =
2.5Hz, CF), 132.7, 130.1, 129.2, 127.8 (d, 4J = 8.6Hz, CF), 126.3,
123.5, 123.3 (d, 2J = 26.8Hz, CF), 118.9, 110.6 (d, 3J = 22.2Hz,
CF), 50.4, 40.5 (q, J = 27.8Hz, CH2CF3), 25.1.

19F NMR (376
MHz, CDCl3; δ, ppm):−61.30 (s, 3F),−104.65 (s, 1F). IR (KBr, ν,
cm−1): 2,205, 1,732, 1,600, 1,488, 1,362, 1,257, 1,186, 1,141, 1,067,
949, 833. HRMS (ESI,m/z): calcd for C20H13F4NONa [M+Na]+

382.0825, found 382.0832.

(E)-2[(5-Fluoro-2-methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-ylidene]-2-(p-

tolyl)acetonitrile (3i, Major)
Light yellow solid, 41mg, 55% yield; mp 1,041–105.8◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.98–8.93 (m, 1H), 7.58–7.52 (m,
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2H), 7.35–7.30 (m, 4H), 2.62–2.52 (m, 1H), 2.43 (s, 3H), 2.27–
2.18 (m, 1H), 1.20 (s, 3H). 13C NMR (100 MHz, CDCl3; δ, ppm):
201.5, 164.9 (d, 1J = 256.2Hz, CF), 152.0, 140.2, 130.8, 129.9,
129.3, 127.7 (d, 4J = 8.6Hz, CF), 126.3, 123.5, 123.2 (d, 2J =

23.6Hz, CF), 119.0, 110.5 (d, 3J = 22.2Hz, CF), 50.4, 40.4 (q, J
= 27.7Hz, CH2CF3), 25.1, 21.4.

19F NMR (376 MHz, CDCl3; δ,
ppm): −61.29 (s, 3F), −104.91 (s, 1F). IR (KBr, ν, cm−1): 2,201,
1,729, 1,596, 1,447, 1,361, 1,256, 1,178, 1,138, 1,069, 967, 775,
712. HRMS (ESI, m/z): calcd for C21H15F4NONa [M + Na]+

396.0982, found 396.0956.

(E)-2-[4-(tert-Butyl)phenyl]-2-[5-fluoro-2-methyl-3-

oxo-2-(2,2,2-trifluoroethyl)-2,3-dihydro-1H-inden-1-

ylidene]acetonitrile (3j, Major)
Light yellow oil, 53mg, 64% yield. 1H NMR (400 MHz, CDCl3;
δ, ppm): 8.99–8.92 (m, 1H), 7.53–7.48 (m, 3H), 7.36–7.32 (m,
3H), 2.63–2.53 (m, 1H), 2.31–2.18 (m, 1H), 1.37 (s, 9H), 1.20 (s,
3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 201.5, 164.9 (d, 1J
= 256.0Hz, CF), 153.4, 140.8 (d, 5J = 2.6Hz, CF), 129.7, 129.1,
128.3, 127.7 (d, 4J = 8.5Hz, CF), 126.1, 123.5, 123.2 (d, 2J =

23.6Hz, CF), 119.0, 110.5 (d, 3J = 22.2Hz, CF), 50.4, 40.6 (q, J =
27.7Hz, CH2CF3), 34.9, 31.3, 25.0.

19F NMR (376 MHz, CDCl3;
δ, ppm): −61.26 (s, 3F), −104.94 (s, 1F). IR (KBr, ν, cm−1):
2,206, 1,734, 1,599, 1,487, 1,362, 1,258, 1,187, 1,141, 1,071, 949,
808. HRMS (ESI, m/z): calcd for C24H21F4NONa [M + Na]+

438.1451, found 438.1458.

(E)-2-[5-Chloro-2-methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-ylidene]-2-

phenylacetonitrile (3k)
Light yellow solid, 36mg, 48% yield; mp 144.7–146.9◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.89 (d, J = 8.8Hz, 1H), 7.89 (d,
J = 2.0Hz, 1H), 7.84–7.78 (m, 1H), 7.54–7.48 (m, 3H), 7.46–
7.38 (m, 2H), 2.63–2.52 (m, 1H), 2.24–2.13 (m, 1H), 1.19 (s,
3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 201.1, 152.1, 142.7,
139.1, 137.0, 136.3, 132.7, 130.1, 129.4, 129.2, 126.7, 124.4, 118.7,
109.6, 50.2, 40.5 (q, J = 27.8Hz, CH2CF3), 25.1.

19F NMR (376
MHz, CDCl3; δ, ppm): −61.25 (s, 3F). IR (KBr, ν, cm−1): 2,205,
1,726, 1,588, 1,457, 1,419, 1,364, 1,264, 1,179, 1,142, 1,068, 836,
703. HRMS (ESI, m/z): calcd for C20H13ClF3NONa [M + Na]+

398.0530, found 398.0491.

(E)-2-[5-Chloro-2-methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-ylidene]-2-(4-

fluorophenyl)acetonitrile (3l)
Light yellow solid, 48mg, 61% yield; mp 195.2–197.2◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.88 (d, J = 8.8Hz, 1H), 7.89 (d,
J = 2.0Hz, 1H), 7.84–7.78 (m, 1H), 7.45–7.38 (m, 2H), 7.25–
7.18 (m, 2H), 2.68–2.55 (m, 1H), 2.20–2.08 (m, 1H), 1.20 (s,
3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 200.9, 163.4 (d, 1J
= 250.2Hz, CF), 152.8, 142.4, 139.4, 137.0, 136.4, 131.5 (d, 2J
= 8.4Hz, CF), 128.6 (d, 3J = 3.6Hz, CF), 126.7, 124.5, 118.6,
116.7, 116.4, 108.5, 50.1, 40.4 (q, J = 27.8Hz, CH2CF3), 25.1.

19F
NMR (376 MHz, CDCl3; δ, ppm):−61.27(s, 3F),−109.49 (s, 1F).
IR (KBr, ν, cm−1): 2,209, 1,727, 1,588, 1,507, 1,426, 1,361, 1,263,
1,139, 1,064, 835. HRMS (ESI, m/z): calcd for C20H12ClF4NONa
[M+ Na]+ 416.0436, found 416.0421.

(E)-2-[5-Chloro-2-methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-ylidene]-2-(p-

tolyl)acetonitrile (3m, Major)
Light yellow solid, 48mg, 62% yield; mp 121.7–123.6◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.88 (d, J = 8.8Hz, 1H), 7.88 (d,
J = 2.0Hz, 1H), 7.81–7.78 (m, 1H), 7.30 (s, 4H), 2.61–2.52 (m,
1H), 2.43 (s, 3H), 2.26–2.18 (m, 1H), 1.20 (s, 3H). 13C NMR (100
MHz, CDCl3; δ, ppm): 201.3, 152.0, 142.8, 140.2, 139.0, 136.3,
135.4, 130.8, 129.9, 129.3, 126.7, 124.3, 118.8, 109.7, 50.2, 40.4 (q,
J = 27.6Hz, CH2CF3), 25.2, 21.4.

19F NMR (376 MHz, CDCl3;
δ, ppm): −61.25 (s, 3F). IR (KBr, ν, cm−1): 2,205, 1,732, 1,589,
1,508, 1,457, 1,361, 1,263, 1,178, 1,144, 1,070, 942, 833. HRMS
(ESI, m/z): calcd for C21H15ClF3NONa [M + Na]+ 412.0686,
found 412.0657.

(E)-2-[5-Chloro-2-methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-ylidene]-2-(4-

ethylphenyl)acetonitrile (3n, Major)
Light yellow solid, 48mg, 59% yield; mp 117.8–120.4◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.88 (d, J = 8.8Hz, 1H), 7.88 (d, J =
2.0Hz, 1H), 7.82–7.78 (m, 1H), 7.32 (s, 4H), 2.75–2.68 (m, 2H),
2.61–2.53 (m, 1H), 2.27–2.18 (m, 1H), 1.30 (t, J = 7.6Hz, 3H),
1.20 (s, 3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 201.3, 152.0,
146.5, 142.8, 139.0, 136.9, 136.3, 129.6, 129.3, 128.7, 126.7, 124.3,
118.9, 109.8, 50.2, 40.4 (q, J= 27.76Hz, CH2CF3), 28.7, 25.1, 15.3.
19F NMR (376 MHz, CDCl3; δ, ppm): −61.24 (s, 3F). IR (KBr, ν,
cm−1): 2,203, 1,732, 1,587, 1,507, 1,457, 1,362, 1,254, 1,179, 1,145,
1,070, 942, 833. HRMS (ESI, m/z): calcd for C22H17ClF3NONa
[M+ Na]+ 426.0843, found 426.0824.

(E)-2-[5-Chloro-2-methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-ylidene]-2-(4-

methoxyphenyl)acetonitrile (3o, Major)
Light yellow solid, 56mg, 69% yield; mp 118.4–120.8◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.87 (d, J = 8.8Hz, 1H), 7.87 (d, J =
2.0Hz, 1H), 7.83–7.79 (m, 1H), 7.36–7.33 (m, 2H), 7.02–6.98 (m,
2H), 3.87 (s, 3H), 2.62–2.54 (m, 1H), 2.27–2.18 (m, 1H), 1.20 (s,
3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 201.3, 160.7, 152.1,
142.8, 138.9, 136.9, 136.3, 130.8, 126.7, 125.5, 124.3, 118.9, 114.6,
109.5, 55.4, 50.2, 40.3 (q, J = 27.8Hz, CH2CF3), 25.2.

19F NMR
(376 MHz, CDCl3; δ, ppm): −61.26 (s, 3F). IR (KBr, ν, cm−1):
2,203, 1,732, 1,602, 1,508, 1,457, 1,362, 1,255, 1,177, 1,144, 1,069,
833. HRMS (ESI,m/z): calcd for C21H15ClF3NO2Na [M+ Na]+

428.0636, found 428.0623.

(E)-2-[2,5-Dimethyl-3-oxo-2-(2,2,2-trifluoroethyl)-2,3-

dihydro-1H-inden-1-ylidene]-2-(p-

tolyl)acetonitrile (3p)
Light yellow solid, 48mg, 65% yield; mp 174.5–176.6◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.83 (d, J = 8.8Hz, 1H), 7.41–7.37
(m, 1H), 7.31 (d, J = 2.4Hz, 1H), 7.29 (s, 3H), 7.26 (s, 1H), 3.94
(s, 3H), 2.60–2.50 (m, 1H), 2.42 (s, 3H), 2.27–2.16 (m, 1H), 1.19
(s, 3H). 13CNMR (100MHz, CDCl3; δ, ppm): 202.4, 163.0, 152.7,
139.8, 138.0, 137.7, 130.2, 129.8, 129.6, 126.8, 125.2, 119.5, 106.5,
105.6, 56.0, 50.3, 40.3 (q, J = 27.6Hz, CH2CF3), 25.2, 21.4.

19F
NMR (376 MHz, CDCl3; δ, ppm): −61.38 (s, 3F). IR (KBr, ν,
cm−1): 2,201, 1,725, 1,594, 1,486, 1,362, 1,296, 1,231, 1,146, 1,069,
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832. HRMS (ESI, m/z): calcd for C22H18F3NONa [M + Na]+

392.1233, found 392.1257.

(E)-2-(4-Chlorophenyl)-2-[5-methoxy-2-methyl-3-

oxo-2-(2,2,2-trifluoroethyl)-2,3-dihydro-1H-inden-1-

ylidene]acetonitrile (3q)
Light yellow solid, 52mg, 64% yield; mp 130.5–131.2◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.83 (d, J = 8.8Hz, 1H), 7.48 (d, J =
8.4Hz, 2H), 7.40 (d, J = 6.4Hz, 1H), 7.39–7.35 (m, 2H), 7.32 (d,
J = 2.4Hz, 1H), 3.94 (s, 3H), 2.68–2.56 (m, 1H), 2.20–2.08 (m,
1H), 1.19 (s, 3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 201.9,
163.3, 153.5, 137.8, 137.5, 136.1, 131.6, 131.2, 129.5, 126.0 (q, J =
160.5Hz, CF3), 119.0, 105.8, 105.0, 56.0, 50.3, 40.3 (q, J= 27.7Hz,
CH2CF3), 25.2.

19F NMR (376 MHz, CDCl3; δ, ppm): −61.38 (s,
3F). IR (KBr, ν, cm−1): 2,202, 1,727, 1,595, 1,488, 1,364, 1,295,
1,143, 1,019, 845. HRMS (ESI,m/z): calcd for C21H15ClF3NO2Na
[M+ Na]+ 428.0636, found 428.0616.

(E)-2-[6-Chloro-2-methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-ylidene]-

2-phenylacetonitrile (3r)
Light yellow solid, 53mg, 71% yield; mp 161.6–163.8◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.94 (d, J = 1.2Hz, 1H), 7.88 (d,
J = 8.0Hz, 1H), 7.69–7.64 (m, 1H), 7.54–7.50 (m, 3H), 7.45–
7.39 (m, 2H), 2.62–2.54 (m, 1H), 2.22–2.13 (m, 1H), 1.19 (s,
3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 201.0, 151.9, 145.7,
143.3, 133.8, 133.0, 132.6, 130.1, 129.4, 129.3, 125.6, 125.5, 118.4,
110.5, 50.0, 40.4 (q, J = 27.7Hz, CH2CF3), 25.2.

19F NMR (376
MHz, CDCl3; δ, ppm): −61.25 (s, 3F). IR (KBr, ν, cm−1): 2,202,
1,724, 1,589, 1,489, 1,361, 1,271, 1,139, 1,072, 835, 712. HRMS
(ESI, m/z): calcd for C20H13ClF3NONa [M + Na]+ 398.0530,
found 398.0556.

(E)-2-[6-Chloro-2-methyl-3-oxo-2-(2,2,2-

trifluoroethyl)-2,3-dihydro-1H-inden-1-ylidene]-2-(p-

tolyl)acetonitrile (3s, Major)
Light yellow solid, 48mg, 62% yield; mp 121.5–123.1◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.92 (s, 1H), 7.86 (d, J = 8.0Hz,
1H), 7.65 (d, J = 8.4Hz, 1H), 7.36 (d, J = 7.6Hz, 1H), 7.30 (s,
3H), 2.61–2.52 (m, 1H), 2.43 (s, 3H), 2.26–2.17 (m, 1H), 1.19 (s,
3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 201.1, 151.7, 145.8,
143.2, 140.3, 133.8, 132.9, 130.8, 129.9, 126.8, 125.6, 118.5, 110.7,
50.1, 40.4 (q, J = 27.7Hz, CH2CF3), 25.2, 21.4.

19F NMR (376
MHz, CDCl3; δ, ppm): −61.24 (s, 3F). IR (KBr, ν, cm−1): 2,205,
1,731, 1,588, 1,509, 1,456, 1,362, 1,255, 1,145, 1,072, 825. HRMS
(ESI, m/z): calcd for C21H15ClF3NONa [M + Na]+ 412.0686,
found 412.0686.

(E)-2-[2,6-Dimethyl-3-oxo-2-(2,2,2-trifluoroethyl)-2,3-

dihydro-1H-inden-1-ylidene]-2-phenylacetonitrile (3t)
Light yellow solid, 41mg, 58% yield; mp 147.9–150.4◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.74 (s, 1H), 7.83 (d, J = 8.0Hz,
1H), 7.53–7.48 (m, 4H), 7.45–7.41 (m, 2H), 2.62–2.54 (m, 4H),
2.21–2.11 (m, 1H), 1.17 (s, 3H). 13C NMR (100 MHz, CDCl3;
δ, ppm): 201.7, 153.3, 147.9, 144.8, 133.7, 133.5, 133.1, 129.8,
129.6, 129.2, 125.5 (q, J = 112.6Hz, CF3), 119.0, 108.7, 50.0,
40.3 (q, J = 27.6Hz, CH2CF3), 25.2, 22.6.

19F NMR (376 MHz,

CDCl3; δ, ppm): −61.33 (s, 3F). IR (KBr, ν, cm−1): 2,202, 1,716,
1,613, 1,489, 1,455, 1,360, 1,253, 1,136, 1,072, 831, 767. HRMS
(ESI, m/z): calcd for C21H16F3NONa [M + Na]+ 378.1076,
found 378.1054.

(E)-2-(4-Chlorophenyl)-2-[2,6-dimethyl-3-oxo-2-

(2,2,2-trifluoroethyl)-2,3-dihydro-1H-inden-1-

ylidene]acetonitrile

(3u, Major)
Light yellow solid, 66mg, 85% yield; mp 108.1–110.8◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.72 (s, 1H), 7.84 (d, J = 8.0Hz, 1H),
7.52–7.48 (m, 3H), 7.40 (d, J = 6.8Hz, 2H), 2.66–2.58 (m, 4H),
2.17–2.08 (m, 1H), 1.18 (s, 3H). 13C NMR (100 MHz, CDCl3; δ,
ppm): 201.3, 154.0, 148.0, 144.6, 136.2, 134.0, 133.8, 132.3, 131.0,
129.5, 126.9, 125.0 (q, J = 106.5Hz, CF3), 124.6, 118.6, 107.4,
50.0, 40.4 (q, J = 27.6Hz, CH2CF3), 25.2, 22.6.

19F NMR (376
MHz, CDCl3; δ, ppm): −61.33 (s, 3F). IR (KBr, ν, cm−1): 2,208,
1,727, 1,595, 1,489, 1,360, 1,253, 1,180, 1,142, 1,071, 832. HRMS
(ESI, m/z): calcd for C21H15ClF3NONa [M + Na]+ 412.0686,
found 412.0637.

(E)-2-(4-Bromophenyl)-2-[2,6-dimethyl-3-oxo-2-

(2,2,2-trifluoroethyl)-2,3-dihydro-1H-inden-1-

ylidene]acetonitrile

(3v, Major)
Light yellow solid, 39mg, 45% yield; mp 136.5–138.6◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.71 (s, 1H), 7.83 (d, J = 8.0Hz, 1H),
7.65 (d, J = 8.4Hz, 2H), 7.52 (d, J = 8.0Hz, 1H), 7.31 (d, J =
8.4Hz, 2H), 2.66–2.61 (m, 1H), 2.58 (s, 3H), 2.17–2.09 (m, 1H),
1.18 (s, 3H). 13C NMR (100 MHz, CDCl3; δ, ppm): 201.3, 154.0,
145.0, 144.6, 134.0, 133.8, 133.2, 132.5, 131.2, 126.9, 125.5 (q, J
= 105.5Hz, CF3), 124.6, 118.5, 107.4, 50.0, 40.4 (q, J = 27.7Hz,
CH2CF3), 25.2, 22.6.

19F NMR (376 MHz, CDCl3; δ, ppm):
−61.31 (s, 3F). IR (KBr, ν, cm−1): 2,206, 1,731, 1,593, 1,456,
1,362, 1,255, 1,141, 1,070, 1,011, 831. HRMS (ESI,m/z): calcd for
C21H15BrF3NONa [M+ Na]+ 456.0181, found 456.0137.

(E)-2-[2,6-Dimethyl-3-oxo-2-(2,2,2-trifluoroethyl)-2,3-

dihydro-1H-inden-1-ylidene]-2-(p-

tolyl)acetonitrile (3w, Major)
Light yellow solid, 54mg, 73% yield; mp 127.8–129.9◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.73 (s, 1H), 7.82 (d, J = 8.0Hz, 1H),
7.49 (d, J = 8.0Hz, 1H), 7.30 (s, 4H), 2.61–2.53 (m, 4H), 2.43
(s, 3H), 2.24–2.17 (m, 1H), 1.18 (s, 3H). 13C NMR (100 MHz,
CDCl3; δ, ppm): 201.9, 153.2, 147.8, 144.9, 140.0, 133.6, 133.3,
130.5, 129.8, 129.4, 127.1, 125.4 (q, J = 114.4Hz, CF3), 119.1,
108.9, 50.0, 40.3 (q, J = 27.5Hz, CH2CF3), 25.2, 22.6, 21.4.

19F
NMR (376 MHz, CDCl3; δ, ppm): −61.32 (s, 3F). IR (KBr, ν,
cm−1): 2,204, 1,719, 1,609, 1,590, 1,510, 1,456, 1,361, 1,254, 1,144,
1,071, 830. HRMS (ESI, m/z): calcd for C22H18F3NONa [M +

Na]+ 392.1233, found 392.1223.

(E)-2-[2,6-Dimethyl-3-oxo-2-(2,2,2-trifluoroethyl)-2,3-

dihydro-1H-inden-1-ylidene]-2-(4-methoxyphenyl)

acetonitrile (3x, Major)
Light yellow solid, 63mg, 82% yield; mp 120.8–122.4◦C. 1HNMR
(400 MHz, CDCl3; δ, ppm): 8.72 (s, 1H), 7.82 (d, J = 8.0Hz,
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1H), 7.49 (d, J = 8.0Hz, 1H), 7.36 (d, J = 8.4Hz, 2H), 7.00
(d, J = 8.8Hz, 2H), 3.87 (s, 3H), 2.62–2.55 (m, 4H), 2.24–2.19
(m, 1H), 1.19 (s, 3H). 13C NMR (100 MHz, CDCl3; δ, ppm):
201.9, 160.5, 153.3, 147.8, 144.9, 133.6, 133.3, 130.9, 127.0, 125.5
(q, J = 114.2Hz, CF3), 125.1, 119.2, 114.5, 108.6, 55.4, 50.1,
40.2 (q, J = 27.7Hz, CH2CF3), 25.2, 22.6.

19F NMR (376 MHz,
CDCl3; δ, ppm): −61.32 (s, 3F). IR (KBr, ν, cm−1): 2,205, 1,724,
1,605, 1,507, 1,457, 1,362, 1,257, 1,141, 1,070, 1,026, 832. HRMS
(ESI, m/z): calcd for C22H18F3NO2Na [M + Na]+ 408.1182,
found 408.1182.

3-[2-Amino-1-(4-chlorophenyl)ethyl]-6-methoxy-2-

methyl-2-(2,2,2-trifluoroethyl)-2,3-dihydro-1H-inden-

1-ol (4)
White oil, 11mg, 51% yield. 1H NMR (400 MHz, CDCl3;
δ, ppm): 8.39 (d, J = 8.4Hz, 1H), 7.47–7.41 (m, 2H), 7.35–
7.30 (m, 2H), 6.99 (s, 2H), 4.78 (s, 1H), 3.89 (s, 3H), 3.70–
3.66 (m, 1H), 3.25–3.21 (m, 1H), 2.37–2.23 (m, 2H), 1.95–
1.91 (m, 1H), 1.78 (s, 2H), 1.70–1.66 (m, 1H), 1.07 (s, 3H).
13C NMR (100 MHz, d6-DMSO; δ, ppm): 162.8, 160.4, 151.7,
134.3, 133.5, 130.7 (q, J = 154.3Hz, CF3), 128.2, 126.1, 120.2,
115.7, 109.0, 102.2, 79.4, 67.5, 56.0, 53.7, 25.6, 24.2. 19F NMR
(376 MHz, d6-DMSO; δ, ppm): −58.24 (s, 3F). HRMS (ESI,

m/z): calcd for C21H23ClF3NNaO2 [M + Na]+ 436.8508,
found 436.8517.
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