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In brief

Kitchin, Richardson et al. show that

responses to Ad26.COV2.S persist for

6 months after vaccination. Furthermore,

mild breakthrough infection after

Ad26.COV2.S vaccination results in

dramatic boosts in binding and

neutralizing antibody titers and Fc

effector function. This includes high titers

of neutralizing antibodies against the

highly resistant Omicron variant.
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SUMMARY
The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely
deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing
and binding antibody responses to Ad26.COV2.S vaccination are stable for 6months post-vaccination, when
tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who
experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically
boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar
magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with
severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralization-
resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1.
These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been
widely deployed, but where ongoing infections continue to occur at high levels.
INTRODUCTION

A phase 3 clinical trial of Ad26.COV2.S in eight countries demon-

strated 85% protection against severe disease,1 including in

South Africa, where the trial coincided with the emergence of

the Beta (B.1.351) variant, which was shown to have increased

resistance to neutralizing antibodies.2,3 As a result, Ad26.

COV2.S was made available to South African health care

workers (HCWs) in early 2021 through the Sisonke open-label,

phase 3b clinical trial. Globally, this vaccine has also been

used widely in several countries, including the United States
Cell Re
This is an open access article under the CC BY-N
and European Union member states, with 5.38, 15.68, and

16.16 million doses administered in these regions, respectively,

by the beginning of November 2021.

Subsequently, South Africa has experienced a third and fourth

wave of infection, driven by the Delta (B.1.617.2) and Omicron

(B.1.1.529) variants, respectively, with reports of Ad26.COV2.S

breakthrough infections (BTIs) occurring. Infections following

mRNA vaccination result in boosted neutralizing antibody

titers,4–6 but less is known about the immunological conse-

quences of BTI after Ad26.COV2.S vaccination. With the emer-

gence in late November 20217 of the Omicron variant, which
ports Medicine 3, 100535, March 15, 2022 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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now dominates global infections and has more spike mutations

in key neutralizing epitopes than any variant to date, a key ques-

tion is whether Ad26.COV2.S-vaccinated individuals who expe-

rienced breakthrough infections in the previous Delta-driven

wave would have substantial neutralizing responses against

this variant.

Here, we evaluated the durability and breadth of vaccine-eli-

cited humoral responses in 19 HCWs vaccinated with Ad26.

COV.2S in February-March 2021 (Figure 1A). Second, we char-

acterized the humoral response to BTI in a subset of six individ-

uals with severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) PCR-confirmed infections 4 to 5 months (median

number of months: 4.4; interquartile range [IQR]: 4.1–4.8)

following vaccination. Five of these participants were followed

longitudinally 2 to 6 months post-vaccination, whereas for the

sixth BTI participant only 2- and 6-month post-vaccination sam-

ples were available (Table S1). These BTIs occurred between

June and August 2021, during the third wave of SARS-CoV-2 in-

fections in South Africa. This wave was driven by the more trans-

missible Delta variant, which accounted for between 40% and

95% of genomes sequenced in South Africa over this period.8

BTIs were thus most likely caused by the Delta variant, though

sequencing data for these participants were not available.

Participants, of whom 16 of 19 were female, had a median age

of 34 (IQR: 30–40 years) and all presented with mild disease

(Table S1). All 19 participants were SARS-CoV-2 naive prior to

vaccination, as confirmed by nucleocapsid ELISA (Figure 1B).

RESULTS

We first assessed the durability of vaccine-elicited antibody re-

sponses in individuals whowere confirmed to have remained un-

infected up to 6 months post-vaccination, by nucleocapsid

ELISA (Figure 1B). Spike binding responses against the original

D614G variant were measured at 2, 4, and 6 months post-vacci-

nation. No significant reduction in binding was observed over

this period (Figure 1C), as has been previously reported.9–11

We also used a spike-pseudotyped lentivirus neutralization

assay to measure longitudinal neutralization titers against the

ancestral D614G variant (which differs from the vaccine spike

protein by a single D614G mutation), six SARS-CoV-2 variants

with increased transmissibility and/or immune escape muta-

tions, and SARS-CoV-1. The SARS-CoV-2 variants included

Beta, Delta, Gamma (P.1), and Omicron, as well as C.1.2, and

A.VOI.V2, isolated in South Africa and Angola, respectively,

which share common mutations with variants of concern

(VOCs) and are of local relevance to the Southern African

region.12,13

For the ancestral D614G variant, geometric mean titers

(GMTs) were stable up to 6 months post-vaccination (GMTs of

104, 117, and 96 at 2, 4, and 6months post-vaccination), consis-

tent with previous studies10,11 (Figures 1D and 2A). Where

detectable, titers against the six variants were similarly stable

over 6 months, showing no significant differences over time (Fig-

ure 2A), as observed in two previous studies.10,14 However, for all

variants tested, titers were 1.9- to 4.2-fold lower at 2 months

post-vaccination compared with the D614G variant, as reported

elsewhere10,14–17 (Figure 2A). For the Beta and Delta variants, in
2 Cell Reports Medicine 3, 100535, March 15, 2022
particular, half of non-BTI vaccinees showed no detectable

neutralization at 6 months post-vaccination (Figure 2C). As ex-

pected, titers against SARS-CoV-1 were low, with GMTs of 28

and 21 at 2 and 4 months, respectively, and undetectable at

6 months post-vaccination (Figure 2A).

We next assessed the breadth and magnitude of humoral im-

mune responses following BTI. In all participants, BTI occurred

between 3 and 5 months post-vaccination. Prior to BTI, the

nucleocapsid binding responses in both the BTI and non-BTI

participants were negative, and only detected following BTI (Fig-

ure 1B). There were also no significant differences in D614G

spike binding responses between the BTI and non-BTI partici-

pants prior to 3 to 4 months post-vaccination (Figure 1C). How-

ever, following infection, there was a 3.3-fold increase in spike

responses, which peaked at approximately 2 weeks post-infec-

tion (5 months post-vaccination) and remained constant until

1 month post-infection (6 months post-vaccination) (Figure 1C).

We also assessed the impact of BTI on Fc effector functions,

which have been implicated in protection from severe coronavi-

rus disease 2019 (COVID-19) disease, andwhich generally retain

activity against VOCs.18,19 We examined whether levels of anti-

body-dependent cellular cytotoxicity (ADCC), measured by abil-

ity to cross-link FcgRIIIa were boosted following BTI. Similar to

binding, ADCC against D614G remained stable up to 3 to

4 months post-vaccination, with a rapid 3.1-fold increase in ac-

tivity after BTI (Figure 1E). These responses peaked (geomean

RLU: 712) at approximately 2 weeks post-infection (5 months

post-vaccination), but declined slightly (geomean RLU: 558) by

1 month post-infection (6 months post-vaccination) (Figure 1E).

Both before and after infection, ADCC was cross-reactive

against D614G, Beta, and Delta variants, showing only slight de-

creases against VOCs relative to D614G across all time points

(geomean RLUs of 712, 626, and 702 against D614G, Beta,

and Delta, respectively, at 2 weeks post-infection). This illus-

trates the resilience of Fc effector function against VOCs in

Ad26.CoV2.S BTI participants.

Neutralization titers against D614G closely mirrored the spike

binding and ADCC response, with no significant differences in

titers between the BTI and non-BTI participants prior to 3 to

4 months post-vaccination, but with a dramatic increase in titers

for all participants (407-fold increase from 102 to 41,528 GMT)

following infection (Figures 1D and 2B). This increase in neutral-

ization titers is similar in magnitude to what was previously re-

ported for a single individual with Ad26.CoV2.S BTI.10 We

observed extremely high neutralization titers at approximately

2 weeks post-infection (5 months post-vaccination), which

declined by approximately 4.7-fold 1 month thereafter (Fig-

ure 1D). Neutralization titers after BTI were also significantly

higher against six SARS-CoV-2 variants relative to non-BTI par-

ticipants (40- to 154-fold difference in GMT), and SARS-CoV-1

(9-fold difference in GMT) (Figures 2B and 3). This includes the

highly neutralization-resistant Omicron variant, against which

titers ranged from 161 to 1,858 (GMT of 843) for the BTI partici-

pants (Figure 3). Thus, in contrast to vaccine-elicited responses,

BTI after a single dose of Ad26.COV2.S resulted in neutralization

of all SARS-CoV-2 variants, with a GMT >800 against Omicron,

and >3,000 against all other SARS-CoV-2 variants (Figures 2B,

2C, and 3).
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Figure 1. Ad26.COV2.S BTI boosted plasma binding and neutralization antibody titers against the ancestral variant (D614G) and increased

ADCC activity against the D614G, Beta, and Delta variants

(A) Nineteen HCWs, vaccinated with a single dose of Ad26.COV2.S, were recruited, with six having BTIs. Longitudinal blood draws occurred between 2 and

6 months post-vaccination. However, for one BTI participant, only 2- and 6-month post-vaccination plasma samples were available.

(B) Nucleocapsid ELISA binding (OD450nm), from 2 to 6months post-vaccination, is shown for eachBTI and non-BTI participant by red and blue lines, respectively.

(C) Spike binding responses to the D614G spike protein (OD450nm) by ELISA for BTI and non-BTI participants are shown in red and blue, respectively, with each

line representing individual responses over time. Lines in bold show the geomean OD450nm for each group.

(D) Neutralization titers (ID50) against the D614G variant, from 2 to 6 months post-vaccination are shown for each BTI and non-BTI participant with longitudinal

data by red and blue lines, respectively. Lines in bold indicate the GMTs for the BTI and non-BTI groups.

(E) Cross-reactive ADCCactivity for eachBTI participant with longitudinal data up to 6months post-vaccination, shown as relative light units (RLUs). ADCCactivity

for each participant against the D614G, Beta, and Delta variants is shown by the red, blue, and green lines, respectively. Lines in bold show the geomean RLU for

each variant. The threshold for positivity for each assay is indicated by a dashed line in each figure. All results are the mean of two independent experiments.

Statistical analyses were performed using the Mann-Whitney test between groups, with *** denoting p < 0.001, NS for non-significant, and ND for no data.
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DISCUSSION

Overall our data confirm durable vaccine-elicited humoral im-

mune responses 6 months after a single dose of Ad26.COV2.S,

consistent with other studies.10,14–17Moreover, despite relatively
modest titers after vaccination, we observed significantly

boosted binding antibodies, ADCC, and neutralization activity

following BTI. This boost resulted in neutralization titers in BTI

participants at 1 month post-infection (GMT 8,249) that were

higher than those elicited by a two-dose Pfizer-BioNTech
Cell Reports Medicine 3, 100535, March 15, 2022 3
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Figure 2. Longitudinal neutralization responses over 6 months for BTI and non-BTI participants against SARS-CoV-2 variants and SARS-

CoV-1

(A and B) Neutralization ID50 titers are shown for (A) Ad26.COV2.S vaccinees who did not have breakthrough infection (non-BTI) and (B) BTI Ad26.COV2.S

vaccinees at 2, 3 or 4, and 6 months post-vaccination, against the D614G, Beta, Delta, Gamma, C1.2., and A.VOI.2 variants, and SARS-CoV-1. All results are the

mean of two independent experiments. Significance is shown as per Friedman test, across all time points where NS denotes non-significant, * denotes p < 0.05,

and ** denotes p < 0.01.

(C) Percentage of individuals who are neutralization responders (Black; ID50 > 20), or are either non-responders or show knockout relative to D614G (KO/NR,

ID50 < 20; white) at 6 months post-vaccination.

4 Cell Reports Medicine 3, 100535, March 15, 2022

Report
ll

OPEN ACCESS



D61
4G

Beta
 (B

.1.
35

1)

Delt
a (

B.1.
61

7.2
)

Gam
ma (

P.1
)

A.VOI.V
2

C.1.
2

SARS-C
oV

-1VV

Omicr
on

 (B
.1.

1.5
29

)

100

1000

10000

N
eu

tr
al

i z
at

io
n

tit
er

( I
D

50
)

GMT (ID50)

*** **** **** **** *** **** ****

Ad26.COV2.S+BTI 

Ad26.COV2.S

3408

27

8249

96

4625

30

5484 3208

46

3175

34

176

2057

843

21

****

Figure 3. BTI results in increased plasma

neutralization titers against all SARS-CoV-2

variants, and SARS-CoV-1, 6 months post-

vaccination

The neutralization titers against the ancestral

(D614G), Beta (B.1.351), Delta (B.1.617.2), Gamma

(P.1), C.1.2, A.VOI.V2, and Omicron (B.1.1.529)

SARS-CoV-2 variants, and SARS-CoV-1, for six BTI

participants relative to 13 non-BTI participants at the

6-month post-vaccination visit (approximately

1 month post-BTI). Each dot represents the

neutralization titer of a single participant, with the

BTI participants and non-BTI participants shown in

red and blue, respectively. The GMT for each group

against each variant is shown by a black horizontal

bar in the plot, with the values given in the red and

blue boxes above the plot. Neutralization titers in the

BTI group were significantly higher than those of the

non-BTI group (40- to 154-fold higher GMT against

the SARS-CoV-2 variants and 9-fold higher against

SARS-CoV-1). All results are the mean of two inde-

pendent experiments. Statistical analyses were

performed using the Mann-Whitney test between

groups, with *** denoting p < 0.001 and **** denoting

p < 0.0001.
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(BNT162b2) vaccine regimen (GMT: 1,128) 2 month post-vacci-

nation, or those observed in convalescent donors who had pre-

viously been hospitalized with moderate (GMT: 993) or severe

disease (GMT: 3,747) (Figure S1). Though we note that these

comparisons differ by number of antigen exposures and timing,

among other variables, this illustrates the extremely high level of

boosting observed in BTIs. Similar to BTI individuals, we have

previously confirmed that ADCC, binding, and neutralization

are also significantly boosted following vaccination in individuals

who were previously infected,20 but not to the same levels we

report here for BTI (GMT of 1,372 versus 8,249 for neutralization,

respectively) (Figure S1). Whether this is a result of increased

affinity maturation broadening the response against variants, or

rather the boosting of vaccine-elicited cross-reactive memory

B cells to higher titers, remains to be determined and will be

the focus of future work.

These data add to previous reports of BTI following mRNA

vaccination, which results in >30-fold increased neutralization

potency, suggesting broad relevance across multiple vaccine

modalities.4,5,21 Affinity maturation following SARS-CoV-2 infec-

tion can lead to the development of broader and more potent

neutralizing antibodies.22,23 We have previously shown that the

sequence of the spike in a prior infection influenced the breadth

and potency of neutralizing antibodies following vaccination with

Ad26.COV2.S.20 Whether spike identity in BTIs (here, likely a

heterologous exposure to the Delta variant after priming with

ancestral sequence) similarly contributes to the selection of

cross-reactive B cells is not yet known.24 Taken together, these

findings suggest a strongly synergistic effect of vaccination and

infection, which will contribute to higher levels of protective com-

munity immunity in areas with high burden of infection, and may

have contributed to the low hospitalization rates seen during the

Omicron-driven fourth wave in South Africa.25 As homologous

and heterologous boosters are deployed, this effect may be
further enhanced.26 Overall, this study provides insight into the

magnitude and quality of humoral immune responses elicited

by BTIs after an adenovirus-based vaccine, with implications

for public health interventions in regions that have experienced

high levels of SARS-CoV-2 transmission.

Limitations of study
This study is limited by the relatively small number of BTIs that

were characterized. We also note that the median age of the

BTI participants was higher than that of the non-BTI participants

(BTI participants median age: 39 years, IQR: 32–59 years; non-

BTI participants median age: 33 years, IQR: 29–36 years), which

may impact comparisons between the two groups.11,27 We do

not have sequencing data to determine the variant responsible

for BTI, and it is possible that the infecting viral sequence may

impact the quality of the response, as we have previously

shown.20,28 We note that the pseudotyped virus neutralization

assay used here can only assess the effectiveness of neutralizing

antibodies against the spike protein in preventing viral entry into

host cells, and cannot detect any effects antibodiesmay have on

viral replication or cell-to-cell spread.29,30 Inherent differences

between the pseudotyped viruses and authentic, replication-

competent SARS-CoV-2 viruses, such as spike density and

geometry on the virion surface, may also result in differences in

sensitivity.29,30 However, neutralization titers from pseudovirus

and replication-competent SARS-CoV-2 assays generally corre-

late well.31,32 We also focused only on humoral responses, and

T cell responses following BTI will need to be defined in future

studies.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
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Spike Hexapro plasmid Dr Jason McKellan N/A

SARS-CoV-2 ancestral variant spike

(D614G) plasmid

Wibmer et al., 2021 N/A

Beta spike (L18F, D80A, D215G, K417N, E484K,

N501Y, D614G, A701V, 242-244 del) plasmid

Wibmer et al., 2021 N/A

Delta spike (T19R, R158G L452R, T478K, D614G,

P681R, D950N, 156-157 del) plasmid

Keeton et al., 2021 N/A

Gamma spike (L18F, T20N, P26S,

D138Y, R190S, K417T,

E484K, N501Y, D614G, H655Y,

T1027I, V1176F)

Richardson et al., 2021 N/A

Omicron spike ((A67V, D69-70, T95I, G142D, D143-145,

D211, L212I, 214EPE, G339D, S371L, S373P, S375F,

K417N, N440K, G446S, S477N, T478K, E484A, Q493K,

G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y,

N679K, P681H, N764K, D796Y, N856K, Q954H, N969K,

L981F) plasmid

This paper N/A
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C.1.2. spike (P9L, C136F, D144,

R190S, D215G, D242-243,

Y449H, E484K, N501Y, D614G,

H655Y, N679K,

T716I, T859N) plasmid

This paper N/A

A.VOI.V2 spike (D80Y, D144, I210N,

D211, D215G, R246M,

D247-249, W258L, R346K,

T478R, E484K, H655Y,

P681H, Q957H) plasmid

This paper N/A

SARS-CoV-1 spike plasmid Dr Elise Landais, Scripps N/A

Firefly luciferase encoding

lentivirus backbone plasmid

Dr Michael Farzan, Scripps N/A

Software and algorithms

Geneious software Biomatters Ltd https://www.geneious.com

FACSDiva 9 BD Biosciences https://www.bdbiosciences.com

FlowJo 10 FlowJo, LLC https://www.flowjo.com

R version 4.1.0 The R Foundation for

Statistical Computing

https://www.r-project.org

ggplot2 package Tidyverse https://ggplot2.tidyverse.org

Graphpad Prism 9 Graphpad https://www.graphpad.com

Biorender Biorender https://www.biorender.com
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RESOURCE AVAILABILITY

Lead contact
Further information and reasonable requests for resources and reagents should be directed to andwill be fulfilled by the lead contact,

Penny Moore (pennym@nicd.ac.za).

Materials availability
Materials will be made available by request to Penny Moore (pennym@nicd.ac.za).

Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the Lead Contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
HCWs vaccinated with one dose of Ad26.CoV2.S (5 3 1010 viral particles) as part of the Sisonke implementation trial were followed

longitudinally and plasma sampled at 2-, 3- (in some cases 4-) and 6-months post-vaccination. An additional plasma sample was

collected from BTI participants at 5-months post-vaccination, which was approximately 2-weeks post-infection. Non-BTI partici-

pants were recruited from HCWs at the National Institute for Communicable Diseases (NICD) (Johannesburg), while BTI participants

were recruited from HCWs at the NICD, Steve Biko Academic Hospital (Tshwane, South Africa) and Groote Schuur Hospital (Cape

Town, South Africa). Lack of prior infection in these individuals was confirmed by Nucleocapsid ELISA as described.20 Ad26.CoV2.S

vaccinees with prior SARS-CoV-2 infection were recruited from a longitudinal study of healthcare workers enrolled from Groote

Schuur Hospital, with plasma samples collected 2-months post-vaccination. Plasma was also collected from thirteen participants

that had received two doses of the Pfizer BioNTech vaccine (BNT162b2) 2-months after they had received their last dose (Johannes-

burg, South Africa). Convalescent participants were recruited as part of a hospitalised cohort at the Steve Biko Academic Hospital

between May and August 2020, with plasma samples collected 10-days after the initial positive PCR test. Ethics approval was ob-

tained from the Human Research Ethics Committees of the University of the Witwatersrand (ethics reference number: M210465),
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University of Pretoria (ethics reference number: 247/2020) and University of Cape Town (ethics reference numbers: 190/2020 and

209/2020). Written informed consent was obtained from all participants.

Cell lines
Human embryo kidney HEK293T cells were cultured at 37�C, 5%CO2, in DMEM containing 10% heat-inactivated fetal bovine serum

(Gibco BRL Life Technologies) and supplemented with 50 mg/mL gentamicin (Sigma). Cells were disrupted at confluence with 0.25%

trypsin in 1 mM EDTA (Sigma) every 48–72 hours. HEK293T/ACE2.MF cells were maintained in the same way as HEK293T cells but

were supplemented with 3 mg/mL puromycin for selection of stably transduced cells. HEK293F suspension cells were cultured in 293

Freestyle media (Gibco BRL Life Technologies) and cultured in a shaking incubator at 37�C, 5% CO2, 70% humidity at 125 rpm

maintained between 0.2 and 0.5 million cells/ml. Jurkat-LuciaTM NFAT-CD16 cells were maintained in IMDM media with 10%

heat-inactivated fetal bovine serum (Gibco, Gaithersburg, MD), 1% Penicillin Streptomycin (Gibco, Gaithersburg, MD) and 10 mg/

mL of Blasticidin and 100 mg/mL of Zeocin was added to the growth medium every other passage.

METHOD DETAILS

SARS-CoV-2 antigens
For ELISA, SARS-CoV-2 full ancestral spike (L18F, D80A, D215G, K417N, E484K, N501Y, D614G, A701V, 242-244 del) proteins were

expressed in Human Embryonic Kidney (HEK) 293F suspension cells by transfecting the cells with the respective expression plasmid.

After incubating for six days at 37�C, 70% humidity and 10% CO2, proteins were first purified using a nickel resin followed by size-

exclusion chromatography. Relevant fractions were collected and frozen at �80�C until use.

SARS-CoV-2 spike enzyme-linked immunosorbent assay (ELISA)
Two mg/ml of spike protein (ancestral D614G) was used to coat 96-well, high-binding plates and incubated overnight at 4�C. The
plates were incubated in a blocking buffer consisting of 5% skimmed milk powder, 0.05% Tween 20, 13 PBS. Plasma samples

were diluted to 1:100 starting dilution in a blocking buffer and added to the plates. IgG or IgA secondary antibody was diluted to

1:3000 or 1:1000 respectively in blocking buffer and added to the plates followed by TMB substrate (Thermofisher Scientific).

Upon stopping the reaction with 1 M H2SO4, absorbance was measured at a 450 nm wavelength. In all instances, mAbs CR3022

and BD23 were used as positive controls and Palivizumab was used as a negative control.

Spike plasmid and lentiviral pseudovirus production
The SARS-CoV-2 Wuhan-1 spike, cloned into pCDNA3.1 was mutated using the QuikChange Lightning Site-Directed Mutagenesis

kit (Agilent Technologies) and NEBuilder HiFi DNA Assembly Master Mix (NEB) to include D614G (ancestral) or lineage defining mu-

tations for Beta (L18F, D80A, D215G,D242-244, K417N, E484K, N501Y, D614G and A701V), Delta (T19R, D156-157, R158G, L452R,

T478K, D614G, P681R, D950N), Gamma (L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I,

V1176F), C1.2. (P9L, C136F, D144, R190S, D215G, D242-243, Y449H, E484K, N501Y, D614G, H655Y, N679K, T716I, T859N),

A.VOI.V2 (D80Y, D144, I210N, D211, D215G, R246M, D247-249, W258L, R346K, T478R, E484K, H655Y, P681H, Q957H) and Om-

icron (A67V, D69-70, T95I, G142D, D143-145, D211, L212I, 214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N,

T478K, E484A, Q493K, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H,

N969K, L981F). SARS-CoV-1 spike was also cloned into pcDNA.

Pseudotyped lentiviruses were prepared as previously described.3 Briefly, pseudoviruses were produced by co-transfecting

HEK293T cell line with one of the SARS-CoV-2 variant spike plasmids or the SARS-CoV-1 spike plasmid, in conjunction with a firefly

luciferase encoding lentivirus backbone plasmid (HIV-1 pNL4.luc encoding the firefly luciferase gene) with PEIMAX (Polysciences).

Culture supernatants were clarified of cells by a 0.45-mM filter and stored at �70�C.

Pseudovirus neutralization assay
For the neutralization assay, plasma samples were heat-inactivated and clarified by centrifugation. Heat-inactivated plasma samples

from vaccine recipients were incubated with the SARS-CoV-2 or SARS-CoV-1 pseudotyped virus for 1 hour at 37�C, 5% CO2.

Subsequently, 1 3 104 HEK293T cells engineered to over-express ACE-2 (293T/ACE2.MF, kindly provided by M. Farzan at Scripps

Research) were added and incubated at 37�C, 5% CO2 for 72 hours upon which the luminescence of the luciferase gene was

measured. Titers were calculated as the reciprocal plasma dilution (ID50) causing 50% reduction of relative light units. CB6 and

CA1 were used as positive controls, while Palivizumab was used as a negative control.

Antibody-dependent cellular cytotoxicity (ADCC) assay
The ability of plasma antibodies to cross-link and signal through FcgRIIIa (CD16) and spike expressing cells wasmeasured as a proxy

for ADCC. HEK293T cells were transfected with 5 mg of either SARS-CoV-2 original variant (D614G), Beta or Delta spike plasmids

using PEI-MAX 40,000 (Polysciences) and incubated for 2 days at 37�C. Expression of spike was confirmed by differential binding

of CR3022 and P2B-2F6 and their detection by anti-IgG APC staining measured by flow cytometry. Subsequently, 1 3 105

spike transfected cells per well were incubated with heat inactivated plasma (1:100 final dilution) or monoclonal antibodies (final
e3 Cell Reports Medicine 3, 100535, March 15, 2022
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concentration of 100 mg/mL) in RPMI 1640media supplemented with 10%FBS 1%Pen/Strep (Gibco, Gaithersburg, MD) for 1 hour at

37�C. Jurkat-LuciaTM NFAT-CD16 cells (Invivogen) (2 3 105 cells/well) were added and incubated for 24 hours at 37�C, 5% CO2. A

volume of 20 mL of supernatant was then transferred to a white 96-well plate with 50 mL of reconstituted QUANTI-Luc (Invivogen)

secreted luciferase and read immediately on a Victor 3 luminometer with 1s integration time. Relative light units (RLU) of a no antibody

control was subtracted as background. Palivizumab was used as a negative control, while CR3022 was used as a positive control,

and P2B-2F6 to differentiate the Beta from the D614G variant. To induce the transgene 13 cell stimulation cocktail (Thermofisher

Scientific, Oslo, Norway) and 2 mg/mL ionomycin in R10 was added as a positive control to confirm sufficient expression of the

Fc receptor. CR3022 (for spike and RBD) or 4A8 (NTD) were used as positive controls and Palivizumab were used as negative

controls. RLUs for original and Beta spikes were normalised to each other and between runs using CR3022. A cut off of 40 was

determined by screening of 40 SARS-CoV-2 naive and unvaccinated individuals. All samples were run head-to-head in the same

experiment as were all variants tested.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed in Prism (v9; GraphPad Software Inc, San Diego, CA, USA) and graphs generated using the ggplot2

package in R version 4.1.0. Where neutralization titers were below the limit of detection, these were assigned a nominal value of

20 in geometric mean titer (GMT) calculations, which is the lowest plasma dilution factor used in the neutralization assay. Non-para-

metric tests were used for all comparisons and all t tests were 2-sided. The Mann-Whitney test was used for unpaired comparisons

between two groups, while the Kruskal-Wallis ANOVAwith Dunns correction was used for multiple comparisons for unpaired groups.

The Friedman test was used for multiple comparisons between paired groups. P values less than 0.05 were considered to be

statistically significant.
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