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ABSTRACT

Metagenomics provides access to the uncultured
majority of the microbial world. The approaches
employed in this field have, however, had limited
success in linking functional genes to the taxonomic
or phylogenetic origin of the organism they belong
to. Here we present an efficient strategy to recover
environmental DNA fragments that contain phylo-
genetic marker genes from metagenomic libraries.
Our method involves the cleavage of 23S ribsosmal
RNA (rRNA) genes within pooled library clones by
the homing endonuclease I-CeuI followed by the
insertion and selection of an antibiotic resistance
cassette. This approach was applied to screen a
library of 6500 fosmid clones derived from the
microbial community associated with the sponge
Cymbastela concentrica. Several fosmid clones
were recovered after the screen and detailed
phylogenetic and taxonomic assignment based
on the rRNA gene showed that they belong to pre-
viously unknown organisms. In addition, compos-
itional features of these fosmid clones were used
to classify and taxonomically assign a dataset of
environmental shotgun sequences. Our approach
represents a valuable tool for the analysis of
rapidly increasing, environmental DNA sequencing
information.

INTRODUCTION

Metagenomics is defined as the study of the total genomic
composition of the biota from a particular environment.
In recent years metagenomics has revealed many novel
phylogenetic and functional properties of microbial
systems (1–4) and has provided insight into the microbial

communities of seawater (5–7), soil (8,9), biogas plants
(10), indoor air handling unit (11) and in animal- or
human-associated niches (12–15). One major aim of
metagenomics is to define the functional properties of
microorganisms, which are yet to be cultured or difficult
to isolate, by directly analyzing their genomes from the
environmental sample.
Random shotgun sequencing of environmental

DNA has established itself as a core methodology in
metagenomics and recent advances in high-throughput
sequencing technology have made this approach econom-
ically feasible and hence widely used (16). Typically,
shotgun sequencing data are functionally annotated on
the level of individual sequence reads or assembled
contigs. The individual read annotation and poor
success in assembling complex (i.e. species-rich) samples
(17) often results in functional genes being physically
detached from genes containing taxonomic information
(such as the 16S rRNA gene). This has limited the
progress in revealing the phylotype–function relationships
for many uncultivated organisms and several compu-
tational and laboratory-based approaches have been
developed to overcome this situation (18). Computational
methods mainly use binning of DNA fragments based on
conserved compositional features (such as oligonucle-
totide or k-mer frequencies) followed by taxonomic clas-
sification of bins. Algorithms like PhyloPythia (19),
TETRA (20) or TACOA (21) have been successfully
employed; however, their performance is heavily depen-
dent on the availability of reference (or training) sequences
that are long enough to provide sufficient compositional
information to define a classifier for shorter, unknown
fragments (typically a few thousand base pairs in
length). These reference fragments should ideally also
contain well-established and universal markers for
detailed phylogenetic analysis and taxonomic assignment.
Fosmids and BAC clones containing phylogenetic
markers such as the 16S rRNA gene have often been
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quoted as fitting these requirements for suitable reference
sequences (19,20).
Laboratory-based molecular screens for phylogenetic

markers from fosmids or BAC clones have been developed
and involve PCR- or fluorescent in situ hybridization-
based screening of individually arrayed clones or small
pools of clones (around 96 individual clones) (22–25).
PCR-based screening of metagenomic libraries clones is
frequently employed to identify phylogenetic marker
genes (26–30). Potential cross-hybridization of the PCR
primers or probes with the host background of the
library (e.g. Escherichia coli) limits these approaches to
either very specific organisms (e.g. targeting defined
species) or to groups distantly related to the library host
(e.g. screen for archaeal markers in an E. coli host library).
Furthermore, these methods are rather labor intensive,
potentially quite costly and often reach their practical
limits with increasing clone numbers in the library.
Here we present an efficient phylogenetic screening

strategy for metagenomic libraries using homing
endonuclease restriction and marker insertion (HERMI)
(Figure 1). This approach allows rapid selection of clones
containing rRNA genes from large pools by employing a
restriction digest with the homing endonuclease I-CeuI.
The recognition site of I-CeuI is 26-bp long and cuts
very specifically in a conserved part of the intron-free
23S rRNA gene to produce a 4-nucleotide (CTAA) 30

overhang (31). The slow evolutionary rate of the recogni-
tion site as well as the tolerance of the enzyme for minor
sequence changes means that rRNA genes from a wide
range of organisms can usually be cut (32). Hence,
applying a I-CeuI digest to pooled metagenomic clones
should only linearize clones containing 23S rRNA genes.
The linearized clones are subsequently isolated by
inserting a selectable marker gene (i.e. antibiotic
cassette), followed by retransformation and selection
from the library pool (Figure 1).

MATERIALS AND METHODS

Bacterial strains and media

Escherichia coli EPI300 (Epicentre, Madison, WI, USA)
and DH5a strains were used throughout this study.
Cultures were maintained in Luria Bertani medium plus

10% NaCl (LB10) or on LB10 with 1.5% agar solid
media. For clones containing only the pCC1FOS vector
backbone the media was supplemented with 12.5 mg/ml
chloramphenicol. For pGEM:CeuKan clones 50 mg/ml
kanamycin and 100 mg/ml ampicillin and for
pCC1FOS:HERMI clones 12.5mg/ml chloramphenicol
and 50 mg/ml kanamycin were used.

Construction of pooled fosmid library

Total DNA was extracted from the microbial community
associated with the marine sponge Cymbastela concentrica
(Thomas et al., unpublished data). A metagenomic clone
library was constructed using the CopyControlTM Fosmid
Library Production Kit (Epicentre, Madison, WI, USA)
according to the manufacturer’s protocol with minor
modifications. Briefly, environmental DNA was size
fractionated and DNA with molecular weight of 36-
40 kb was gel excised followed by an end-repair reaction.
The DNA (�1 mg) was ligated with the fosmid vector
pCC1FOS followed by packaging the DNA into lambda
phage particles, which were used to infect E. coli EPI300
cells. Transformants were plated onto LB10 agar with
chloramphenicol and grown at 37�C for 16 h. The
resulting library contains approximately 6500 clones
with average insert size of 36 kb (data not shown). The
E. coli library clones were pooled followed by the
addition of 5 volumes of fresh LB10 broth supplemented
with chloramphenicol. Induction of the fosmids to high
copy number was done by addition of 0.01% (w/v)
arabinose and incubating the cultures at 37�C for 4 h.
After induction the cells were collected and the fosmid
DNA was extracted using the Illustra plasmidPrep Mini
Spin Kit (GE Bio-Science Corp, NJ, USA) according to
manufacturer’s instructions.

Construction of a kanamycin cassette with flanking
I-CeuI recognition sequences

The kanamycin cassette with flanking I-CeuI recognition
sequences was generated via a three-step PCR as direct
PCR with primers containing the 26-bp I-CeuI recognition
sequence caused severe primer–dimer formation. The first
round of PCR includes the amplification of the kanamycin
resistance cassette from plasmid pACYC177 (NEB,
Beverly, MA, USA) with flanking partial I-CeuI recogni-
tion sequences. The PCR conditions as per 50 ml reaction
were 10 ng of pACYC177 plasmid, 1� iProof HF Buffer,
200 mM of each dNTP, 0.5mM of each primer (KanFCeu/
KanRCeu) (Table 1) and 0.05U/ml iProof DNA
polymerase (Bio-Rad, Hercules, CA, USA), 1min/98�C,
followed by 10s/98�C, 30 s/53�C, 1min/72�C, 30 cycles.
The second round of PCRs was performed in two
separate reactions to add the entire I-CeuI restriction
sequence on each of the ends of the cassette; one
reaction used the primer set CeuF/KanRCeu and the
other used primer set CeuR/KanFCeu (Table 1). PCR
conditions were: 3 ng of DNA template from the first
PCR, remaining reaction mix composition as for the
first-round PCR, 1min/98�C, followed by 10 s/98�C,
30 s/45�C, 1min 30 s/72�C, 30 cycles. The two PCR
products were then pooled (final volume of 100 ml) and

Figure 1. Schematic diagram showing the steps involved in the
HERMI process.
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the 1.1 kb product was gel extracted to purify the
kanamycin cassette. The third round of PCR involved
hybridizations and fill-in reaction steps to generate a
PCR product with the full I-CeuI recognition site on
both ends of the kanamycin cassette. The conditions
were: �50 ml of gel-extracted DNA from the second
round of PCR, 1�RedTaqPCR buffer, 10 mM of each
dNTP and 1U of RedTaq DNA polymerase (Promega,
Madison, WI, USA), 2min/94�C, 20 s/94�C, 30 s/45�C,
20 s/72�C, 20 cycles. The final PCR product was cloned
into pGEM vector (pGEM�-T Easy Vector System,
Promega, Madison, WI, USA) according to manufac-
turer’s instructions followed by the transformation into
E. coli DH5a. Transformants (named pGEM:CeuKan)
with the correct insert (after confirmation via restriction
digest with I-CeuI) were selected for miniprep purification.
The kanamycin cassette with flanking I-CeuI recognition
sequences (CeuKan) was gel purified after digestion of
pGEM:CeuKan.

Homing endonuclease restriction and marker insertion

One microgram of pooled fosmid DNA was digested with
the I-CeuI homing endonuclease in a reaction containing
two units of I-CeuI enzyme (NEB), 1�NEB buffer 4,
0.5 ml of BSA (NEB) and sterile, deionized water up to a
volume of 50 ml. The digest was incubated at 37�C for 3 h
followed by a heat inactivation at 65�C for 20min. The
digested fosmids were dephosphorylated using two units
of Antarctic alkaline phosphatase (NEB) according to
manufacturer’s instructions. The fosmids were ligated
with the CeuKan cassette in 1:30 (vector:insert) molar
ratio overnight at room temperature. The ligation mix
was transformed into E. coli EPI300 cells via
electroporation and cells were recovered at 37�C for 1 h
and then plated onto LB10 agar supplemented with
appropriate antibiotics to select for pCC1FOS:HERMI
clones. Transformants that grew on the selective agar
were purified, fosmid DNA was extracted and subjected
to denaturing gradient gel electrophoresis (DGGE)

analysis, end sequencing and 16S/23S rRNA gene PCR
as described below.

Denaturing gradient gel electrophoresis

The 16S rRNA gene was PCR amplified as described
by Muyzer et al. (33) with the universal primer
GM5FplusGC and 907RC (Table 1). Various DNA
samples were used: (i) Pooled fosmid library DNA, (ii)
E. coli genomic DNA and (iii) fosmid DNA of individual
HERMI clones. PCR conditions were 10 ng of DNA
template, 1�RedTaq buffer, 0.5 mM of each forward
and reverse primers, 200 mM of each dNTP, 300mg of
BSA, 1U of RedTaq DNA polymerase (Promega,
Madison, WI, USA), 3min/96�C, hot start at 80�C, 30 s/
94�C, 30 s/57�C, 1min 10 s/72�C, 25 cycles. The PCR
products were cleaned using the QIA quick PCR purifica-
tion kit (QIAGEN, Hilden, Germany) and the DNA was
examined with a DCode DGGE unit (BIO-RAD,
Hercules, CA, USA) using the following parameters:
10% acrylamide gel, a denaturant gradient containing
45–60% urea-formamide, 1� TAE buffer, 75V at 60�C
for 16 h. Bands from the DGGE gel were extracted,
dialysed overnight at 4�C with 50 ml of molecular grade
water and re-amplified using primers GM5F and 907RC
for sequencing.

Sequencing and phylogenetic analysis of fosmid clones

End sequencing of the HERMI clones were performed
using the primer pair pEpiFosFor and pEpiFosRev
(Table 1). PCR amplification and sequencing using uni-
versal primers for 23S and 16S rRNA gene (Table 1) were
also performed on selected HERMI clones as described
previously (34,35). Briefly, PCR conditions were 3min/
94�C, 1min/94�C, 1min/57�C, 3min/72�C, 30 cycles (for
23S PCR) and 3min/94�C, 80�C hot start, followed by
30 s/94�C, 1min/50�C, 3min/72�C, 25 cycles (for 16S
PCR). The PCR products were subjected to sequencing
using the same primers. Other sequencing reactions were
also performed using the KanFSeq and KanRSeq primers
(Table 1) to obtain 23S rRNA gene sequence flanking the
kanamycin cassette.
The complete sequence of PCR products were obtained

and searched with the BLAST algorithm (36) against the
NCBI and Silva database (37) and closest representatives
were selected, aligned using the Aligner tool provided in
Silva, and imported into the Silva 16S rRNA and 23S
rRNA database using the ARB program for phylogenetic
tree construction (38). Maximum likelihood trees were
constructed with default parameters.

Whole fosmid sequencing and analysis

HERMI fosmid clones were shotgun sequenced as
outlined in Rusch et al. (5). Shotgun reads were processed
and assembled using Phred/Phrap and the assembly was
manually checked in Consed (39). Binning of the fosmid
sequences and an assembled shotgun-reads dataset from
the bacterial community of C. concentrica (Thomas et al.,
unpublished data) was done according to the strategy
outlined by Woyke et al. (40). Briefly, tetranucleotide
patterns were determined using TETRA (20) and

Table 1. Primers used in this study

Name Sequence (50 to 30)

CeuF GGGTAACTATAACGGTCCTAAGGTAGCGAG
CeuR GGGTCGCTACCTTAGGACCGTTATAGTTAAA
KanFCeu GTCCTAAGGTAGCGAGGTTGATGAGAGCTTT

GTTG
KanRCeu AGGACCGTTATAGTTAAAGTCAGCGTAATG

CTCTGC
KanFSeq GACCGTTCCGTGGCAAAG
KanRSeq GCTCGATGAGTTTTTCTAATC
23S–129F CYGAATGGGRVAACC
23S–2241R ACCGCCCCAGTHAAACT
16S–27F AGAGTTTGATCMTGGCTCAG
16S–1492R ACGGTTACCTTGTTACGACTT
pEpiFosFor GGATGTGCTGCAAGGCGATTAAGTTGG
pEpiFosRev CTCGTATGTTGTGTGGAATTGTGAGC

CCTACGGGAGGCAGCAG
907R CCGTCAATTCCTTTGAGTTT
GM5FplusGC CCTACGGGAGGCAGCAGCGCCCGCCGCGCC

CCGCGCCCGTCCCGCCGCCCCCGCCCG
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exported as normalized Z-scores for fosmids and scaffolds
of the shotgun datasets longer than 20 kb. Clustering was
performed with Euclidian distance and complete linkage
using the software Cluster 3.0 and visualized with
JavaTreeView (41).

RESULTS

Specificity of the HERMI screen

Applying the HERMI method in a single-tube reaction to
a pooled library of approximately 6500 fosmid clones
derived from the microbial community associated with
the sponge C. concentrica resulted in 52 kanamycin-
resistant transformants. End sequencing of these clones
rejected 40 as being sister clones leaving 12 for further
analysis. PCR amplification and sequencing of the
region flanking the CeuKan cassette showed that none
of the clones contains more than one CeuKan cassette.
In addition, all insertion sites have similarity to the 23S
rRNA gene indicating that no unspecific insertion had
taken place. The I-CeuI recognition sequences for four
of the HERMI clones that contained unique phylotype
(HERMI06, 11, 16 and 30) were compared with the
I-CeuI recognition sequence described in (32). This
demonstrated that HERMI06, 11 and 30 have perfect
matches to the recognition sequence (Figure 2), while
HERMI16 had base pair insertions between positions
4–5, 5–6, 6–7 and 7–8 (respective to the original recogni-
tion sequence). This indicates that base pair insertions in
these positions of the recognition sequence do not abolish
I-CeuI cleavage activity.
To evaluate the phylogenetic spectrum of sequences that

can be cleaved by I-CeuI, we compared the 26-bp recog-
nition sequence to the entire bacterial 23S rRNA Silva
database (37) with various thresholds (no mismatch, 1

mismatch and 2 or more mismatches). Partial sequences
(those did not cover the entire region of the I-CeuI recog-
nition sequence), mitochondrial and chloroplast DNA,
and sequences belonging to the actinobacteria phyla
[previously shown not to be cleaved by I-CeuI (42)] were
excluded. We also considered sequences containing
mismatches that were previously shown to abolish the
activity of the enzyme in our comparison (31). Our
analysis showed that only 1.1% of the 23S rRNA gene
sequences (59 sequences out of 5525 sequences) contain
mismatches that can potentially abolish the enzymatic
activity. Phylotypes that might be excluded from our
screening approach include a number of species within
the genus Chlamydophila and Chlamydia, the unclassified
gamma-proteobacteria Candidatus Carsonella ruddii, the
Candidate division TM7 group GTL1 and a number of
species in the genus Chloroflexi and Roseiflexus (all one
mismatch) as well as some species within the
Planctomycete, Coxiella burnetii and Francisella tularensis
subsp. (two or more mismatches) (Figure 2). This updated,
theoretical consideration is consistent with previous
observations (43) and given the degree of mismatch toler-
ance described for homing endonucleases (44,45), we
estimate that our HERMI strategy is capable of capturing
at least 98% of the known diversity from a wide
phylogenetic spectrum of 23S rRNA gene sequences.

Phylogenetic analysis of HERMI clones from
C. concentrica

The 12 unique HERMI clones (defined as clones having
unique fosmid end sequences) were subjected to 16S and
23S rRNA gene sequencing and their phylogenetic
identities were examined. Based on 16S rRNA sequences
four unique phylogenetic groups (with a percentage
identity cut-off of 99%) were identified from these 12
clones. These four unique 16S rRNA gene sequences

Figure 2. Alignment (50 to 30) of the I-CeuI recognition sites with insertion sites of HERMI clones and different sequences from the Silva LSU 23S
rRNA database. Black triangle represents the cleavage site for I-CeuI and where the CeuKan marker was inserted for the HERMI clones. Letters
underlined in the recognition sequence of HERMI16 indicate basepair insertions into the recognition sequence while letters underlined for other
sequences highlight mismatches in positions that have previously been shown to negatively impact I-CeuI enzymatic activity.
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(using clone HERMI06, 11, 16 and 30 as representatives)
were also found by band sequencing and migration
distance to correspond to the four dominant bands of a
16S rRNA gene DGGE analysis of the pooled fosmids.
This indicates that we have captured the major phylotypes
present in the library (Figure 3). One minor band of the
pooled fosmids was found to belong to the group
Actinobacteria, which is known not to be cleaved by the
I-CeuI enzyme (see above).

A maximum likelihood tree was constructed for the 16S
rRNA sequences of the HERMI clones (Figure 4) and
shows that all sequences (except HERMI16, see below)
are related to uncultured organisms and at least 7.5%
divergent from their nearest cultured bacterium.
Taxonomic classification assigned them to novel clades
within the a- and g-proteobacteria group (HERMI06
and HERMI11) and a Mesorhizobium-related group
(HERMI30). The 16S rRNA sequence of HERMI16 is
identical to E. coli, but further analysis of this fosmid
showed that only the 23S rRNA was cloned and that
the 16S rRNA sequence resulted from amplification of
E. coli host background. A maximum likelihood tree

was also constructed for the 23S rRNA gene of the
HERMI clones (Figure 5) and their closest representatives
imported from the 23S rRNA Silva database (37). Here
the HERMI clones are at least 11% divergent to their
closest cultured representatives. The longer branch
length in this tree to the next related sequences is a reflec-
tion of sparseness of available 23S rRNA gene data, but
nevertheless allows us to link the 16S rRNA with 23S
rRNA gene phylogeny (Figure 5).

Binning and taxonomic assignment of shotgun
metagenomic sequences

To illustrate the value of whole fosmid sequences contain-
ing 16S or 23S rRNA genes for the assignment of
unknown DNA fragments, we clustered the whole
sequence of HERMI11 with sequences longer than 20 kb
from an assembled shotgun sequence dataset of the bac-
terial community of C. concentrica. As illustrated in
Figure 6, the HERMI11 clone sequence fell into a
cluster of unknown sequences (red branches and yellow
box) with a high correlation index (0.884). We therefore
can now assign the shotgun fragments in this cluster to the
novel phylotype within the g-proteobacteria and link this
taxon with 372 predicted protein contained within these
DNA sequences.

DISCUSSION

In this study we have shown that HERMI is a suitable tool
for screening a metagenomic library for clones with
phylogenetic markers (i.e. the 23S rRNA gene).
Handling time for the HERMI procedure is less than 2 h
and allows for the simultaneous screening of thousands of
clones in a single-tube reaction, hence making our
approach faster and more convenient than other
phylogenetic marker screens (22–25). We also note that
the selectable marker applied in this study (i.e. kanamycin
resistance marker) could be replaced with any marker
cassette. For example, a green fluorescent protein
cassette could be employed allowing for subsequent
screening of clones with fluorescence-activated cell
sorting (FACS).
Nesbø et al. (42) also recently used I-CeuI to clone

fragments containing 23S rRNA genes from

Figure 3. DGGE gel of the 16S rRNA gene of a pooled fosmid library
(lane 1), E. coli genomic DNA (lane 2) and HERMI clones (lanes 3–6).
Individual bands were excised and sequenced; the taxonomic assign-
ment of the band is shown next to the arrow.

Figure 5. Maximum likelihood tree of the 23S rRNA gene for the
HERMI clones (bold) and the closest representatives from the Silva
23S LSU database. Underlined sequence highlights closest cultured
representatives. Scale bar indicates 0.025 sequence divergence.

Figure 4. Maximum likelihood tree of the 16S rRNA gene for the
HERMI clones (bold). and the closest representatives of cultured
(from the RDP database, underlined) and uncultured organisms
(from Silva SSU database) with accession numbers preceding the
name of the organism. Scale bar indicates 0.025 sequence divergence.
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environmental DNA samples. Their strategy involved the
construction of a specialized vector that allowed for the
insertion of DNA digested with a blunt-end restriction
enzyme and I-CeuI. However, their approach did not
yield full-length 23S and 16S rRNA genes, limiting the
phylogenetic and taxonomic value of their clones. The
HERMI approach does not have this limitation and, as
16S and 23S rRNA genes are often tightly clustered
together, will frequently yield clones with 16S rRNA
information, for which more comprehensive databases
are currently available. We also note that the linkage of
16S and 23S rRNA information will also help to improve
annotation of unknown clades in current 23S rRNA
databases, as illustrated by the phylogenetic analysis in
our study (Figure 4 and 5). Another benefit of the
HERMI strategy is that it can be applied retrospectively
to any existing environmental DNA library, many of
which have so far only been screened for expressed, func-
tional genes (46–48). Screening those libraries for
phlyogenetic markers will generate more information
about compositional-features of the DNA from
uncultured organisms, which in turn will improve our
ability to classify bins of environmental DNA sequences
(Figure 6) and hence reveal more phylotype–function
relationship.
Sequence analysis of the 26-bp recognition site in the

Silva 23S rRNA database indicated that only a small pro-
portion (<2%) of all currently known 23S rRNA genes
might not be captured with our approach. Importantly,
this limitation can be quantified for each sample prior to
the screening, for example, by constructing a 23S or 16S
rRNA gene PCR library and determine its phylogenetic
composition. This is typically done as a first step for most
environmental diversity studies (49) and hence would not
impose an additional work load.
Finally, homing endonucleases are not only restricted to

cleaving the 23S rRNA genes. Arnould and coworkers
have recently demonstrated that a semi-rational design
can yield I-CreI mutant homing endonucleases with
highly specific recognition patterns, which are distinct
from the wild-type activity (50). As such other homing

endonuclease mutants are available or could be designed
that target other common genes used for phylogenetic
analysis (e.g. the 16S rRNA gene, recA), functional
genes or non-coding regions, and which could then be
applied in a analogous screening strategy as described
here. This will further enhance the utility and versatility
of the HERMI approach.
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